TEXAS INSTRUMENTS

Michael Seidl

Precision ADC

摘要

数据采集系统的性能主要表现为其带宽和 SNR。此类系统中非常关键且通常非常有价值的元件是模数转换器 (ADC)。设计人员根据他们在有效位数 (ENOB)、采样率以及可能更多的关键参数 (例如功耗或封装选项)方面的 需求来选择 ADC。对于航天应用,耐辐射是另一个重要的选择标准,它会增加另一层面的成本。

图 1-1. 典型数据采集系统中的模拟前端

选择了 ADC 之后,设计人员必须开发一个模拟前端,以某种方式调节输入信号,使 ADC 能够真正在其指定电平 下运行。此类调节包括放大或衰减以及信号电平转换,用于满足 ADC 的全差分和共模输入范围。同时,模拟前端 电路必须将本底噪声保持在较低水平,并避免相关信号带宽内出现任何非线性。稳定性分析必须显示足够的裕 度,输入阻抗必须足够高,输出驱动能力必须足够强,才能满足 ADC 采样保持电容器的稳定时间要求。

简而言之,设计人员面临着一项通常必须在迭代开发工作中解决的多维设计挑战。要想快速取得成功,一定要有一个良好的起点、关于调整哪些变量来达到设计目标的好想法,以及可让设计人员有效地分析每个设计迭代的所有方面的高效工具。

本应用手册以具体设计为例,介绍了如何快速开始切入,以及 TI 的产品和工具如何帮助设计人员有效调整设计。

内容	
1 元件和拓扑选择 - 快速找到良好的起点	3
	7
2.1 详细设计流程 - 验证时项响应	/q
2.3 线性度或频率响应	

Ų	Texas Instruments
	www.ti.com.cn

2.4 稳定性	
25 稳定时间	15
3 总结	17

插图清单

图 1-1. 典型数据采集系统中的模拟前端	1
图 1-1. TI 航天产品指南中列出的 TI 航天级精密 ADC	3
图 1-2. 模拟工程师计算器 - Drive Wideband Delta-Sigma ADC	3
图 1-3. 从 ADS1278-SP 数据表中读取调制频率	4
图 1-4. 使用模拟工程师计算器确定 FDA 的最小单位带宽增益积	4
图 1-5. 根据 TI 航天产品指南选择适合的 FDA	5
图 1-6. 具有 LMH5485-SP 和 ADS1278-SP 的参考原理图的用户定义值和计算值,满足示例设计目标	<mark>6</mark>
图 2-1. 为 FDA 电路添加衰减级和输入缓冲级	7
图 2-2. 在 0 µ s 到 100 µ s 范围内运行瞬态分析	7
图 2-3. FDA 输出电压 VOUTdiff 与输入信号 VG1 的仿真	8
图 2-4. 模拟工程师计算器中的 "ADC + Signal Chain Noise" 分析	9
图 2-5. 在 Tina-TI 仿真器中选择"Noise Analysis"并选中"Total Noise"	10
图 2-6. ADC 模拟输入电路的总噪声结果	10
图 2-7. LMH5485-SP 数据表在其"谐波失真随频率变化的情况"图中显示,f = 50kHz 时的 THD 约为 - 118dBc	11
图 2-8. 选择 AC Transfer Characteristic 米分析输入电路的频率响应	12
图 2-9. 模拟面端的父流传输特性 - VOUIdiff 的 3dB 带宽为 542.96kHz	12
图 2-10. 提取升准备用于稳定性分析的闭外系统	
图 2-11. 远择"AU Transfer Unaracteristic"米分析开环能直甲 FDA 级的幅值和相位的频率响应	14
图 2-12. 开环能直中 FDA 级的波符图	14
图 2-13. 使用 DC Analysis → Calculate Notal Voltage 起现术确定 ADC 的相侧搁八电压	15
图 2-14. 用丁梞疋时间刀竹的元雀 AFE 系统	15
図 2-13. 処理 10 我個処坝以刀仰極足的回	10
图 2-10. 减足时 经归承时 不已 2-10 不住 你可巴谷爾巴亞 医左时 的 英坦本	10
□ 2 · 1. 阿正円刀///〒HJ///シス(江口ス) / , スト J 日仰 □ 3 公内儿正判状	

表格清单

表 1-1. 模拟前端示例的设计目标参数......3

1 元件和拓扑选择 - 快速找到良好的起点

以下章节使用表 1-1 所描述的示例设计。

表 1-1. 模拟前端示例的设计目标参数

参数	设计目标
通道计数	8
带宽和采样率	40kHz , > 100ksps
输入满量程 (FSR)	±10V FSR
共模电压	大约 0V 共模
目标分辨率,ENOB	> 16 位
输入阻抗 (Z _{IN}) 目标	> 100kΩ
耐辐射性	TID : > 50krad , SEL : > 60 (MeV × cm²/mg)

TI 航天产品指南的航天级数据转换器部分显示 ADS1278-SP 非常符合这些要求。

Precision ADCs (≤ 10 MSPS)

Part Number ¹	Military Spec	Qualification Level	TID Char. (krad)	TID RLAT (krad)	SEL (MeV•cm²/ mg)	Res. (Bits)	Sample Rate (Max) (kSPS)	# of Ch	Multi-Ch Config.	SNR (dB)	INL (Max) (± LSB)	Input Type	Ref. Voltage (V)	Power (Typ) (mW)	Туре	Package Group	ECCN ²
ADC128S102QML-SP	5962-07227	QMLV-RHA	100	100	120	12	1000	8	Multiplexed	72	1.1	Single ended	Supply	2.3	SAR	CFP, Die	EAR99 [†]
ADS1278-SP	-	TI Space Grade	75	50	68	24	128	8	Simultaneous	111	201.4	Differential	External	530	ΔΣ	CQFP	EAR99 [‡]
ADS1282-SP	5962-14231	QMLV-RHA	50	50	60	32	4	2	Multiplexed	130	-	Differential	External	25	ΔΣ	CFP	EAR99 [‡]

图 1-1. TI 航天产品指南中列出的 TI 航天级精密 ADC

下一步是找到合适的 ADC 驱动器。为了获得出色的抗噪性和线性度,建议使用全差分放大器 (FDA)。

为了找到合适的产品,必须了解此类 FDA 的最小单位带宽增益积。模拟工程师计算器在这里提供了很大的帮助。

图 1-2. 模拟工程师计算器 - Drive Wideband Delta-Sigma ADC

图 1-2 说明了 Data Converter 菜单提供 Drive Wideband Delta-Sigma ADC 项。图中的参考原理图显示了所有相关的元件值。白色字段必须由用户输入,灰色字段是结果值。定义的第一个变量是最小单位带宽增益积 (UGBW)。换言之,放大器的增益必须等于或大于 1 的频率。由于 ADC 将切断高于奈奎斯特或被 2 分频的采样频率的任何信息,因此放大器的 UGBW 大约为采样频率的三分之二就足够了。例如,对于 1kHz 的采样率,请查看最小 UGBW 是否为 636.6Hz。

本报告示例中选择的 ADC 是 Σ - Δ ADC。请务必记住, Σ - Δ ADC 是给定调制频率下的 1 位 ADC。实际采样率 仅是完整采样字从其产生的频率。AFE 设计的相关频率是高得多的调制频率。

由于现代 ADC 的灵活性和复杂性,从数据表中读取调制频率并不总是非常容易。ADS1278-SP 提供不同的工作 模式,支持不同的主时钟速率。图 1-3 展示了实际调制频率仅为主时钟的四分之一。在本示例中,ADS1278-SP 以高速模式运行:128ksps,f_{CLK}为 32.786MHz。F_{CLK} 除以 4 可得到 8.192MHz 的实际调制频率。

图 1-4 显示,在模拟工程师计算器中输入调制频率 "8.192M" (8.192MHz) 将确定最小 UGBW 为 "5.215M" (5.215MHz)。

图 1-4. 使用模拟工程师计算器确定 FDA 的最小单位带宽增益积

图 1-5 展示了显示四个 FDA 的 TI 航天产品指南。四个产品都可提供足够的 UGBW。作为本报告的一个示例,选择了 UGBW 为 850MHz 的最低一个 (LMH5485-SP)。

High-Speed Op Amps (≥ 50 MHz)

Part Number ¹	Military Spec	Qualifi- cation Level	TID Char, (krad)	TID RLAT (krad)	SEL (MeV•cm²/ mg)	Ch #	V _s Min (V)	V _s Max (V)	GBW (MHz)	Slew Rate (Typ) (V/µs)	Vn (NV/ v/Hz)	V _{os} Max @ 25°C (mV)	Drift Typ (µV/C)	Rail- to- Rail	l _q typ (mA) per Ch	l _{sc} Typ (mA)	l _{Bias} (Typ) (nA)	l _{Bias} (max) (nA)	Available Packages	ECCN ²
LM6172QML-SP	5962-95604	OMLV-RHA	300	100, 300	Bipolar	2	5.5	36	100	3000	12	1.5	6	No	2.3	85	1200	2500	CDIP, CFP, Die	EAR99
LM7171QML-SP	5962-95536	OMLV-RHA	300	300	Bipolar	1	5.5	36	200	4100	14	1	35	No	6.5	100	2700	10000	CDIP, CFP	EAR99
LMH6628QML-SP	5962-02545	OMLV-RHA	300	300	Bipolar	2	5	12	300	550	2	2		No	9.0	85	7000	10000	CDIP, CFP	EAR99
LMH6702QML-SP	5962-02546	OMLV-RHA	300	300	Bipolar	1	10	12	1700	3100	4.5	4.5	7	No	12.5	80	6000	15000	CDIP, CFP	EAR99
LMH6715QML-SP	5962-02547	QMLV-RHA	300	300	Bipolar	2	8	12	480	1300	3.4	6	30	No	5.8	70	5000	12000	CDIP	EAR99
THS4304-SP	5962-07219	QMLV	150	-	Bipolar	1	2.7	5	3000	790	8.5	4	5	No	18	100	-	12000	CFP	EAR99

Fully Differential Amplifiers (FDAs)

Part Number ¹	Military Spec	Qualifi- cation Level	TID Char. (krad)	TID RLAT (krad)	SEL (MeV•cm²/ mg)	V _s Min (V)	V _s Max (V)	GBW (MHz)	BW @ A _{CL} (MHz)	Min. A _{CL} (MHz)	Slew Rate (Typ) (V/µs)	V _{n at} Flatband (nV/ _√ Hz)	CMRR (Typ) (dB)	Rail-to- Rail	V _{os} Max @ 25°C (mV)	I _{Bias} (Max) (µA)	l _q Typ (mA) per Ch	Available Packages	ECCN ²
LMH5401-SP	5962-17214	QMLV-RHA	100	100	85	3.15	5.25	6500	4100	5	17500	1.25	72	No	5	60	60	LCCC	EAR99
LMH5485-SP	5962-19204	QMLV-RHA	100	100	75	2.7	5.4	850	620	1	1500	2.2	100	In to V-, Out	0.45	14.5	10.1	CFP	EAR99
THS4511-SP	5962-07222	QMLV	150	1	Bipolar	3.75	5.25	3000	1100	1	5100	2	80	In to V–	4	15.5	39.2	CFP	EAR99
THS4513-SP	5962-07223	QMLV	150	-	Bipolar	3	5.5	3000	1100	1	5100	2.2	90	No	4	15.5	37.7	CFP	EAR99

图 1-5. 根据 TI 航天产品指南选择适合的 FDA

选择该选项后,现在可以填写模拟工程师计算器中其余的空白字段,请参阅图 1-6。

参数	说明
Ro-dif	Ro-dif 是"开环输出阻抗"。 <i>LMH5485-SP 耐辐射 (RHA) 负轨输入、轨到轨输出、850MHz 全差分精密放大器</i> 数据表仅提供 0.1 Ω 的 <i>闭环输出阻抗</i> 。
	典型特性中的小信号频率响应与增益间的关系图: LMH5485-SP 数据表的 5V 单电源部分提供了增益与频率间的
	关系曲线。对于 8.192MHz 的调制频率,该图显示大约为 38dB,即大约 80。
	考虑以下关系:
	闭环输出阻抗×开环增益=开环输出阻抗
	Ro-dif 计算公式如下:
	$90 \times 0.1\Omega = 8\Omega_{\circ}$
	为 Ro-dif 字段输入"8"(8Ω)。
Riso	Riso 通常调优为一个较小值。此处使用"O"(OΩ)。
Rg 和 Rf	对于单位增益, Rg和 Rf 必须相同。"1k"(1kΩ)通常是一个很好的起点。
I _{PP}	<i>LMH5485-SP</i> 数据表允许高达 75mA 的输出电流。不必要的高输出电流会导致 FDA 功率损耗和发热,从而可能导致偏离理想工作点。在此示例中, "8m"(8mA)的值足以进行计算。
fin	所需带宽为 40kHz。留出一些裕度, "50k" (50kHz) 在这里是一个不错的选择。
UGBW	FDA 的 UGBW 为 "859M" (850MHz)。
CSH	使用 ADS1278-SP 耐辐射 8 通道 24 位同步采样模数转换器 数据表的 等效模拟输入电路 图片中的 CSH: "9p" (9pF)。
CFILT	将 CFILT 定义为最后一个条目之前 - 按 Calculate 按钮获取 Cfilt_min 更新值 "180p" (180pF) 和 Cfilt_max 更新 值 "5.1n" (5.1nF)。使用 "2.2n" (2.2nF) 作为介于 5nF 和 180pF 之间的值。

图 1-6. 具有 LMH5485-SP 和 ADS1278-SP 的参考原理图的用户定义值和计算值,满足示例设计目标

在本章中,借助 **TI** 航天产品指南选择了合适的 ADC 和 ADC 驱动器,并采用模拟工程师计算器确定了其支持电路,包括所有元件值。此外,还对电路以及已开发的每个有源和无源器件的作用有了基本的了解。

2 验证

本章介绍了如何利用 TINA TI 仿真器工具和模拟工程师计算器验证示例设计是否符合所需的设计目标。本节还介绍了如何验证信号链在 ADC 的全差分和共模输入范围内的性能。然后,观察总噪声性能和线性度,确定是否可以满足 ENOB 目标,然后进行稳定性分析和输入阻抗验证。最后,本章证明了电路符合 ADC 采样保持电容器的稳定时间要求。

2.1 详细设计流程 - 验证时域响应

如图 2-1 所示,在开始验证分析之前,设计必须首先完成衰减和输入缓冲级。此处需要记住的重要设计目标是, 单端 ±10V 输入信号会转换为 ADC 输入端的 ±2.5V 差分信号,输入阻抗必须大于 100k Ω。

对于输入缓冲器,选择了 LMP7704-SP 器件。衰减级的电阻分压器网络将信号电平降低四倍。输入信号发生器 VG1 设置为 240kHz 正弦波,振幅为 ±10V。

图 2-1. 为 FDA 电路添加衰减级和输入缓冲级

图 2-2 展示了在 TINA-TI 的 Analysis 菜单中选择 Transient ····,并设置介于 "0" 和 "100u" (100 µ s) 之间的仿真 时段。

ERC						
Mode Select Control Object	Ctrl+Alt+M					
Set Analysis Parameters	Ctrl+Alt+P	Transient Analysis				×
DC Analysis AC Analysis	>	<u>S</u> tart display	0	[\$]	<	ОК
Transient	Ctrl+Alt+T	End display	1004	[2]	×	Cancel
Steady State Solver Fourier Analysis	>	Calculate opera	ating point litions		?	Help
Noise Analysis	Ctrl+Alt+N					
Options	Ctrl+Alt+O					

图 2-3 中返回的波形显示,幅值为 10V 的单端输入信号会产生幅值为 2.5V 的差分输出信号。该幅值利用 ADC 的整个输入电压范围实现更高分辨率。

图 2-3. FDA 输出电压 VOUTdiff 与输入信号 VG1 的仿真

2.2 总噪声分析

为了实现 16 ENOB,信号明显比 AFE 系统的本底噪声更强至关重要。换句话说,SNR 值必须足够高。

模拟工程师计算器为确定 AFE 系统的总 SNR 提供了一种简单的方法。图 2-4 使用模拟工程师计算器说明了如何 从 Data Converters 菜单中选择 ADC + Signal Chain Noise。

图 2-4. 模拟工程师计算器中的 "ADC + Signal Chain Noise" 分析

Submit Document Feedback

Full Range Scale 为 5V, ADC SNR 值从 *ADS1278-SP 耐辐射 8 通道同步采样 24 位模数转换器* 数据表中读取。 转换器输入端的 *Signal Chain Noise* 值需要投入的精力略多一些。使用 TINA-TI 仿真器分析图 2-1 中的原理图以 了解其总噪声,请参考图 2-5 和图 2-6。

Mode	Ctrl+Alt+M	Noise Analysis	>
Select Control Object Set Analysis Parameters DC Analysis	Ctrl+Alt+P	Start frequency [100m] [Hz] End frequency [100MEG] [Hz]	V OK
AC Analysis Transient Steady State Solver	> Ctrl+Alt+T	Number of points 1000 S/N Signal Amplitude 1	<u>? H</u> elp
Noise Analysis	Ctrl+Alt+N	□ <u>D</u> utput Noise □ <u>I</u> otal Noise □ <u>Input Noise □ Signal to Noise </u>	
Options	Ctri+Ait+O		

图 2-6. ADC 模拟输入电路的总噪声结果

在 50kHz (留有裕度的相关最高频率) 时 - TINA-TI 返回 8.69 µ V, 可将其输入模拟工程师计算器中, 如图 2-4 所示。

如果只使用常规并联电压基准器件,则可以通过 TINA-TI 以类似的方式来识别电压基准的噪声水平,或者只需从数据表中读出即可。出于演示目的,选择了 "2.21u" (2.21 µ V)。选择 OK 按钮后,该工具返回 102.94dB 的组合 SNR。

应用标准转换公式 ENOB = (SNR - 1.76)/6.02dB, 计算结果为 ENOB = 16.81 位。

备注 TINA-TI不考虑非线性。因此,有必要快速查看 THD:

LMH5485-SP 数据表中的*谐波失真随频率变化的情况*图(图2-7)展示了在 50kHz 及以下频率下 - 118dBc 的失真。其 118dB 的绝对值明显高于先前确定的 102.94dB 组合 SNR。因此,可以忽略非线性失真。

图 2-7. LMH5485-SP 数据表在其"谐波失真随频率变化的情况"图中显示,f = 50kHz 时的 THD 约为 - 118dBc

2.3 线性度或频率响应

本节介绍输入电路的频率响应,以验证带宽是否足够宽,可在其整个带宽内保留目标信号,但也要足够窄,可用 作抗混叠滤波器。

为此,必须分析从信号输入到 ADC 输入的信号链,换句话说,必须分析图 2-1 中所示的电路。图 2-8 显示了在 TINA-TI 仿真器的 Analysis 菜单中选择 AC Transfer Characteristic 选项。使用此选项可分析振幅和相位的频率响应。

对于较低的频率,增益稳定在 - 12.04dB。在 542.96kHz 频率下的带宽为 - 3dB (- 15.04dB),请参阅图 2-9。这 远远高于 ADS1278 数字滤波器响应的 60kHz 截止频率。显然满足目标带宽的线性要求。

第二个问题是混叠。ADS1278-SP 是一款 Σ-Δ 调制器。在此示例中,器件以 8.192MHz 的频率调制信号。因此,奈奎斯特频率为 f_{mod} / 2 = 4.096MHz。该频率下的增益为 - 57dB,这意味着在奈奎斯特频率下仅抑制 45dB。仿真的结果表明,可能需要在不低于 4MHz 下进一步测量频率抑制。

2.4 稳定性

与 FDA 级一起,AFE 设计包含一个闭环系统,可能引发振铃甚至振荡,导致不稳定。了解振荡可能性的标准方法 是分析波特图并验证是否有足够的相位裕度。

在分析 FDA 级之前,必须将其与电路的其余部分隔离,并且必须打开反馈路径,以便提取开环增益,如图 2-10 所示。此外,必须启用 TINA-TI,以便针对任意频率(包括直流)进行适当的收敛。所有这些都是通过分别添加具 有 Terra 值的电容器和电感器来实现的,这两者实际上具有不受限制的容量或电感。大电容器的作用类似于短接几 赫兹以上的任意频率,也充当直流开路。同样,巨型电感器充当直流短路,也充当高于几赫兹的任意频率的开 路。显然,这仅对仿真实用。选择的值越高,仿真就越接近实际情况,即没有添加此类电容器和电感器的电路。

输出负载必须保持不变,以便它继续与放大器的输出阻抗相互作用,就像在整个 AFE 实现中那样。大电感器的引入将运算放大器的输入阻抗与电路断开。因此,重新添加 R_Diff 和 C_Diff 以找到正确的开环增益。

图 2-10. 提取并准备用于稳定性分析的闭环系统

如节 2.3 所示, TINA-TI 仿真器中的 "AC Transfer Characteristic"用于分析开环配置中 FDA 级振幅和相位的频 率响应,请参阅图 2-11。

ERC		100%	- <u>I</u>		AC Transfer Characte	ristic			2
Mode Select Control Object	Ctrl+Alt+M	[-~ 7	- _©	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Start frequency	10	[Hz]	~	OK
Set Analysis Parameters	Ctrl+Alt+P				End frequency	100MEG	[Hz]	×	Cance
DC Analysis	>				<u>N</u> umber of points	100		?	Help
AC Analysis	>	Calculat	e nodal volta	ges P	Sweep type	101 A		-	
Transient	Ctrl+Alt+T	Table of	AC results	~	C Linear	Constitution Logarithmic			
Steady State Solver		AC Trans	fer Characte	ristic Ctrl+Alt+A	Diagram				
Fourier Analysis	>		1		Amplitude	<u>N</u> yquist			
Noise Analysis	Ctrl+Alt+N			VN+ T	☐ <u>P</u> hase ☑ Amplitude & Pha	∑ <u>G</u> roup Delay se			
Options	Ctrl+Alt+O			12.47]		

图 2-12 中的波特图显示了在交叉频率为 62.9MHz 时,75.85°的相位可实现足够稳定性。大约 150kHz 时的相位 裕度下降可能会导致一些振铃。请记住此问题,以防它出现在实际设计中。

验证

2.5 稳定时间

最后的分析会验证 ADC 输入的稳定时间是否足够短。对于每次采样,ADC 必须为其内部采样保持电容器充电。 在设置期间,电荷从外部缓冲电容器转移。在建立时间之后,ADC 驱动器必须足够强,以便为缓冲电容器按时充 电。

稳定时间的最坏情况是信号输入设置为 10V。这将产生 - 2.5V 的最大 Vdiff 输出,确切的说应该是 - 2.499541V。图 2-13 说明了如何使用 TINA-TI 仿真器中的 *DC Analysis* 选项来确定 10V 输入电压在 ADC 输入端 产生的确切电压。

ERC		€ 100% - 01					
Mode Select Control Object Set Analysis Parameters	Ctrl+Alt+M Ctrl+Alt+P	[-~ ≶ 4 ⊣ © ö	® ∳			· ··· ··· ··· ··· ···	
DC Analysis	>	I Calculate nodal voltages	Ctrl+Alt+D	+1			
AC Analysis	>	Table of DC results		$=>$ \times	VOUTdiff	-2 49954	IV
Transient	Ctrl+Alt+T	DC Transfer Characteristic	Ctrl+Alt+R	- v (
Steady State Solver		Temperature Analysis		17 IT 🛪			
-				12 12			ř.
Fourier Analysis	>			1.0			10.10.10.10

图 2-13. 使用 DC Analysis → Calculate Nodal Voltage 选项来确定 ADC 的精确输入电压

ADS1278 仿真模型提供采样保持电容器的输出。如果电压正确稳定,则恰好为-2.499541V。图 2-14 展示了该电压在仿真中通过额外的电压源施加到该引脚,以及一个用于测量该预期电压误差的电压表。

图 2-14. 用于稳定时间分析的完整 AFE 系统

图 2-15 说明了如何通过从分析窗口中选择 TC 传输选项来激活仿真。

ZHCAC71 - MARCH 2022

Submit Document Feedback

ERC				
Mode	Ctrl+Alt+M			
Select Control Object Set Analysis Parameters	Ctrl+Alt+P	Transient Analysis		
DC Analysis AC Analysis	>	Start display	[8]	/ 0
Transient	Ctrl+Alt+T		[5]	🗶 Car
Steady State Solver Fourier Analysis	>	 Calculate operating point Use initial conditions Zero initial values 		<u>? Н</u> е
Noise Analysis	Ctrl+Alt+N			

图 2-16 显示了 -4.153 μV 趋稳后的误差电压图的放大图。该误差表现为增益误差,并在输入电压为 0V 时降至 约 0V。相对于 -2.5V 的全励磁,此类 -4.153 μV 转化为 0.0001663% 或 -1.663 ppm 的增益误差。这表示分 辨率约为 20 位,因此稳定误差足够小,能够满足大于 16 ENOB 的原始设计目标。

图 2-16. 稳定时段结束时 ADS1278 采样保持电容器电压误差的仿真结果

验证

备注

要获得足够高的分辨率,可能需要调整分析参数。图 2-17 展示了使用上述参数进行的调整示例。

.RC		in findy as for an erects	
	and the second se	DC First source step [%] (1m)	1m
Mode	Ctrl+Alt+M	DC max, abs, voltage incr. [V] (1)	1
elect Control Object		DC max. abs. current incr. [A] (100m)	100m
	CH L ALL D	DC max. relative increment [%] (50)	50
et Analysis Parameters	Ctri+Alt+P	DC iter. limitation enabled (No)	No
C Analysis		Operating point with initial conditions (No)	No
C Analysis	1	TR max. iteration number [-] (20)	20
AC Analysis	>	TR max. abs. voltage incr. [V] (200m)	200m
ransient	Ctrl+Alt+T	TR max, abs. current incr. [A] (20m)	20m
in stering and the stering ste	Current in the second s	TR max. relative increment [%] (1.0E+30)	1.0E+30
teady State Solver		TH maximum value relative error [%] [1m]	1m
ourier Analysis	>	TRUIE voltage-based/charge-based [Yes]	Yes
		TD iteration error factor [-] [/]	/ E00
loise Analysis	Ctrl+Alt+N	TR iteration control ractor [-] (Soum)	000m
		TR charge (defance (10))	101
Options	Ctrl+Alt+O	TR minimum time step [s] (10C)	1.05.30
		TB excitation subdivisions [-] (10)	1000
		TB time intry subdivisions [-] (10)	10k
		Abs. error of optimization [-] (1n)	1n
		Rel. error of optimization [%] (1u)	1u
		Semiconductor capacitors enabled (Yes)	Yes
		Description	
		Default analysis parameters. These parameters establish convergence and sufficient ac case of convergence or accuracy problems click on the "h	curacy for most circui hand "button to Open

图 2-17. 调整高分辨率的分析参数(红色数字),按下"手图标"可获得完整列表

3 总结

精密 ADC 模拟前端的开发是一项复杂的设计挑战,必须满足基本功能、线性度、稳定性、SNR 和稳定时间等多 个方面的要求。

TI 工具包让设计人员轻松拥有良好的设计起点,并能够有效验证每个优化迭代以实现其设计目标。

在线视频课程精密实验室中讨论了更多的示例、详细说明和设计方面的内容。TI E2E™ 论坛还提供有关特定设计 或仿真步骤的支持。此外,TI.com 上还提供了大量应用报告和参考设计。

如有需要,请向德州仪器(TI)寻求帮助或支持。TI与其客户目标相同,即尽快完成开发。

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司