Application Brief 如何通过 I²C 加载 TPS2388x SRAM 和奇偶校验代码

TEXAS INSTRUMENTS

Penny Xu

TPS2388x 是一款 8 通道电源设备 (PSE) 控制器,旨 在按照 IEEE 802.3bt 标准向以太网电缆提供电力。可 编程 SRAM 可通过 I²C 实现现场固件可升级性这可提 供与支持 PoE 的新型器件的互操作性。

在向 TPS2388x 发送命令之前,上电后的第一件事是 加载 SRAM 和奇偶校验代码。表 1 提供了加载代码的 步骤。

如果系统中有多个 TPS2388x 器件,请使用全局 I²C 写入通过全局 I²C 地址 0x7F 将 SRAM 和奇偶校验代 码加载到多个器件。

Power over Ethernet (PoE) Products

从器件的初次加电(VPWR 和 VDD 高于 UVLO)后将 SRAM 和奇偶校验编程延迟至少 50ms,让器件完成其 内部硬件初始化过程。

以下过程适用于 8 位(配置 A)或 16 位(配置 B) I²C 操作。必须在较低的 I²C 地址(通道 1-4)完成 SRAM 和奇偶校验编程控制。为上部 I²C 器件地址 (通道 5-8)配置 SRAM 控制寄存器不会对 SRAM 或 奇偶校验进行编程。

从 *TI mySecure 软件* 网页访问 TPS2388x 固件的最新 版本。

	命令	寄存器	数据	说明	如果奇偶校验被禁用	
步骤 1	写入	0x60	0x01	复位存储器地址指针		
步骤 2	写入	0x62	0x00	设置起始地址 LSB		
步骤 3	写入	0x63	0x80	设置起始地址 MSB		
步骤 4	写入	0x60	0xC4	复位 CPU 并启用奇偶校验写入	跳跃	
步骤 5	写入	0x1D	0xBC		Dik of.	
步骤 6	写入	0xD7	0x02	- - - 正在准备 RAM 下载 -		
步骤 7	写入	0x91	0x00			
步骤 8	写入	0x90	0x00		LYC LA	
步骤 9	写入	0xD7	0x00			
步骤 10	写入	0x1D	0x00			
步骤 11	写入	0x61	xx,xx,xx,	加载奇偶校验数据	跳跃	
写入所有数据后:						
步骤 12	写入	0x60	0xC5	将 CPU 保持在复位和复位存储器指针中	跳跃	
步骤 13	写入	0x62	0x00	复位起始地址的 LSB	跳跃	
步骤 14	写入	0x63	0x80	复位起始地址的 MSB	跳跃	
步骤 15	写入	0x60	0xC0	使 CPU 保持在复位状态并启用 SRAM I ² C 写入		
步骤 16	写入	0x1D	0xBC		如果己在第 5-10 步中	
步骤 17	写入	0xD7	0x02	- 正在准备 RAM 下载 如果已 - 近在准备 RAM 下载 运行,		
步骤 18	写入	0x91	0x00			
步骤 19	写入	0x90	0x00		运行,则跳过	
步骤 20	写入	0xD7	0x00			
步骤 21	写入	0x1D	0x00			
步骤 22	写入	0x61	xx,xx,xx,	加载 SRAM 数据		
步骤 23	写入	0x60	0x18	清除 CPU 复位并启用 SRAM 和奇偶校验	改为写入"0x08"	
步骤 24	延迟约为 12ms					

表 1. 上电期间的 SRAM 和奇偶校验编程步骤

表 1. 上电期间的 SRAM 和奇偶校验编程步骤 (continued)

	命令	寄存器	数据	说明	如果奇偶校验被禁用
步骤 25	读取	0x41		检查固件版本	

以下是器件处于安全模式时用于重新加载 SRAM 和奇偶校验代码的指令。

表 2. 安全模式下的 SRAM 和奇偶校验编程								
	命令	寄存器	数据	说明	如果奇偶校验被禁用			
步骤 1	写入	0x60	0x01	复位存储器地址指针				
步骤 2	写入	0x62	0x00	设置起始地址 LSB				
步骤 3	写入	0x63	0x80	设置起始地址 MSB				
步骤 4	写入	0x60	0x84	启用奇偶校验写入	跳跃			
步骤 5	写入	0x1D	0xBC	正在准备 RAM 下载	跳跃			
步骤 6	写入	0xD7	0x02					
步骤 7	写入	0x91	0x00					
步骤 8	写入	0x90	0x00					
步骤 9	写入	0xD7	0x00					
步骤 10	写入	0x1D	0x00					
步骤 11	写入	0x61	xx,xx,xx,	加载奇偶校验数据	跳跃			
写入所有数:								
步骤 12	写入	0x60	0x85	复位存储器指针	跳跃			
步骤 13	写入	0x62	0x00	复位起始地址的 LSB	跳跃			
步骤 14	写入	0x63	0x80	复位起始地址的 MSB	跳跃			
步骤 15	写入	0x60	0x80	启用 SRAM I ² C 写入				
步骤 16	写入	0x1D	0xBC	- 正在准备 RAM 下载	如果己在第 5-10 步 中运行,则跳过			
步骤 17	写入	0xD7	0x02					
步骤 18	写入	0x91	0x00					
步骤 19	写入	0x90	0x00					
步骤 20	写入	0xD7	0x00					
步骤 21	写入	0x1D	0x00					
步骤 22	写入	0x61	xx, xx, xx,	加载 SRAM 数据				
步骤 23	写入	0x60	0x18	启用 SRAM 和奇偶校验	改为写入"0x08"			
步骤 24	延迟约为 12ms							
步骤 25	读取	0x41		检查固件版本				

相关文档

- 德州仪器 (TI), TPS23880 具有可编程 SRAM 数据的 4 型 4 线对 8 通道 PoE 2 PSE 控制器数据表
- 德州仪器 (TI), TPS23880EVM: PoE、PSE、TPS23880 评估模块用户指南
- 德州仪器 (TI), TPS23880 产品文件夹
- 德州仪器 (TI), TPS23881 具有 SRAM 和 200m Q R_{SENSE} 的 4 型 4 线对 8 通道 PoE 2 PSE 控制器数据表
- 德州仪器 (TI), TPS23881EVM: PoE、PSE、TPS23881 评估模块用户指南
- 德州仪器 (TI), TPS23881 产品文件夹
- 德州仪器 (TI), TPS23882 具有 SRAM 和 200m Ω R_{SENSE} 的 3 型 2 线对 8 通道 PoE PSE 控制器数据表
- 德州仪器 (TI), TPS23882EVM: PoE、PSE、TPS23882 评估模块用户指南
- 德州仪器 (TI), TPS23882 产品文件夹

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司