1 Photo The photographs below show the PMP10937 Rev A assembly. This circuit was built on a PMP9707 Rev A PCB. # 2 Converter Efficiency ## V_{in} =120 V_{AC} /50Hz | Vin(V) | lin(mA) | Pin(W) | Vout(V) | Iout(A) | Pout(W) | Losses(W) | Efficiency (%) | |--------|---------|--------|---------|---------|---------|-----------|----------------| | 120.02 | 148.93 | 6.863 | 18.46 | 0.3000 | 5.5380 | 1.3250 | 80.69% | | 120.05 | 127.33 | 5.702 | 18.44 | 0.2500 | 4.6100 | 1.0920 | 80.85% | | 120.06 | 105.58 | 4.573 | 18.43 | 0.2000 | 3.6860 | 0.8870 | 80.60% | | 120.07 | 83.08 | 3.463 | 18.44 | 0.1500 | 2.7660 | 0.6970 | 79.87% | | 120.1 | 60.03 | 2.387 | 18.45 | 0.1000 | 1.8450 | 0.5420 | 77.29% | | 120.12 | 34.39 | 1.265 | 18.43 | 0.0500 | 0.9215 | 0.3435 | 72.85% | | 120.14 | 20.79 | 0.717 | 18.46 | 0.0260 | 0.4800 | 0.2368 | 66.96% | | 120.14 | 5.06 | 0.141 | 18.53 | 0.0000 | 0.0000 | 0.1407 | 0.00% | #### Vin=230V_{ΔC}/50Hz | TIII—200 V ACTOOLIE | | | | | | | | |---------------------|---------|--------|---------|---------|---------|-----------|----------------| | Vin(V) | lin(mA) | Pin(W) | Vout(V) | lout(A) | Pout(W) | Losses(W) | Efficiency (%) | | 230 | 94.52 | 6.878 | 18.45 | 0.3000 | 5.5350 | 1.3430 | 80.47% | | 230 | 80.88 | 5.746 | 18.43 | 0.2500 | 4.6075 | 1.1385 | 80.19% | | 230 | 67.50 | 4.673 | 18.42 | 0.2010 | 3.7024 | 0.9706 | 79.23% | | 230 | 53.50 | 3.584 | 18.43 | 0.1500 | 2.7645 | 0.8195 | 77.13% | | 230.1 | 38.87 | 2.497 | 18.43 | 0.1000 | 1.8430 | 0.6540 | 73.81% | | 230.1 | 22.36 | 1.343 | 18.45 | 0.0500 | 0.9225 | 0.4205 | 68.69% | | 230.1 | 13.47 | 0.775 | 18.47 | 0.0240 | 0.4433 | 0.3321 | 57.17% | | 230.1 | 3.52 | 0.157 | 18.53 | 0.0000 | 0.0000 | 0.1571 | 0.00% | # 3 Thermal Images The thermal images below show a top view and bottom view of the board under $120V_{AC}/60Hz$ and $230V_{AC}/50Hz$ input conditions. The ambient temperature was $20^{\circ}C$ with no forced air flow. The output was at 18V/0.3A. | Spot analysis | Value | |-----------------|--------| | Amb Temperature | 31.7°C | | Area analysis | Value | | D4Max | 59.4°C | | L2Max | 62.6°C | | RcsMax | 57.2°C | | Q1Max | 54.0°C | V_{in} =230 V_{AC} /50Hz | Spot analysis | Value | |-----------------|--------| | Amb Temperature | 26.2°C | | Area analysis | Value | | D4Max | 50.6°C | | L2Max | 54.1°C | | RcsMax | 51.1°C | | Q1Max | 43.8°C | # 4 Startup Waveforms The output voltages at startup are shown in the images below. #### 4.1 85V_{AC}/60Hz: 18V/0.3A. #### 4.2 85V_{AC}/60Hz: no load. ## 4.3 265V_{AC}/60Hz: 18V/0.3A. ### 4.4 265V_{AC}/60Hz: no load. ### 5 Turn off The output voltages at turn off transient are shown in the images below. ## 5.1 85V_{AC}/60Hz: 18V/60ohm load. ## 5.2 265V_{AC}/60Hz: 18V/60ohm load. # 6 Output Ripple Voltages The output ripple voltages are shown in the plots below: #### 6.1 120V_{AC}/60Hz: 18V/0.3A. #### 6.2 120V_{AC}/60Hz: no load. ## 6.3 $230V_{AC}/60Hz$: 18V/0.3A. ### 6.4 230V_{AC}/60Hz: no load. # 7 Load Transient The image below shows $12V_{out}$ voltage response to a **0.1A** to **0.3A** load transient at $120V_{AC}/60Hz$ input. # 8 Switching Waveforms The images below show key switching waveforms of PMP10937RevA. The waveforms are measured with 0.3A load current. ### 8.1 Diode D4 @ 85V_{AC}/60Hz ### 8.2 Diode D4 @ 265V_{AC}/50Hz #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated