User's Guide **TPS51217** 降压控制器评估模块用户指南

Texas Instruments

摘要

TPS51217EVM-533 评估模块 (EVM) 用于评估 TPS51217,后者是一款小尺寸单路降压控制器,采用自适应导通时间 D-CAP™ 技术,输入电压范围为 8V 至 20V,能以高达 20A 的电流提供 0.9V 至 1.2V 动态可选的输出电压。

内容

1 说明	2
2 电气性能规格	2
3 原理图	
4 测试设置	4
5 测试步骤	7
6 性能和典型特性曲线	8
7 EVM 装配图和 PCB 布局	
8 物料清单	15
9参考文献	15
10 修订历史记录	

商标

所有商标均为其各自所有者的财产。

1 说明

TPS51217EVM 旨在使用 8V 至 20V 的稳压输入,在高达 20A 的负载电流下产生 0.9V 至 1.2V 的动态可选输出电压。TPS51217EVM 旨在演示 TPS51217 在典型低电压应用中的工作原理,同时提供许多测试点来评估TPS51217 的性能。

1.1 典型应用

- 笔记本电脑
- I/O 电源
- 系统电源

1.2 特性

- 0.9V 至 1.2V 的动态可选输出电压, 0.1V 阶跃
- 20A 直流稳态电流
- 支持预偏置输出电压启动
- 340kHz 开关频率
- SW1,用于启用功能
- 便捷的测试点,用于探测关键波形

2 电气性能规格

表 2-1. TPS51217EVM 电气性能规格

	规格	测试条件	最小值	典型值	最大值	单位	
输入							
V _{IN}	输入电压范围		8	12	20	V	
I _{MAX}	最大输入电流	V _{IN} = 8V , I _{OUT} = 20A		3		А	
	空载输入电流	V _{IN} = 8V , I _{OUT} = 0A		0.01		mA	
V _{V5IN}	电压范围		4.5	5.0	5.5	V	
I _{MAX}	最大输入电流	$V_{V5IN} = 5V$, $V_{IN} = 12V$, $I_{OUT} = 20A$		15		mA	
	空载输入电流	$V_{V5IN} = 5V$, $V_{IN} = 12V$, $I_{OUT} = 0A$		0.4		mA	
输出							
	输出电压	V _{IN} = 12V , (VID1,VID0) = (0,0) , I _{OUT} = 10A		0.9			
V		V _{IN} = 12V , (VID1,VID0) = (0,1) , I _{OUT} = 10A		1.0		v	
VOUT		V _{IN} = 12V , (VID1,VID0) = (1,0) , I _{OUT} = 10A		1.1			
		V _{IN} = 12V , (VID1,VID0) = (0,0) , I _{OUT} = 10A		1.2			
I _{OUT}	输出电流	输出负载电流		20		А	
	线路调节	$8V \leqslant V_{\text{IN}} \leqslant 20V$, V_{OUT} = 0.9V , I_{OUT} = 20A		0.3%			
	负载调节	V_{IN} = 12V , V_{OUT} = 0.9V , 1mA \leqslant I_{OUT} \leqslant 20A		0.4%			
V _{RIPPLEL}	_	V _{IN} = 12V , V _{OUT} = 0.9V , I _{OUT} = 20A		29		mV _{P-P}	
I _{OC}	输出过流			28			
系统							
f _{SW}	开关频率	$V_{IN} = 8V$, $V_{OUT} = 0.9V$, $I_{OUT} = 10A$		340		kHz	
	峰值效率	V _{IN} = 12V , V _{OUT} = 0.9		88.8%			
	满负载效率	V _{IN} = 12V , V _{OUT} = 0.9V , I _{OUT} = 20A		84.4%			
T _A	工作环境温度			25		°C	

3 原理图

4 测试设置

4.1 测试设备

按节 4.2 所示连接测试设备和 TPS51125AEVM 电路板。

4.1.1 电压源

输入电压源 VIN 应是能够提供 10A_{DC} 的 0V 至 20V 可变直流电源。将 VIN 连接到 J3,如图 4-2 中所示。输入电压源 V5IN 应是能够提供 1A_{DC} 的 0V 至 5.5V 可变直流电源。将 V5IN 连接到 J1 和 J2,如图 4-2 中所示。

4.1.2 万用表

应使用量程为 0V 至 21V 的电压表在 TP5 (VIN) 和 TP6 (VIN_GND) 上测量 VIN。应使用量程为 0V 至 7V 的电压 表在 TP1 (V5IN) 和 TP2 (V5IN_GND) 上测量 V5IN。应使用量程为 0V 至 5V 的电压表在 TP7 (VOUT) 和 TP8 (VOUT_GND) 上测量 VOUT。图 4-2 中所示量程为 0A 至 10A 的电流表 (A1) 用于测量 VIN 输入电流。图 4-2 中 所示量程为 0A 至 1A 的电流表 (A2) 用于测量 V5IN 输入电流。

4.1.3 脉冲发生器

应使用支持 250Hz、3.3VP-P 脉冲输出的双通道脉冲发生器。

4.1.4 输出负载

输出负载应该是一个恒定电阻模式的电子负载,在 0.9V 至 1.2V 电压下支持 0Adc 至 30Adc 电流。

4.1.5 示波器

可以使用数字或模拟示波器来测量输出纹波。应针对以下条件来设置示波器:

- 1MΩ 阻抗
- 20MHz 带宽
- 交流耦合
- 2 µ s/div 水平分辨率
- 50mV/div 垂直分辨率

测试点 TP7 和 TP8 可用于测量输出纹波电压,方法是将示波器探针尖端穿过 TP7 并将接地筒固定在 TP8 上,如 图 4-1 所示。由于接地环路较大,使用引线接地可能会产生额外的噪声。

图 4-1. 输出电压纹波的尖端和接地筒测量

4.1.6 风扇

在运行过程中,此 EVM 上的某些元件可达到 60°C 的温度。建议使用一个 200LFM 至 400LFM 的小型风扇来降低 EVM 运行时的元件温度。风扇未运行时不应探测 EVM。

4.1.7 建议线规

对于 VIN 到 J3(8V 至 20V 输入),每个输入连接的建议线规是 1 × AWG #14,导线总长度小于 4 英尺(2 英尺 用于输入,2 英尺用于返回)。对于 J4 和 J5 到负载,建议的最低线规为 2 × AWG #14,导线总长度小于 4 英尺 (2 英尺用于输出,2 英尺用于返回)。

4.2 建议的测试设置

图 4-2. 建议的测试设置

图 4-2 显示了建议用于评估 TPS51217EVM 的测试设置。在 ESD 工作站上工作时,请确保在为 EVM 加电之前已 连接所有腕带、靴带或垫子以使用户接地。

4.2.1 输入连接

- 1. 在连接直流输入源 VIN 和 V5IN 之前,建议将来自 VIN 的源电流限制为最大 10A,并将来自 V5IN 的源电流限制为最大 1A。确保 VIN 和 V5IN 初始设置为 0V 并按图 4-2 所示进行连接。
- 2. 在 TP5 (VIN) 和 TP6 (VIN_GND) 上连接电压表 V1 以测量输入电压。
- 3. 连接电流表 A1 以测量输入电流。
- 4. 在 TP1 (V5IN) 和 TP2 (V5IN_GND) 上连接电压表 V2 以测量 5V 输入电压。
- 5. 连接脉冲发生器以输入 2 位 VID 信号,从而进行动态 VOUT 控制。确保 CH1 输出 250Hz、3.3V_{P-P} 脉冲, CH2 输出与 CH1 同步的 125Hz、3.3V_{P-P} 脉冲。建议将前沿和后沿的转换时间设置为 100ns 至 500ns。

4.2.2 输出连接

- 1. 在施加 VIN 之前,将负载连接到 J4 (VOUT) 和 J5 (VOUT_GND)并将负载设置为恒定电阻模式,使灌电流为 OA_{DC}。
- 2. 在 TP7 (VOUT) 和 TP8 (VOUT_GND) 上连接电压表 V3 以测量输出电压。

4.2.3 其他连接

如图 4-2 所示放置风扇并将其打开,确保空气流经 EVM。

4.3 测试点列表

衣 4-1. 侧风尽功能				
测试 点	名称	说明		
TP1	V5IN	5V 电源测试点		
TP2	V5IN_GND	5V 电源的 GND 测试点		
TP3	PGOOD	电源正常指示测试点		
TP4	SW	开关节点测试点		
TP5	VIN	VIN 电源测试点		
TP6	VIN_GND	VIN 电源的 GND 测试点		
TP7	VOUT	VOUT 测试点		
TP8	VOUT_GND	VOUT 的 GND 测试点		

表 4-1. 测试点功能

5 测试步骤

5.1 线路/负载调节和效率测量步骤

- 1. 确保将负载设置为恒定电阻模式并且灌电流为 0A_{DC}。
- 2. 确保在施加 VIN 和 V5IN 之前, EVM 上的 SW1 开关处于 OFF 位置。
- 3. 将 VIN 从 0V 增至 8V,使用 V1 测量输入电压。
- 4. 将 V5IN 从 0V 增至 5V,使用 V2 测量输入电压。
- 5. 将 SW1 开关转动到 ON 位置以启用控制器。
- 6. 向 VID0 和 VID1 输入 0V 或 3.3V (直流) 电压,以便在 0.9V、1.0V、1.1V 和 1.2V 中选择 V_{OUT}。
- 7. 在 0A_{DC} 至 20A_{DC} 之间改变负载。V_{OUT} 应保持在负载调节范围内。
- 8. 在 8V 和 20V 之间改变 VIN。VOUT 应保持在线路调节范围内。
- 9. 将负载降至 0A。
- 10. 向 VID0 和 VID1 输入 0V 电压。
- 11. 将 SW1 开关转动到 OFF 位置以禁用控制器。
- 12. 将 V5IN 降至 0V。
- 13. 将 VIN 降至 0V。

5.2 动态输出电压转换测量步骤

- 1. 按照节 5.1 中的步骤 1 至 5 进行操作。
- 2. 确保脉冲配置为占空比为 50% 时归零 (RZ)。
- 3. 运行脉冲发生器。VOUT 将从 1.2V 降压至 0.9V, 如图 6-14 所示。
- 4. 停止脉冲发生器。将配置更改为反向。
- 5. 再次运行脉冲发生器。VOUT 将从 0.9V 升压至 1.2V, 如图 6-15 所示。
- 6. 停止脉冲发生器。
- 7. 按照节 5.1 中的步骤 11 至 13 进行操作。

5.3 设备停机

- 1. 关断负载。
- 2. 关闭脉冲发生器。
- 3. 关断 V5IN。
- 4. 关断 VIN。
- 5. 关闭风扇。

6 性能和典型特性曲线

图 6-1 至图 6-15 显示了 TPS51217EVM-533 的典型性能曲线。

6.1 效率

6.2 负载调节

6.3 线路调节

6.4 瞬态响应

图 6-7. 负载瞬态 0.9V 输出

6.5 输出纹波

6.6 开关节点电压

性能和典型特性曲线

6.7 启动和停止

6.8 动态输出电压转换

7 EVM 装配图和 PCB 布局

图 7-1 至图 7-6 显示了 TPS51217EVM-533 印刷电路板的设计。该 EVM 采用四层 2 盘司铜电路板设计。

TEXAS INSTRUMENTS www.ti.com.cn

EVM 装配图和 PCB 布局

8 物料清单

TPS51217EVM 的物料清单

参考指示符	数量	说明	制造商	器件型号
C1	1	电容器,陶瓷,4.7nF,50V,X7R,5%,0603	STD	STD
C2、C8	2	电容器,陶瓷,0.1µF,50V,X7R,10%,0603	STD	STD
C3	1	电容器,陶瓷,1µF,16V,X7R,10%,0603	STD	STD
C4、C5、C6、C7	4	电容器,陶瓷,10μF,25V,X7R,10%,1210	TDK	C3225X7R1E106K
C9、C10、C11、C12	4	电容器,铝,330μF,2V,12m Ω,20%	Panasonic(松 下)	EEFCX0D331XR
C13	1	电容器,陶瓷,0.01µF,50V,X7R,10%,0603	STD	STD
C14	1	电容器,陶瓷,1nF,50V,X7R,10%,0603	STD	STD
C16	1	电容器,陶瓷,100pF,50V,CH,5%,0603	STD	STD
C17	1	电容器,陶瓷,51pF,50V,CH,5%,0603	STD	STD
C15、C18、C19、C20	0	未使用		
L1	1	电感器,电源扼流圈 SMT,17A,1.1mΩ	Panasonic(松 下)	ETQP4LR45XFC
Q1	1	MOSFET,N 沟道,30V,35A,7.0m Ω	Fairchild(仙童 半导体)	FDMS8680
Q2 , Q3	2	MOSFET,N 沟道,30V,42A,3.0m Ω	Fairchild(仙童 半导体)	FDMS8670AS
Q5	1	MOSFET,双路,N 沟道,30V,100mA	Rohm (罗姆)	EM6K1
Q4	0	未使用		
R1	1	电阻器,贴片,10.0kΩ,1/16W,1%,0603	STD	STD
R2	1	电阻器,贴片,20k Ω,1/16W,1%,0603	STD	STD
R3	1	电阻器,贴片,33kΩ,1/16W,1%,0603	STD	STD
R4	1	电阻器,贴片,100kΩ,1/16W,1%,0603	STD	STD
R5	1	电阻器,贴片,0♀,1/16W,1%,0603	STD	STD
R6	1	电阻器,贴片,1♀,1/16W,1%,0603	STD	STD
R7、R8	2	电阻器,贴片,1kΩ,1/16W,1%,0603	STD	STD
R9	1	电阻器,贴片,820 Ω,1/16W,1%,0603	STD	STD
R10	1	电阻器,贴片,51kΩ,1/16W,1%,0603	STD	STD
R11	1	电阻器,贴片,10kΩ,1/16W,1%,0603	STD	STD
R12	1	电阻器,贴片,30kΩ,1/16W,1%,0603	STD	STD
R13	1	电阻器,贴片,430 Ω,1/16W,1%,0603	STD	STD
R14、R15、R16、R17、 R18、R19	0	未使用		
U1	1	IC,单路同步降压控制器	ТІ	TPS51217DSC

表 8-1. 物料清单

9 参考文献

德州仪器 (TI), TPS51217 适用于笔记本电脑电源的高性能单路同步降压控制器数据表

10 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

Cł	Changes from Revision * (May 2010) to Revision A (February 2022)		
•	更新了整个文档中的表格、	图和交叉参考的编号格式。	2

• 更新了用户指南标题......2

16

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司