LM36922 高效双串白色 LED 驱动器

1 特性

－拉电流匹配度 1%（整个过程，电压，温度范围内）
－灌电流匹配度 3%（整个过程，电压，温度范围内）

- 11 位调光分辨率
- 解决方案效率高达 91.6%
- 在高达 28 V 的电压下可驱动 1 至 2 个并行 LED 串
- 脉宽调制（PWM）调光输入
- $\mathrm{I}^{2} \mathrm{C}$ 可编程
- 可选择 500 kHz 和 1 MHz 开关频率，可选偏移为－ 12\％
- 自动切换频率模式（ $250 \mathrm{kHz}, ~ 500 \mathrm{kHz}, ~ 1 \mathrm{MHz}$ ）
- 四个可配置过压保护阈值（ $17 \mathrm{~V}, ~ 21 \mathrm{~V}, ~ 25 \mathrm{~V}, ~$ 29V）
－四个可配置过流保护间值（ $750 \mathrm{~mA}, ~ 1000 \mathrm{~mA}$ ， $1250 \mathrm{~mA}, ~ 1500 \mathrm{~mA}$ ）
－热关断保护

2 应用

针对智能手机和平板电脑背光照明的电源

3 说明

LM36922 是一款针对 LCD 显示器背光照明而设计的超紧凑型，高效双串白色 LED 驱动器。该器件可为多达 8 个串联的 LED 供电，每个灯串的电流高达
25 mA 。该器件采用自适应电流调节方法，可在保持电流稳定的同时为每个灯串提供不同的 LED 电压。
LED 电流通过 $\mathrm{I}^{2} \mathrm{C}$ 接口或逻辑电平 PWM 输入进行调节。PWM 占空比在内部进行感测并映射到一个 11 位电流，从而提供宽范围的 PWM 频率并实现无噪声运行。
该器件的工作输入电压范围为 2.5 V 至 5.5 V ，工作温度范围为 $-40^{\circ} \mathrm{C}$ 至 $85^{\circ} \mathrm{C}$ 。
器件信息 ${ }^{(1)}$

器件型号	封装	封装尺寸（最大值）
LM36922	DSBGA（12）	$1.755 \mathrm{~mm} \times 1.355 \mathrm{~mm}$

（1）要了解所有可用封装，请见数据表末尾的可订购产品附录。

灯串间匹配与 LED 电流间的典型关系

目录

1 特性 1
2 应用 1
3 说明 1
4 修订历史记录 2
5 Pin Configuration and Functions 3
6 Specifications 4
6．1 Absolute Maximum Ratings 4
6．2 ESD Ratings 4
6．3 Recommended Operating Conditions 4
6．4 Thermal Information 4
6．5 Electrical Characteristics． 5
$6.6 \mathrm{I}^{2} \mathrm{C}$ Timing Requirements 6
6．7 Typical Characteristics 7
7 Detailed Description 10
7．1 Overview 10
7．2 Functional Block Diagram 10
7．3 Feature Description 11
7．4 Device Functional Modes 16
7．5 Programming． 25
7．6 Register Maps 26
8 Applications and Implementation 29
8．1 Application Information 29
8．2 Typical Application 29
9 Power Supply Recommendations 35
9．1 Input Supply Bypassing 35
10 Layout． 35
10．1 Layout Guidelines 35
10．2 Layout Example 38
11 器件和文档支持 39
11.1 器件支持 39
11.2 商标 39
11.3 静电放电警告 39
11．4 Glossary 39
12 机械，封装和可订购信息 39

4 修订历史记录

日期	修订版本	注释
2015 年 5 月	$*$	首次发布。

5 Pin Configuration and Functions

YFF Package
 12-Pin DSBGA
 Top View

A

Pin Functions

PIN		I/O	
NUMBER	NAME		
A1	LED1	Input	Input to current sink 1. The boost converter regulates the minimum voltage between LED1, LED2 to VHR.
A2	BL_ADJ	Input	LED current adjust input. When BL_ADJ is driven to a logic high voltage the LED current steps down to the programmed low current value.
A3	GND	Input	Ground
B1	LED2	Input	Input pin to current sink 2. The boost converter regulates the minimum voltage between LED1, LED2 to VHR.
B2	SDA	I/O	Data I/O for I ${ }^{2}$ C-Compatible Interface.
B3	SW	Output	Drain Connection for internal low side NFET, and anode connection for external Schottky diode.
C1	NC	Input	Unused Pin. Connect externally to GND.
C2	SCL	Input	Clock Input for I ${ }^{2} C$-compatible interface.
C3	OUT	Input	OUT serves as the sense point for overvoltage protection. Connect OUT to the positive pin of the output capacitor.
D1	PWM	Input	Logic level input for PWM current control.
D2	HWEN	Input	Hardware enable input. Drive HWEN high to bring the device out of shutdown and allow I $^{2} \mathrm{C}$ writes or PWM control.
D3	IN	Input	Input voltage connection. Bypass IN to GND with a minimum 2.2- μ F ceramic capacitor.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

		MIN	MAX	UNIT
IN	Input voltage	-0.3	6	V
OUT	Output overvoltage sense input	-0.3	30	V
SW	Inductor connection	-0.3	30	V
LED1, LED2	LED string cathode connection	-0.3	30	V
HWEN, PWM, SDA, SCL, BL_ADJ Logic I/Os	-0.3	6	V	
Maximum junction temperature, $\mathrm{T}_{\text {J_MAX }}$		150	${ }^{\circ} \mathrm{C}$	
Storage temperature, $\mathrm{T}_{\text {stg }}$	-65	150	${ }^{\circ} \mathrm{C}$	

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

		VALUE	UNIT
$\mathrm{V}_{(\text {(ESD })}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$	± 2000
	Charged-device model (CDM), per JEDEC specification JESD22-C1011 ${ }^{(2)}$	± 500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ± 2000 V may actually have higher performance.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as $\pm 500 \mathrm{~V}$ may actually have higher performance.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX
UNIT			
OUT	Input voltage	2.5	5.5
SW	Overvoltage sense input	0	29.5
LED1, LED2	Inductor connection	0	29.5
HWEN, PWM, SDA, SCL, BL_ADJ	LED string cathode connection	0	V

6.4 Thermal Information

	THERMAL METRIC ${ }^{(1)}$	$\begin{gathered} \text { YFQ (DSBGA) } \\ 12 \text { PINS } \end{gathered}$	UNIT
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	88.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	0.7	
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	43.9	
$\Psi_{\text {өJT }}$	Junction-to-top characterization parameter	2.9	
$\Psi_{\text {өJB }}$	Junction-to-board characterization parameter	43.7	

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

LM36922
www.ti.com.cn
ZHCSDT6 -MAY 2015

6.5 Electrical Characteristics

Limits apply over the full operating ambient temperature range $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}\right)$ and $\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, typical values are at $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$ (unless otherwise noted).

[^0]
Electrical Characteristics（continued）

Limits apply over the full operating ambient temperature range $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}\right)$ and $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ ，typical values are at $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$（unless otherwise noted）．

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {tstart－up }}$	Turn－on delay from shutdown to backlight on	PWM input active， $\mathrm{PWM}=$ logic high，HWEN input from low to high，$f_{\text {PWM }}=10 \mathrm{kHz}(50 \%$ duty cycle）		3.5	5	ms
PWM ${ }_{\text {RES }}$	PWM input resolution	$1.6 \mathrm{kHz} \leq f_{\text {PWM }} \leq 12 \mathrm{kHz}$ ，PWM hysteresis $=$ 00，PWM sample rate $=11$			11	bits
V_{IH}	Input logic high	HWEN，BL＿ADJ，SCL，SDA，PWM inputs	1.25		$\mathrm{V}_{\text {IN }}$	V
$\mathrm{V}_{\text {IL }}$	Input logic low	HWEN，BL＿ADJ，SCL，SDA，PWM inputs	0		0.4	V
$\mathrm{t}_{\text {GLITCH }}$	PWM input glitch rejection	PWM pulse filter $=00$		0	15	ns
		PWM pulse filter $=01$	60	100	140	
		PWM pulse filter $=10$	90	150	210	
		PWM pulse filter $=11$	120	200	280	
trwm＿Stby	PWM shutdown period	Sample rate $=24 \mathrm{MHz}$	0.54	0.6	0.66	ms
		Sample rate $=4 \mathrm{MHz}$	2.7	3	3.3	
		Sample rate $=800 \mathrm{kHz}$	22.5	25	27.5	

6．6 $I^{2} \mathrm{C}$ Timing Requirements

		MIN	TYP
t 1	SCL clock period	2.5	MAX
t 2	Data in setup time to SCL high	100	ns
t 3	Data out stable after SCL low	0	ns
t 4	SDA low Setup Time to SCL low（start）	100	ns
t 5	SDA high hold time after SCL high（stop）	100	ns

图 1．$I^{2} C$ Timing

LM36922
www.ti.com.cn

6.7 Typical Characteristics

Typical Characteristics（接下页）

Typical Characteristics（接下页）

Open Loop
图 14． $1500-\mathrm{mA}$ OCP Current

7 Detailed Description

7.1 Overview

The LM36922 is an inductive boost plus 2 current sink white-LED driver designed for powering from one to two strings of white LEDs used in display backlighting. The device operates over the $2.5-\mathrm{V}$ to $5.5-\mathrm{V}$ input voltage range. The 11 -bit LED current is set via an $I^{2} \mathrm{C}$ interface, via a logic level PWM input, or a combination of both.

7.2 Functional Block Diagram

7．3 Feature Description

7．3．1 Enabling the LM36922

The LM36922 has a logic level input HWEN which serves as the master enable／disable for the device．When HWEN is low the device is disabled，the registers are reset to their default state，the $I^{2} \mathrm{C}$ bus is inactive，and the device is placed in a low－power shutdown mode．When HWEN is forced high the device is enabled，and ${ }^{2} \mathrm{C}$ writes are allowed to the device．

7．3．1．1 Current Sink Enable

Each current sink in the device has a separate enable input．This allows for a 1 －string or 2 －string application．The default is with two strings enabled．Once the correct LED string configuration is programmed，the device can be enabled by writing the chip enable bit high（register 0x10 bit［0］），and then either enabling PWM and driving PWM high，or writing a non－zero code to the brightness registers．
The default setting for the device is with the chip enable bit set to 1 ，PWM input enabled，and the device in linear mapped mode．Therefore，on power up once HWEN is driven high，the device enters the standby state and actively monitors the PWM input．After a non－zero PWM duty cycle is detected the LM36922 converts the duty cycle information to the linearly weighted 11－bit brightness code．This allows for operation of the device in a stand－alone configuration without the need for any $I^{2} C$ writes．图 15 and 图 16 describe the start－up timing for operation with both PWM controlled current and with $I^{2} \mathrm{C}$ controlled current．

图 15．Enabling the LM36922 via PWM

图 16．Enabling the LM36922 via $I^{2} \mathrm{C}$

Feature Description（接下页）

7．3．2 LM36922 Start－Up

The LM36922 can be enabled or disabled in various ways．When disabled，the device is considered shutdown， and the quiescent current drops to $I_{\text {SHDN }}$ ．When the device is in standby，it returns to the $I_{\text {SHDN }}$ current level retaining all programmed register values．表 1 describes the different operating states for the LM36922．

表 1．LM36922 Operating Modes

LED STRING ENABLES 0x10 bits［2：1］	PWM INPUT	$\mathrm{I}^{2} \mathrm{C}$BRIGHTNESSREGISTERS$0 \times 18$ bits［2：0］0×19 bits［7：0］	BRIGHTNESS MODE 0x11 bits［6：5］	$\begin{aligned} & \text { DEVICE } \\ & \text { ENABLE } \\ & 0 \times 10 \text { bit[0] } \end{aligned}$	LED CURRENT	
					（EXP MAPPING） 0×11 bit［7］＝ 1	（LIN MAPPING） $0 \times 11 \operatorname{bit}[7]=0$
XXX	X	XXX	XX	0	Off，device disabled	
0	X	XXX	XX	1	Off，device standby	
At least one enabled	X	0	00	1	Off，device in standby	
At least one enabled	X	Code＞ 000	00	1	$\begin{gathered} I_{L E D}=50 \mu A \times 1.003040572^{\text {Code }} \\ \text { See }^{(1)} \end{gathered}$	$\begin{gathered} I_{L E D}=37.806 \mu A+12.195 \mu A \times \text { Code } \\ \text { See }^{(1)} \end{gathered}$
At least one enabled	0	XXX	01	1	Off，device in standby	
At least one enabled	PWM Signal	XXX	01	1	$\begin{gathered} I_{L E D}=50 \mu A \times 1.003040572^{\text {Code }} \\ \text { See }^{(1)} \end{gathered}$	$\begin{gathered} I_{L E D}=37.806 \mu A+12.195 \mu A \times \text { Code } \\ \text { See }^{11)} \end{gathered}$
At least one enabled	0	XXX	10 or 11	1	Off，device in standby	
At least one enabled	X	0	10 or 11	1	Off，device in standby	
At least one enabled	PWM Signal	Code＞ 000	10 or 11	1	$\begin{gathered} I_{L E D}=50 \mu A \times 1.003040572^{\text {Code }} \\ \text { See }^{(1)} \end{gathered}$	$\begin{gathered} I_{\text {LED }}=37.806 \mu A+12.195 \mu A \times \text { Code } \\ \text { See }^{(1)} \end{gathered}$

（1）Code is the 11－bit code output from the ramper（see 图 21，图 23 ，图 25 ，图 27 ）．This can be the $I^{2} \mathrm{C}$ brightness code，the converted PWM duty cycle or the 11－bit product of both．

7．3．3 Brightness Mapping

There are two different ways to map the brightness code（or PWM duty cycle）to the LED current：linear and exponential mapping．

7．3．3．1 Linear Mapping

For linear mapped mode the LED current increases proportionally to the 11－bit brightness code and follows the relationship：

$$
\begin{equation*}
I_{L E D}=37.806 \mu A+12.195 \mu A \times \text { Code } \tag{1}
\end{equation*}
$$

This is valid from codes 1 to 2047 ．Code 0 programs 0 current．Code is an 11 －bit code that can be the $I^{2} C$ brightness code，the digitized PWM duty cycle，or the product of the two．

7．3．3．2 Exponential Mapping

In exponential mapped mode the LED current follows the relationship：

$$
\begin{equation*}
I_{L E D}=50 \mu A \times 1.003040572^{\text {Code }} \tag{2}
\end{equation*}
$$

This results in an LED current step size of approximately 0.304% per code．This is valid for codes from 1 to 2047．Code 0 programs 0 current．Code is an 11 －bit code that can be the $I^{2} C$ brightness code，the digitized PWM duty cycle，or the product of the two．图 17 details the LED current exponential response．
The 11－bit (0.304%) per code step is small enough such that the transition from one code to the next in terms of LED brightness is not distinguishable to the eye．This therefore gives a perfectly smooth brightness increase between adjacent codes．

图 17．LED Current vs Brightness Code（Exponential Mapping）

7．3．4 PWM Input

The PWM input is a sampled input which converts the input duty cycle information into an 11－bit brightness code． The use of a sampled input eliminates any noise and current ripple that traditional PWM controlled LED drivers are susceptible to．
The PWM input uses logic level thresholds with $\mathrm{V}_{\text {IH＿MIN }}=1.25 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IL} \text { max }}=0.4 \mathrm{~V}$ ．Since this is a sampled input，there are limits on the max PWM input frequency as well as the resolution that can be achieved．

7．3．4．1 PWM Sample Frequency

There are four selectable sample rates for the PWM input．The choice of sample rate depends on three factors：
1．Required PWM Resolution（input duty cycle to brightness code，with 11 bits max）
2．PWM Input Frequency
3．Efficiency

7．3．4．1．1 PWM Resolution and Input Frequency Range

The PWM input frequency range is 50 Hz to 50 kHz ．To achieve the full 11－bit maximum resolution of PWM duty cycle to the LED brightness code（BRT），the input PWM duty cycle must be ≥ 11 bits，and the PWM sample period（ $1 / f_{\text {SAMPLE }}$ ）must be smaller than the minimum PWM input pulse width．图 18 shows the possible brightness code resolutions based on the input PWM frequency．The minimum PWM frequency for each PWM sample rate is described in PWM Timeout．

图 18．PWM Sample Rate，Resolution，and PWM Input Frequency

7．3．4．1．2 PWM Sample Rate and Efficiency

Efficiency is maximized when the lowest $f_{\text {SAMPLE }}$ is chosen since this lowers the quiescent operating current of the device．表 2 describes the typical efficiency tradeoffs for the different sample clock settings．

表 2．PWM Sample Rate Trade－Offs

PWM SAMPLE RATE （ $f_{\text {SAMPLE }}$ ）	TYPICAL INPUT CURRENT，DEVICE ENABLED $\mathrm{I}_{\text {LED }}=\mathbf{1 0} \mathrm{mA} /$ string， 2×7 LEDs	TYPICAL EFFICIENCY
（0x12 Bits［7：6］）	$f_{\text {SW }}=1 \mathrm{MHz}$	$\mathrm{V}_{\text {IN }}=3.7 \mathrm{~V}$
0	1.03 mA	90．7\％
1	1.05 mA	90．6\％
1X	1.35 mA	90．4\％

7．3．4．1．2．1 PWM Sample Rate Example

The number of bits of resolution on the PWM input varies according to the PWM Sample rate and PWM input frequency．

表 3．PWM Resolution vs PWM Sample Rate

PWM FREQUENCY $(\mathbf{k H z})$	RESOLUTION （PWM SAMPLE RATE $\mathbf{8 0 0} \mathbf{~ k H z)}$	RESOLUTION （PWM SAMPLE RATE $=\mathbf{4 ~ M H z) ~}$	RESOLUTION （PWM SAMPLE RATE $=\mathbf{2 4} \mathbf{~ M H z) ~}$
0.4	11	11	11
2	8.6	11	11
12	6.1	8.4	11

7．3．4．2 PWM Hysteresis

To prevent jitter at the input PWM signal from feeding through the PWM path and causing oscillations in the LED current，the LM36922 offers 7 selectable hysteresis settings．The hysteresis works by forcing a specific number of 11 －bit LSB code transitions to occur in the input duty cycle before the LED current changes．表 4 describes the hysteresis．The hysteresis only applies during the change in direction of brightness currents．Once the change in direction has taken place，the PWM input must over come the required LSB（s）of the hysteresis setting before the brightness change takes effect．Once the initial hysteresis has been overcome and the direction in brightness change remains the same，the PWM to current response changes with no hysteresis．

表 4．PWM Input Hysteresis

HYSTERESIS SETTING （0x12 Bits［4：2］）	MIN CHANGE IN PWM PULSE WIDTH（ $\Delta \mathrm{t}$ ） REQUIRED TO CHANGE LED CURRENT，AFTER DIRECTION CHANGE （for $\mathrm{f}_{\text {PWM }}<\mathbf{1 1 . 7} \mathbf{~ k H z}$ ）	MIN CHANGE IN PWM DUTY CYCLE（ $\Delta \mathrm{D}$ ） REQUIRED TO CHANGE LED CURRENT AFTER DIRECTION CHANGE	MIN（ $\Delta \mathrm{I}_{\text {LED }}$ ），INCREASE FOR INITIAL CODE CHANGE	
			EXPONENTIAL MODE	LINEAR MODE
000 （0 LSB）	$1 /\left(\mathrm{f}_{\text {PWM }} \times 2047\right)$	0．05\％	0．30\％	0．05\％
001 （1 LSB）	$1 /\left(\mathrm{f}_{\text {PWM }} \times 1023\right)$	0．10\％	0．61\％	0．10\％
010 （2 LSBs）	1／（fpWm $\times 511$ ）	0．20\％	1．21\％	0．20\％
011 （3 LSBs）	1／（fpWm $\times 255$ ）	0．39\％	2．40\％	0．39\％
100 （4 LSBs）	$1 /($ frwm $\times 127)$	0．78\％	4．74\％	0．78\％
101 （5 LSBs）	$1 /\left(\mathrm{f}_{\text {PWM }} \times 63\right)$	1．56\％	9．26\％	1．56\％
110 （6 LSBs）	1／（fpWm $\times 31$ ）	3．12\％	17．66\％	3．12\％

－$\quad D$ is $t_{\text {ItTter }} \times f_{\text {pwn }}$ or equal to \＃LSB＇s $=\Delta D \times 2048$ codes．
－For 11 －bit resolution，\＃LSBs is equal to a hysteresis setting of LN（\＃LSB＇s）／LN（2）．
－For example，with a t $\mathrm{t}_{\text {Itтer }}$ of $1 \mu \mathrm{~s}$ and a $\mathrm{f}_{\text {Pwm }}$ of 5 kHz ，the hysteresis setting should be：
$\mathrm{LN}(1 \mu \mathrm{~s} \times 5 \mathrm{kHz} \times 2048) / \mathrm{LN}(2)=3.35$（4 LSBs）．

图 19．PWM Hysteresis Example

7．3．4．3 PWM Step Response

The LED current response due to a step change in the PWM input is approximately 2 ms to go from minimum LED current to maximum LED current．

7．3．4．4 PWM Timeout

The LM36922 PWM timeout feature turns off the boost output when the PWM is enabled and there is no PWM pulse detected．The timeout duration changes based on the PWM Sample Rate selected which results in a minimum supported PWM input frequency．The sample rate，timeout，and minimum supported PWM frequency are summarized in 表5．

表 5．PWM Timeout and Minimum Supported PWM Frequency vs PWM Sample Rate

SAMPLE RATE	TIMEOUT	MINIMUM SUPPORTED PWM FREQUENCY
0.8 MHz	25 msec	48 Hz
4 MHz	3 msec	400 Hz
24 MHz	0.6 msec	2000 Hz

7．3．5 LED Current Ramping

There are 8 programmable ramp rates available in the LM36922．These ramp rates are programmable as a time per step．Therefore，the ramp time from one current set－point to the next，depends on the number of code steps between currents and the programmed time per step．This ramp time to change from one brightness set－point （Code A ）to the next brightness set－point（Code B ）is given by：

$$
\begin{equation*}
\Delta t=\text { Ramp_rate } \times(\text { Code } B-\text { CodeA }-1) \tag{3}
\end{equation*}
$$

For example，assume the ramp is enabled and set to 1 ms per step．Additionally，the brightness code is set to 0×444（1092d）．Then the brightness code is adjusted to 0×7 FF（2047d）．The time the current takes to ramp from the initial set－point to max brightness is：

$$
\begin{equation*}
\Delta t=\frac{1 \mathrm{~ms}}{\text { step }} \times(0 \times 7 F F-0 \times 444-1)=954 \mathrm{~ms} \tag{4}
\end{equation*}
$$

7．3．6 Regulated Headroom Voltage

In order to optimize efficiency，current accuracy，and string－to－string matching the LED current sink regulated headroom voltage（VHR）varies with the target LED current．图 20 details the typical variation of VHR with LED current．This allows for increased solution efficiency as the dropout voltage of the LED driver changes． Furthermore，in order to ensure that both current sinks remain in regulation whenever there is a mismatch in string voltages，the minimum headroom voltage between VLED1，VLED2 becomes the regulation point for the boost converter．For example，if the LEDs connected to LED1 require 12 V ，the LEDs connected to LED2 require 12.5 V at the programmed current，then the voltage at LED1 is $\mathrm{VHR}+0.5 \mathrm{~V}$ and the voltage at LED2 is VHR．In other words，the boost makes the cathode of the highest voltage LED string the regulation point．

图 20．LM36922 Typical Exponential Regulated Headroom Voltage vs Programmed LED Current

7．4 Device Functional Modes

Device Functional Modes describes the different operating modes and features available within the LM36922．

7．4．1 Brightness Control Modes

The LM36922 has 4 brightness control modes：
1．$I^{2} \mathrm{C}$ Only（brightness mode 00 ）
2．PWM Only（brightness mode 01）
3． $\mathrm{I}^{2} \mathrm{C} \times \mathrm{PWM}$ with ramping only between $\mathrm{I}^{2} \mathrm{C}$ codes（brightness mode 10）
4．$I^{2} C \times P W M$ with ramping between $I^{2} C \times P W M$ changes（brightness mode 11）

7．4．1．1 RC Only（Brightness Mode 00）

In brightness control mode 00 the $\mathrm{I}^{2} \mathrm{C}$ Brightness registers are in control of the LED current，and the PWM input is disabled．The brightness data（BRT）is the concatenation of the two brightness registers（ 3 LSBs ）and（ 8 MSBs）（registers 0×18 and 0×19 ，respectively）．The LED current only changes when the MSBs are written， meaning that to do a full 11 －bit current change via $I^{2} \mathrm{C}$ ，first the 3 LSBs are written and then the 8 MSBs are written．In this mode the ramper only controls the time from one $I^{2} \mathrm{C}$ brightness set－point to the next 图 21.

LM36922
www．ti．com．cn

Device Functional Modes（接下页）

图 21．Brightness Control $00\left(I^{2} \mathrm{C}\right.$ Only）

1．At time to the $I^{2} C$ Brightness Code is changed from 0×444（1092d）to $0 \times 7 F F$（2047d）
2．Ramp Rate programmed to $1 \mathrm{~ms} /$ step
3．Mapping Mode set to Linear
4． ILED＿t0 $=1092 \times 12.213 \mu \mathrm{~A}=13.337 \mathrm{~mA}$
5．ILED＿t1 $=2047 \times 12.213 \mu \mathrm{~A}=25 \mathrm{~mA}$
6．$\quad \mathrm{t}_{\text {RAMP }}=(\mathrm{t} 1-\mathrm{t} 0)=1 \mathrm{~ms} /$ step $\times(2047-1092-1)=954 \mathrm{~ms}$
图 22．$I^{2} C$ Brightness Mode 00 Example（Ramp Between $I^{2} C$ Code Changes）

7．4．1．2 PWM Only（Brightness Mode 01）

In brightness mode 01，only the PWM input sets the brightness．The $I^{2} \mathrm{C}$ code is ignored．The LM36922 samples the PWM input，determines the duty cycle and this measured duty cycle is translated into an 11－bit digital code． The resultant code is then applied to the internal ramper（see 图 23）．

Device Functional Modes（接下页）

图 23．Brightness Control 01 （PWM Only）

1．At time to the PWM duty cycle changed from 25% to 100%
2．Ramp Rate programmed to $1 \mathrm{~ms} / \mathrm{step}$
3．Mapping Mode set to Linear
4． ILED＿t0 $=25 \mathrm{~mA} \times 0.25=6.25 \mathrm{~mA}$
5．ILED＿t1 $=25 \mathrm{~mA} \times 1=25 \mathrm{~mA}$
6．$t_{\text {RAMP }}=(\mathrm{t} 1-\mathrm{t} 0)=1 \mathrm{~ms} / \mathrm{step} \times(2047 \times 1-2047 \times 0.25-1)=1534 \mathrm{~ms}$
图 24．Brightness Control Mode 01 Example（Ramp Between Duty Cycle Changes）

7．4．1．3 ${ }^{2}$ C＋PWM Brightness Control（Multiply Then Ramp）Brightness Mode 10

In brightness control mode 10 the $I^{2} \mathrm{C}$ Brightness register and the PWM input are both in control of the LED current．In this case the $I^{2} \mathrm{C}$ brightness code is multiplied with the PWM duty cycle to produce an 11－bit code which is then sent to the ramper．In this mode ramping is achieved between $I^{2} \mathrm{C} \times \mathrm{PWM}$ currents（see 图25）．

Device Functional Modes（接下页）

图 25．Brightness Control $10\left(I^{2} \mathrm{C}+\mathrm{PWM}\right)$

1．At time t0 the $I^{2} C$ Brightness code changed from $0 x 444$（1092d）to $0 x 7 F F$（2047d）
2．At time t0 the PWM duty cycle changed from 50% to 75%
3．Ramp Rate programmed to $1 \mathrm{~ms} /$ step
4．Mapping Mode set to Linear
5．ILED＿t0 $=1092 \times 12.213 \mu \mathrm{~A} \times 0.5=6.668 \mathrm{~mA}$
6． ILED＿t1 $=2047 \times 12.213 \mu \mathrm{~A} \times 0.75=18.75 \mathrm{~mA}$
7． $\mathrm{t}_{\text {RAMP }}=(\mathrm{t} 1-\mathrm{t} 0)=1 \mathrm{~ms} / \mathrm{step} \times(2047 \times 0.75-1092 \times 0.5-1)=988 \mathrm{~ms}$
图 26．Brightness Control Mode 10 Example（Multiply Duty Cycle then Ramp）

7．4．1．4 R＇C＋PWM Brightness Control（Ramp Then Multiply）Brightness Mode 11

In brightness control mode 11 both the $\mathrm{I}^{2} \mathrm{C}$ brightness code and the PWM duty cycle control the LED current．In this case the ramper only changes the time from one $I^{2} \mathrm{C}$ brightness code to the next．The PWM duty cycle is multiplied with the $I^{2} \mathrm{C}$ brightness code at the output of the ramper（see 图 27 ）．

Device Functional Modes（接下页）

图 27．Brightness Control $11\left(I^{2} \mathrm{C}+\mathrm{PWM}\right)$

1．At time t0 the $I^{2} C$ Brightness code changed from 0×444（1092d）to $0 x 7 F F$（2047d）
2．At time t0 the PWM duty cycle changed from 50% to 75%
3．Ramp Rate programmed to $1 \mathrm{~ms} / \mathrm{step}$
4．Mapping Mode set to Linear
5．ILED＿t0 $=1092 \times 12.213 \mu \mathrm{~A} \times 0.5=6.668 \mathrm{~mA}$
6．ILED＿t0 $+=1092 \times 12.213 \mu \mathrm{~A} \times 0.75=10.002 \mathrm{~mA}$
7． $\mathrm{t}_{\text {RAMP }}=(\mathrm{t} 1-\mathrm{t} 0)=1 \mathrm{~ms} / \mathrm{step} \times(2047-1092-1)=954 \mathrm{~ms}$
图 28．Brightness Control Mode 11 Example（Ramp Current Then Multiply Duty Cycle）

7．4．2 Boost Switching Frequency

The LM36922 has two programmable switching frequencies： 500 kHz and 1 MHz ．These are set via the Boost Control 1 register 0×13 bit［5］．Once the switching frequency is set，this nominal value can be shifted down by 12% via the boost switching frequency shift bit（register 0×13 bit［6］）．Operation at 500 kHz is better suited for configurations which use a $22-\mu \mathrm{H}$ inductor．Operation at 1 MHz is primarily beneficial when using a $10-\mu \mathrm{H}$ inductor and where efficiency at maximum load current is more important．For maximum efficiency across the entire load current range the device incorporates an automatic frequency shift mode（see Auto Switching Frequency）．

Device Functional Modes（接下页）

7．4．2．1 Minimum Inductor Select

The LM36922 can use inductors in the range of $10 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$ ．In order to optimize the converter response to changes in $\mathrm{V}_{\mathbb{I}}$ and load，the Min Inductor Select bit（register 0x13 bit［4］）should be selected depending on which value of inductance is chosen．For $22-\mu \mathrm{H}$ inductors this bit should be set to 1 ．For less than $22 \mu \mathrm{H}$ ，this bit should be set to 0 ．

7．4．3 Auto Switching Frequency

To take advantage of frequency vs load dependent losses，the LM36922 has the ability to automatically change the boost switching frequency based on the magnitude of the load current．In addition to the register programmable switching frequencies of 500 kHz and 1 MHz ，the auto－frequency mode also incorporates a low frequency selection of 250 kHz ．It is important to note that the $250-\mathrm{kHz}$ frequency is only accessible in auto－ frequency mode and has a maximum boost duty cycle（ $\mathrm{D}_{\mathrm{MAX}}$ ）of 50% ．
Auto－frequency mode operates by using 2 programmable registers（Auto Frequency High Threshold（register 0×15 ）and Auto Frequency Low Threshold（ 0×16 ））．The high threshold determines the switchover from 1 MHz to 500 kHz ．The low threshold determines the switchover from 500 kHz to 250 kHz ．Both the High and Low Threshold registers take an 8 －bit code which is compared against the 8 MSB of the brightness register（register $0 \times 19)$ ．表 6 details the boundaries for this mode．

表 6．Auto Switching Frequency Operation

BRIGHTNESS CODE MSBs（Register 0x19 bits［7：0］）	BOOST SWITCHING FREQUENCY
＜Auto Frequency Low Threshold（register 15 Bits［7：0］）	$250 \mathrm{kHz}\left(\mathrm{D}_{\text {MAX }}=50 \%\right)$
＞Auto Frequency Low Threshold（Register 15 Bits［7：0］）or＜Auto Frequency High Threshold（Register 14 Bits［7：0］）	500 kHz
\geq Auto Frequency High Threshold（register 14 Bits［7：0］）	1 MHz

Automatic－frequency mode is enabled whenever there is a non－zero code in either the Auto－Frequency High or Auto－Frequency Low registers．To disable the auto－frequency shift mode，set both registers to 0×00 ．When automatic－frequency select mode is disabled，the switching frequency operates at the programmed frequency （Register 0×13 bit［5］）across the entire LED current range．provides a guideline for selecting the auto frequency $250-\mathrm{kHz}$ threshold setting，the actual setting needs to be verified in the application．

表 7．Auto Frequency $250-k H z$ Threshold Settings

CONDITION $\left(\mathbf{V}_{\mathbf{f}}=\mathbf{3 . 2 ~ \mathbf { ~ V , ~ I }}\right.$ LED $=\mathbf{2 5} \mathbf{~ m A)}$	INDUCTOR $(\boldsymbol{\mu H})$	RECOMMENDED AUTO FREQUENCY LOW THRESHOLD MAXIMUM VALUE $(\mathbf{N O}$ SHIFT）	OUTPUT POWER AT AUTO FREQUENCY SWITCHOVER (W)
2×4 LEDs	10	$0 \times 2 \mathrm{f}$	0.173
2×5 LEDs	10	0×27	0.168
2×6 LEDs	10	0×21	0.178
2×7 LEDs	10	$0 \times 1 \mathrm{f}$	0.210
2×8 LEDs	10	$0 \times 1 \mathrm{~b}$	0.189

7．4．4 Backlight Adjust Input（BL＿ADJ）

Driving BL＿ADJ to a logic high voltage provides a way to quickly reduce the LED current during system high－ power conditions such as camera flash，PA transmit，or other high battery－current conditions．The adjusted current target is programmable via register 0×17 bits［7：0］．Only the MSBs of the brightness code are adjustable． Additionally，the BL＿ADJ input only decreases the current from the initial target．If the initial target is＞the adjusted current then nothing happens－the LED current remains at its current value．图 30 details the BL＿ADJ operation．

图 29．Backlight Adjust Operation

LED Current operates at an initial target ILED＿BRT which is set by either I ${ }^{2} \mathrm{C}$ or PWM（or both）．
When the BL＿ADJ input is driven to a logic high the LM36922＇s brightness code at the Mapper input has the MSBs set to the BL＿ADJ Threshold and the LSBs set to 000.
ILED steps down to the new target current in $<50 \mu \mathrm{~s}$ ．
When BL＿ADJ is forced low the LED current returns to the initial brightness target．
图 30．Backlight Adjust Timing

7．4．4．1 Back－Light Adjust Input Polarity

The BL＿ADJ input can have either active high or active low polarity．With active high polarity（default），driving the BL＿ADJ input high forces the LED current to the BL＿ADJ low target current．With active low polarity，driving the $B L _A D J$ input low forces the LED current to the BL＿ADJ low target current．The polarity is set via bit 0 in register 11.

7.4.5 Fault Protection/Detection

7.4.5.1 Overvoltage Protection (OVP)

The LM36922 provides four OVP thresholds ($17 \mathrm{~V}, 21 \mathrm{~V}, 25 \mathrm{~V}$, and 29 V). The OVP circuitry monitors the boost output voltage ($\mathrm{V}_{\text {OUT }}$) and protects OUT and SW from exceeding safe operating voltages in case of open load conditions or in the event the LED string voltage requires more voltage than the programmed OVP setting. The OVP thresholds are programmed in register 13 bits[3:2]. The operation of OVP differentiates between two overvoltage conditions and responds differently as outlined below:

7.4.5.1.1 Case 1 OVP Fault Only (OVP Threshold Hit and All Enabled Current Sink Inputs $\mathbf{>} \mathbf{4 0} \mathbf{~ m V}$)

In steady-state operation with $\mathrm{V}_{\text {OUT }}$ near the OVP threshold a rapid change in $\mathrm{V}_{\text {IN }}$ or brightness code can result in a momentary transient excursion of $\mathrm{V}_{\text {OUT }}$ above the OVP threshold. In this case the boost circuitry is disabled until $\mathrm{V}_{\text {OUT }}$ drops below OVP - hysteresis (1 V). Once this happens the boost is re-enabled and steady state regulation continues. If $\mathrm{V}_{\text {OUT }}$ remains above the OVP threshold for $>1 \mathrm{~ms}$ the OVP Flag is set (register 0x1F bit[0]).

7.4.5.1.2 Case 2a OVP Fault and Open LED String Fault (OVP Threshold Occurrence and Any Enabled Current Sink Input $\leq 40 \mathrm{mV}$)

When any of the enabled LED strings is open the boost converter tries to drive $\mathrm{V}_{\text {OUT }}$ above OVP and at the same time the open string(s) current sink headroom voltage(s) (LED1, LED2) drop to 0. When the LM36922 detects three occurrences of $\mathrm{V}_{\text {OUT }}>$ OVP and any enabled current sink input $\left(\mathrm{V}_{\text {LED } 1}\right.$ or $\left.\mathrm{V}_{\text {LED2 }}\right) \leq 40 \mathrm{mV}$, the OVP Fault flag is set (register 0x1F bit[0]), and the LED Open Fault flag is set (register 0x1F bit[4]).

7.4.5.1.3 Case 2b OVP Fault and Open LED String Fault (OVP Threshold Duration and Any Enabled Current Sink Input $\leq 40 \mathrm{mV}$)

When any of the enabled LED strings is open the boost converter tries to drive $\mathrm{V}_{\text {OUT }}$ above OVP and at the same time the open string(s) current sink headroom voltage(s) (LED1, LED2) drop to 0 . When the LM36922 detects $\mathrm{V}_{\text {OUT }}>$ OVP for $>1 \mathrm{msec}$ and any enabled current sink input $\left(\mathrm{V}_{\text {LED1 }}\right.$ or $\left.\mathrm{V}_{\text {LED2 }}\right) \leq 40 \mathrm{mV}$, the OVP Fault flag is set (register 0x1F bit[0]), and the LED Open Fault flag is set (register 0x1F bit[4]).

7.4.5.1.4 OVP/LED Open Fault Shutdown

The LM36922 has the option of shutting down the device when the OVP flag is set. This option can be enabled or disabled via register $0 \times 1 \mathrm{E}$ bit[0]. When the shutdown option is disabled the fault flag is a report only. When the device is shut down due to an OVP/LED String Open fault, the fault flags register must be read back before the LM36922 can be re-enabled.

7.4.5.1.5 Testing for LED String Open

The procedure for detecting an open in a LED string is:

- Apply power the the LM36922.
- Enable all LED strings (Register $0 \times 10=0 \times 07$).
- Set maximum brightness (Register $0 \times 18=0 \times 07$ and Register $0 \times 19=0 \times F F$).
- Set the brightness control (Register $0 \times 11=0 \times 00$).
- Open LED1 string.
- Wait 4 msec .
- Read LED open fault (Register 0x1F).
- If bit[4] = 1, then a LED open fault condition has been detected.
- Connect LED1 string.
- Repeat the procedure for the other LED strings.

7.4.5.2 LED String Short Fault

The LM36922 can detect an LED string short fault. This happens when the voltage between $\mathrm{V}_{\mathbb{I}}$ and any enabled current sink input has dropped below (1.5 V). This test can only be performed on one LED string at a time. Performing this test with more than one LED string enabled can result in a faulty reading. The procedure for detecting a short in a LED string is:

- Apply power the the LM36922.
- Enable only LED1 string (Register 0x10 = 0x03).
- Enable short fault (Register 0x1E $=0 \times 01$.
- Set maximum brightness (Register $0 \times 18=0 \times 07$ and Register $0 \times 19=0 \times F F$).
- Set the brightness control (Register $0 \times 11=0 \times 00$).
- Wait 4 msec .
- Read LED short fault (Register 0x1F).
- If bit[3] = 1 , then a LED short fault condition has been detected.
- Set chip enable and LED string enable low (Register $0 \times 10=0 \times 00$).
- Repeat the procedure for the other LED strings.

7.4.5.3 Overcurrent Protection (OCP)

The LM36922 has 4 selectable OCP thresholds ($750 \mathrm{~mA}, 1000 \mathrm{~mA}, 1250 \mathrm{~mA}$, and 1500 mA). These are programmable in register 0x13 bits[1:0]. The OCP threshold is a cycle-by-cycle current limit and is detected in the internal low-side NFET. Once the threshold is hit the NFET turns off for the remainder of the switching period.

7.4.5.3.1 OCP Fault

If enough overcurrent threshold events occur, the OCP Flag (register 0x1F bit[1]) is set. To avoid transient conditions from inadvertently setting the OCP Flag, a pulse density counter monitors OCP threshold events over a $128-\mu \mathrm{s}$ period. If 8 consecutive $128-\mu \mathrm{s}$ periods occur where the pulse density count has found 2 or more OCP events,then the OCP Flag is set.
During device start-up and during brightness code changes, there is a 4 -ms blank time where OCP events are ignored. As a result, if the device starts up in an overcurrent condition there is an approximate 5 -ms delay before the OCP Flag is set.

7.4.5.3.2 OCP Shutdown

The LM36922 has the option of shutting down the device when the OCP flag is set. This option can be enabled or disabled via register 0x1E bit[1]. When the shutdown option is disabled, the fault flag is a report only. When the device is shut down due to an OCP fault, the fault flags register must be read back before the LM36922 can be re-enabled.

7.4.5.4 Device Overtemperature (TSD)

Thermal shutdown (TSD) is triggered when the device die temperature reaches $135^{\circ} \mathrm{C}$. When this happens the boost stops switching, and the TSD Flag (register 0x1F bit[2]) is set. The boost automatically starts up again when the die temperature cools down to $120^{\circ} \mathrm{C}$.

7.4.5.4.1 Overtemperature Shutdown

The LM36922 has the option of shutting down the device when the TSD flag is set. This option can be enabled or disabled via register 0x1E bit[2]. When the shutdown option is disabled the fault flag is a report only. When the device is shutdown due to a TSD fault, the Fault Flags register must be read back before the LM36922 can be re-enabled.

7．5 Programming

7．5．1 $\quad I^{2} \mathrm{C}$ Interface

7．5．1．1 Start and Stop Conditions

The LM36922 is configured via an ${ }^{2} \mathrm{C}$ interface．START（S）and STOP（P）conditions classify the beginning and the end of the $I^{2} \mathrm{C}$ session 图31．A START condition is defined as SDA transitioning from HIGH to LOW while SCL is HIGH．A STOP condition is defined as SDA transitioning from LOW to HIGH while SCL is HIGH．The I ${ }^{2} \mathrm{C}$ master always generates the START and STOP conditions．The $I^{2} \mathrm{C}$ bus is considered busy after a START condition and free after a STOP condition．During the data transmission the $I^{2} \mathrm{C}$ master can generate repeated START conditions．A START and a repeated START conditions are equivalent function－wise．The data on SDA must be stable during the HIGH period of the clock signal（SCL）．In other words，the state of SDA can only be changed when SCL is LOW．

图 31． $1^{2} \mathrm{C}$ Start and Stop Conditions

7．5．1．2 R＇C Address

The 7 －bit chip address for the LM36922 is（ 0×36 ）．After the START condition the $\mathrm{I}^{2} \mathrm{C}$ master sends the 7 －bit chip address followed by an eighth bit read or write（R／W）．R／W $=0$ indicates a WRITE，and R／W $=1$ indicates a READ．The second byte following the chip address selects the register address to which the data is written．The third byte contains the data for the selected register．

7．5．1．3 Transferring Data

Every byte on the SDA line must be eight bits long with the most significant bit（MSB）transferred first．Each byte of data must be followed by an acknowledge bit（ACK）．The acknowledge related clock pulse，（9th clock pulse）， is generated by the master．The master then releases SDA（HIGH）during the 9th clock pulse．The LM36922 pulls down SDA during the 9th clock pulse，signifying an acknowledge．An acknowledge is generated after each byte has been received．

7．5．1．4 Register Programming

For glitch free operation，the following bits and／or registers should only be programmed while the LED Enable bits are $0($ Register $0 \times 10, \operatorname{Bit}[2: 1]=0)$ and Device Enable bit is 1 （Register $0 \times 10, \operatorname{Bit}[0]=1)$ ：
1．Register 0×11 Bit［7］（Mapping Mode）
2．Register 0×11 Bits［6：5］（Brightness Mode）
3．Register 0x11 Bit［4］（Ramp Enable）
4．Register 0x11 Bit［3：1］（Ramp Rate）
5．Register 0×12 Bits［7：6］（PWM Sample Rate）
6．Register 0x12 Bits［5］（PWM Polarity）
7．Register 0×12 Bit［3：2］（PWM Hysteresis）
8．Register 0x12 Bit［3：2］（PWM Pulse Filter）
9．Register 0×15（auto frequency high threshold）
10．Register 0×16（auto frequency low threshold）
11．Register 0x17（back－light adjust threshold）

7．6 Register Maps

Note：Read of Reserved（R）or Write Only register returns 0
表 8．Revision（ 0×00 ）

Bits［7：4］	Bits［3：0］
R	Revision Code

表 9．Software Reset（0x01）

Bits［7：1］	Software Reset Bit $[0]$
R	$0=$ Normal Operation
	$1=$ Device Reset（automatically resets back to 0 ）

表 10．Enable（0x10）

Bits［7：4］	LED2 Enable Bit［2］	LED1 Enable Bit［1］	Device Enable Bit［0］
R	0 ＝ Disabled 1 ＝Enabled （Default）	0 ＝ Disabled 1 ＝Enabled （Default）	$0=$ Disabled 1 ＝Enabled （Default）

NOTE：When the Device Enable（Bit［0］）is set high the following registers／bits are set to the default value：Register 0x11 Bit［0］，Register 0×12 Bits［7：0］．

表 11．Brightness Control（0x11）

| Mapping Mode |
| :---: | :---: | :---: | :---: | :---: |
| Bit［7］ |

表 12．PWM Control（0x12）

PWM Sample Rate	PWM Input Polarity Bit［7：6］	PWM Hysteresis Bits［4：2］	PWM Pulse Filter Bit［1：0］
$00=800 \mathrm{kHz}$	$0=$ Active Low	$000=\mathrm{None}$	$00=$ No Filter
$01=4 \mathrm{MHz}($ default	$1=$ Active High	$001=1 \mathrm{LSB}$	$01=100 \mathrm{~ns}$
$1 \mathrm{X}=24 \mathrm{MHz}$	（default）	$010=2 \mathrm{LSBs}$	$10=150 \mathrm{~ns}$
		$011=3 \mathrm{LSBs}$	$11=200 \mathrm{~ns}$（default）
		$100=4 \mathrm{LSBs}$（default）	
		$101=5 \mathrm{LSBs}$	
		$111=6 \mathrm{LSBs}$	

表13．Boost Control 1 （0x13）

Reserved	Boost Switching Frequency Shift Bit［6］	Boost Switching Frequency Select Bit［5］	Minimum Inductor Select Bit［4］	Overvoltage Protection （OVP） Bits［3：2］	Current Limit （OCP） Bits［1：0］
N／A	$0=-12 \%$ Shift	$0=500 \mathrm{kHz}$	$0=10 \mu \mathrm{H}$	$00=17 \mathrm{~V}$	$00=750 \mathrm{~mA}$
	$1=$ No Shift（default）	$1=1 \mathrm{MHz}$（default）	（default）	$01=21 \mathrm{~V}$	$01=1000 \mathrm{~mA}$
			$1=22 \mu \mathrm{H}$	$10=25 \mathrm{~V}$	$10=1250 \mathrm{~mA}$
				$11=29 \mathrm{~V}$	$11=1500 \mathrm{~mA}$
（default）	（default）				

表 14．Auto Frequency High Threshold（0x15）
Auto Frequency High Threshold（ $\mathbf{5 0 0} \mathbf{~ k H z}$ to $\mathbf{1 0 0 0} \mathbf{~ k H z)}$
Bits［7：0］
［ against the 8 MSBs of 11 －bit brightness code（default $=00000000$ ）．

表 15．Auto Frequency Low Threshold（ 0×16 ）

Auto Frequency High Threshold（ 250 kHz to 500 kHz ）
Bits［7：0］
Compared against the 8 MSBs of 11－bit brightness code（default $=00000000$ ）．

表 16．Back Light Adjust Threshold（0x17）

Back Light Adjust Threshold（Brightness Ceiling） Bits［7：0］			
When BL＿ADJ Input is driven high the MSBs of the brightness code are forced to the code in this register（default＝00000000）．			

表 17．Brightness Register LSBs（0x18）

Bits［7：3］	$\mathbf{I}^{2} \mathbf{C}$ Brightness Code（LSB）
Bits［2：0］	

表 18．Brightness Register MSBs（0x19）

I2C Brightness Code（MSB）
Bits［7：0］

表 19．Fault Control（0x1E）

Reserved Bits［7：4］	LED Short Fault Enable Bit［3］	TSD Shutdown Disable Bit［2］	OCP Shutdown Disable Bit［1］	OVP／LED Open Shutdown Disable Bit［0］
R	0 ＝LED Short Fault Detection is disabled （default） 1 ＝LED Short Fault Detection is enabled	$0=$ When the TSD Flag is set， the device is forced into shutdown． 1 ＝No shutdown（default）	$0=$ When the OCP Flag is set，the device is forced into shutdown． $1=$ No shutdown （default）	0 ＝When the OVP Flag is set， the device is forced into shutdown． $1=\mathrm{No}$ shutdown （default）

表 20．Fault Flags（0x1F）

Reserved Bits［7：5］	LED Open Fault Bit［4］	LED Short Fault Bit［3］	TSD Fault Bit［2］	OCP Fault Bit［1］	OVP Fault Bit［0］
R	$\begin{gathered} 1=\text { LED } \\ \text { String Open } \end{gathered}$ Fault	$1 \text { = LED }$ Short Fault	$1=\underset{\text { Fault }}{\text { Thermal Shutdown }}$	$1=\underset{\text { Fault }}{\text { Current Limit }}$	$1=$ Output Overvolta ge Fault

8 Applications and Implementation

注

Information in the following applications sections is not part of the Tl component specification，and TI does not warrant its accuracy or completeness．TI＇s customers are responsible for determining suitability of components for their purposes．Customers should validate and test their design implementation to confirm system functionality．

8．1 Application Information

The LM36922 provides a complete high－performance LED lighting solution for mobile handsets．The LM36922 is highly configurable and can support multiple LED configurations．

8．2 Typical Application

图 32．LM36922 Typical Application

8．2．1 Design Requirements

DESIGN PARAMETER	EXAMPLE VALUE
Minimum input voltage $\left(\mathrm{V}_{\text {IN }}\right)$	2.7 V
LED parallel／series configuration	2×8
LED maximum forward voltage $\left(\mathrm{V}_{\mathrm{f}}\right)$	3.2 V
Efficiency	80%

The number of LED strings，number of series LEDs，and minimum input voltage are needed in order to calculate the peak input current．This information guides the designer to make the appropriate inductor selection for the application．The LM36922 boost converter output voltage（ $\mathrm{V}_{\text {OUT }}$ ）is calculated as follows：number of series LEDs $\times \mathrm{V} f+0.23 \mathrm{~V}$ ．The LM36922 boost converter output current（lout）is calculated as follows：number of parallel LED strings $\times 25 \mathrm{~mA}$ ．The LM36922 peak input current is calculated using 公式 6 ．

8．2．2 Detailed Design Procedure

8．2．2．1 Component Selection

8．2．2．1．1 Inductor

The LM36922 requires a typical inductance in the range of $10 \mu \mathrm{H}$ to $22 \mu \mathrm{H}$ ．When selecting the inductor，ensure that the saturation rating for the inductor is high enough to accommodate the peak inductor current of the application（l $\mathrm{l}_{\text {PEAK }}$ ）given in the inductor datasheet．The peak inductor current occurs at the maximum load current，the maximum output voltage，the minimum input voltage，and the minimum switching frequency setting． Also，the peak current requirement increases with decreasing efficiency．I I ${ }_{\text {PEAK }}$ can be estimated using 公式 6 ：

$$
\begin{equation*}
I_{P E A K}=\frac{V_{O U T} \times I_{\text {OUT }}}{V_{I N} \times \eta}+\frac{V_{I N}}{2 \times f_{S W} \times L} \times\left(1+\frac{V_{I N} \times \eta}{V_{\text {OUT }}}\right) \tag{6}
\end{equation*}
$$

Also，the peak current calculated above is different from the peak inductor current setting（ $l_{\text {SAT }}$ ）．The NMOS switch current limit setting（ $\mathrm{I}_{\text {CL＿MIN }}$ ）must be greater than $\mathrm{I}_{\text {PEAK }}$ from 公式 6 above．

8．2．2．1．2 Output Capacitor

The LM36922 requires a ceramic capacitor with a minimum of $0.4 \mu \mathrm{~F}$ of capacitance at the output，specified over the entire range of operation．This ensures that the device remains stable and oscillation free．The $0.4 \mu \mathrm{~F}$ of capacitance is the minimum amount of capacitance，which is different than the value of capacitor．Capacitance would take into account tolerance，temperature，and DC voltage shift．

表 21 lists possible output capacitors that can be used with the LM36922．图 33 shows the DC bias of the four TDK capacitors．The useful voltage range is determined from the effective output voltage range for a given capacitor as determined by 公式 7：

$$
\begin{equation*}
\text { DC Voltage Derating } \geq \frac{0.38 \mu F}{(1-\text { Tol }) \times(1-\text { Temp_co })} \tag{7}
\end{equation*}
$$

表 21．Recommended Output Capacitors

PART NUMBER	MANUFACTURER	CASE SIZE	VOLTAGE RATING（V）	NOMINAL CAPACITANCE $(\boldsymbol{\mu F})$	TOLERANCE（\％）	TEMPERATURE COEFFICIENT（\％）	RECOMMENDED MAX OUTPUT VOLTAGE （FOR SINGLE CAPACITOR）
C2012X5R1H105K085AB	TDK	0805	50	1	± 10	± 15	
C2012X5R1H225K085AB	TDK	0805	50	2.2	± 10	± 15	
C1608X5R1V225K080AC	TDK	0603	35	2.2	± 10	± 15	
C1608X5R1H105K080AB	TDK	0603	50	1	± 10	12	

For example，with a 10% tolerance，and a 15% temperature coefficient，the DC voltage derating must be \geq $0.38 /(0.9 \times 0.85)=0.5 \mu \mathrm{~F}$ ．For the C1608X5R1H225K080AB（0603， $50-\mathrm{V}$ ）device，the useful voltage range occurs up to the point where the DC bias derating falls below $0.523 \mu \mathrm{~F}$ ，or around 12 V ．For configurations where $V_{\text {OUT }}$ is $>15 \mathrm{~V}$ ，two of these capacitors can be paralleled，or a larger capacitor such as the C2012X5R1H105K085AB must be used．

图 33．DC Bias Derating for 0805 Case Size and 0603 Case Size $35-\mathrm{V}$ and 50－V Ceramic Capacitors

8．2．2．1．3 Input Capacitor

The input capacitor in a boost is not as critical as the output capacitor．The input capacitor primary function is to filter the switching supply currents at the device input and to filter the inductor current ripple at the input of the inductor．The recommended input capacitor is a $2.2-\mu \mathrm{F}$ ceramic（ $0402,10-\mathrm{V}$ device）or equivalent．

8．2．3 Application Curves

L1 $=10 \mu \mathrm{H}$（VLF403212－100M）or $22 \mu \mathrm{H}$（VLF504015－220M）as noted in graphs，D1＝NSR530P2T5G，LEDs are Rohm SML312WBCW1，temperature $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbb{I N}}=3.7 \mathrm{~V}$ ，unless otherwise noted．

图 35．Boost Efficiency vs Series LEDs
$\mathrm{L} 1=10 \mu \mathrm{H}$（VLF403212－100M）or $22 \mu \mathrm{H}$（VLF504015－220M）as noted in graphs，D1＝NSR530P2T5G，LEDs are Rohm SML312WBCW1，temperature $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V}$ ，unless otherwise noted．

图 36．Boost Efficiency vs Series LEDs

图 38．Boost Efficiency vs Series LEDs

图 37．Boost Efficiency vs Series LEDs

图 39．Boost Efficiency vs Series LEDs

图 41．Boost Efficiency vs Series LEDs
$\mathrm{L} 1=10 \mu \mathrm{H}$ (VLF403212-100M) or $22 \mu \mathrm{H}$ (VLF504015-220M) as noted in graphs, D1 = NSR530P2T5G, LEDs are Rohm SML312WBCW1, temperature $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbb{I N}}=3.7 \mathrm{~V}$, unless otherwise noted.

$\mathrm{L} 1=10 \mu \mathrm{H}$ (VLF403212-100M) or $22 \mu \mathrm{H}$ (VLF504015-220M) as noted in graphs, D1 = NSR530P2T5G, LEDs are Rohm SML312WBCW1, temperature $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V}$, unless otherwise noted.

9 Power Supply Recommendations

9．1 Input Supply Bypassing

The LM36922 is designed to operate from an input supply range of 2.5 V to 5.5 V ．This input supply should be well regulated and be able to provide the peak current required by the LED configuration and inductor selected without voltage drop under load transients（start－up or rapid brightness change）．The resistance of the input supply rail should be low enough such that the input current transient does not cause the LM36922 supply voltage to droop more than 5% ．Additional bulk decoupling located close to the input capacitor（ C_{IN} ）may be required to minimize the impact of the input supply rail resistance．

10 Layout

10．1 Layout Guidelines

The LM36922＇s inductive boost converter sees a high switched voltage（up to $\mathrm{V}_{\mathrm{OvP}}$ ）at the SW pin，and a step current（up to I_{CL} ）through the Schottky diode and output capacitor each switching cycle．The high switching voltage can create interference into nearby nodes due to electric field coupling（ $1=\mathrm{CdV} / \mathrm{dt}$ ）．The large step current through the diode and the output capacitor can cause a large voltage spike at the SW pin and the OUT pin due to parasitic inductance in the step current conducting path（ $\mathrm{V}=\mathrm{Ldi} / \mathrm{dt}$ ）．Board layout guidelines are geared towards minimizing this electric field coupling and conducted noise．图 52 highlights these two noise－ generating components．

图 52．SW Pin Voltage（High Dv／Dt）and Current Through Schottky Diode and COUT（High Di／Dt）

Layout Guidelines（接下页）

The following list details the main（layout sensitive）areas of the LM36922＇s inductive boost converter in order of decreasing importance：
－Output Capacitor
－Schottky Cathode to COUT＋
－COUT－to GND
－Schottky Diode
－SW pin to Schottky Anode
－Schottky Cathode to COUT＋
－Inductor
－SW Node PCB capacitance to other traces
－Input Capacitor
－CIN＋to IN pin

10．1．1 Boost Output Capacitor Placement

Because the output capacitor is in the path of the inductor current discharge path it detects a high－current step from 0 to $I_{\text {PEAK }}$ each time the switch turns off and the Schottky diode turns on．Any inductance along this series path from the cathode of the diode through Cout and back into the LM36922＇s GND pin contributes to voltage spikes（ $\mathrm{V}_{\text {SPIKE }}=\mathrm{L}_{\mathrm{P}} \times$ di／dt）at SW and OUT．These spikes can potentially overvoltage the SW pin，or feed through to GND．To avoid this，COUT＋must be connected as close as possible to the cathode of the Schottky diode，and COUT－must be connected as close as possible to the LM36922＇s GND pin．The best placement for COUT is on the same layer as the LM36922 in order to avoid any vias that can add excessive series inductance．

10．1．2 Schottky Diode Placement

In the LM36922＇s boost circuit the Schottky diode is in the path of the inductor current discharge．As a result the Schottky diode sees a high－current step from 0 to $I_{\text {PEAK }}$ each time the switch turns off and the diode turns on． Any inductance in series with the diode causes a voltage spike $\left(\mathrm{V}_{\text {SPIKE }}=L_{P_{-}} \times\right.$di／dt）at SW and OUT．This can potentially over－voltage the SW pin，or feed through to $\mathrm{V}_{\text {OUT }}$ and through the output capacitor and into GND． Connecting the anode of the diode as close as possible to the SW pin and the cathode of the diode as close as possible to $\mathrm{C}_{\text {OUt }}$ and reduces the inductance（ L_{P} ）and minimize these voltage spikes．

10．1．3 Inductor Placement

The node where the inductor connects to the LM36922＇s SW pin has 2 issues．First，a large switched voltage（ 0 to $\mathrm{V}_{\text {OUt }}+\mathrm{V}_{\text {F＿SснотткY }}$ ）appears on this node every switching cycle．This switched voltage can be capacitively coupled into nearby nodes．Second，there is a relatively large current（input current）on the traces connecting the input supply to the inductor and connecting the inductor to the SW bump．Any resistance in this path can cause voltage drops that can negatively affect efficiency and reduce the input operating voltage range． To reduce the capacitive coupling of the signal on SW into nearby traces，the SW bump－to－inductor connection must be minimized in area．This limits the PCB capacitance from SW to other traces．Additionally，high impedance nodes that are more susceptible to electric field coupling need to be routed away from SW and not directly adjacent or beneath．This is especially true for traces such as SCL，SDA，HWEN，BL＿ADJ，and PWM．A GND plane placed directly below SW dramatically reduces the capacitance from SW into nearby traces． Lastly，limit the trace resistance of the $\mathrm{V}_{\mathbb{I N}}$ to inductor connection and from the inductor to SW connection，by use of short，wide traces．

10．1．4 Boost Input Capacitor Placement

For the LM36922 boost converter，the input capacitor filters the inductor current ripple and the internal MOSFET driver currents during turn on of the internal power switch．The driver current requirement can range from 50 mA at 2.7 V to over 200 mA at 5.5 V with fast durations of approximately 10 ns to 20 ns ．This appears as high di／dt current pulses coming from the input capacitor each time the switch turns on．Close placement of the input capacitor to the IN pin and to the GND pin is critical since any series inductance between IN and CIN＋or CIN－ and GND can create voltage spikes that could appear on the VIN supply line and in the GND plane．Close

Layout Guidelines（接下页）

placement of the input bypass capacitor at the input side of the inductor is also critical．The source impedance （inductance and resistance）from the input supply，along with the input capacitor of the LM36922，form a series RLC circuit．If the output resistance from the source（ R_{S} ）is low enough the circuit is underdamped and has a resonant frequency（typically the case）．Depending on the size of L_{s} the resonant frequency could occur below， close to，or above the LM36922 switching frequency．This can cause the supply current ripple to be：
1．Approximately equal to the inductor current ripple when the resonant frequency occurs well above the LM36922 switching frequency；
2．Greater than the inductor current ripple when the resonant frequency occurs near the switching frequency；or
3．Less than the inductor current ripple when the resonant frequency occurs well below the switching frequency．
图 53 shows the series RLC circuit formed from the output impedance of the supply and the input capacitor．The circuit is redrawn for the AC case where the $\mathrm{V}_{\text {IN }}$ supply is replaced with a short to GND，and the LM36922＋ Inductor is replaced with a current source $\left(\Delta I_{L}\right)$ ．Equation 1 is the criteria for an underdamped response．Equation 2 is the resonant frequency．Equation 3 is the approximated supply current ripple as a function of L_{s}, R_{S} ，and C_{IN} ．As an example，consider a $3.6-\mathrm{V}$ supply with 0.1Ω of series resistance connected to C_{IN} through 50 nH of connecting traces．This results in an underdamped input－filter circuit with a resonant frequency of 712 kHz ．Since both the $1-\mathrm{MHz}$ and $500-\mathrm{kHz}$ switching frequency options lie close to the resonant frequency of the input filter， the supply current ripple is probably larger than the inductor current ripple．In this case，using equation 3，the supply current ripple can be approximated as 1.68 times the inductor current ripple（using a $500-\mathrm{kHz}$ switching frequency）and 0.86 times the inductor current ripple using a $1-\mathrm{MHz}$ switching frequency．Increasing the series inductance（LS）to 500 nH causes the resonant frequency to move to around 225 kHz ，and the supply current ripple to be approximately 0.25 times the inductor current ripple（ $500-\mathrm{kHz}$ switching frequency）and 0.053 times for a $1-\mathrm{MHz}$ switching frequency．

53．Input RLC Network

10．2 Layout Example

图 54．LM36922 Layout Example

11 器件和文档支持

11.1 器件支持

11．1．1 Third－Party Products Disclaimer

TI＇S PUBLICATION OF INFORMATION REGARDING THIRD－PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY，REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES，EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE．

11.2 商标

All trademarks are the property of their respective owners．

11.3 静电放电警告

ESD 可能会损坏该集成电路。德州仪器（TI）建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序，可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级，大至整个器件故障。 精密的集成电路可能更容易受到损坏，这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11．4 Glossary

SLYZ022－TI Glossary．
This glossary lists and explains terms，acronyms，and definitions．
12 机械，封装和可订购信息
以下页中包括机械，封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本，请查阅左侧的导航栏。

PACKAGING INFORMATION

| Orderable Device | Status
 (1) | | Package Type Package Pins Package | Eco Plan
 Qrawing | Lead finish/
 Qall material
 (6) | MSL Peak Temp
 (3) | Op Temp (${ }^{\circ}$ C) | Device Marking
 $(4 / 5)$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LM36922YFFR | ACTIVE | DSBGA | YFF | 12 | 3000 | RoHS \& Green | SNAGCU | Level-1-260C-UNLIM | -40 to 85 | 36922 |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: Tl defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.

NOTES: (continued)
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

NOTES: (continued)
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

重要声明和免责声明

TI＂按原样＂提供技术和可靠性数据（包括数据表），设计资源（包括参考设计），应用或其他设计建议，网络工具，安全信息和其他资源不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性，某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：（1）针对您的应用选择合适的 TI 产品，（2）设计，验证并测试您的应用，（3）确保您的应用满足相应标准以及任何其他功能安全，信息安全，监管或其他要求。
这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔，损害，成本，损失和债务，TI 对此概不负责。
TI 提供的产品受 TI 的销售条款或 ti．com 上其他适用条款／TI产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。
TI 反对并拒绝您可能提出的任何其他或不同的条款。
邮寄地址 ：Texas Instruments，Post Office Box 655303，Dallas，Texas 75265
Copyright © 2023，德州仪器（TI）公司

[^0]: (1) LED Current Matching between strings is given as the worst case matching between any two strings. Matching is calculated as ((lledx $\left.I_{\text {LEDY }}\right) /\left(\right.$ LEEDX $\left.+\mathrm{I}_{\text {LEDY }}\right) \times 100$.

