

Xilinx application: TPS544C25 for 0.85V 25A max electrical and 22.5A max thermal for outdoor application on 16 layer PCB with max external heat sink at 70 degrees C and max 75 degrees C in PCB itself away from dissipaters: TPS544C25 EVM was modified to meet dynamic response requirements of the application by changing

output capacitors to values as shown in the PMP11328 schematic. See next page for proposed inductor and actual inductor used in testing due to availability. Voltage control loop then adjusted to target 50 kHz bandwidth with the 190 nH inductor proposed or roughly 40 kHz with 240 nH inductor used in test. Tests performed here were the "risk areas" specific to this application. See the EVM User Guide for additional tests with original EVM.

Risk areas: Thermal performance at max ambient and dynamic load response with 8A step load at 10A per usec and 17mV max over / undershoot allowed:

Table of contents:

Regulation, Loss & Efficiency vs. load at room ambient: Tested on modified TPS544C25 EVM for the 25A design: Tabular data on page 2 and graphs on page 3

Thermal images on 6 layer PMP9008 thermal proxy for this design page 4-5

Shows hot spot vs. PCB 2 inches away being 30 degrees C hotter: See bottom of page 4 for extrapolation to 75 degrees C PCB with estimated hot spot then 107 degrees C. PMP9008B set for 500kHz operation is considered a much better "thermal proxy" for this application than the EVM itself as its internal as its 6 internal layers with 2 oz. copper better represent the 16 layer target application board. See page 5 of this report for additional details.

Step load and load dump response: Tested on modified TPS544C25 EVM page 6

Shows overshoot / undershoot each 12mV vs. 17mV target

Bode plot on same modified TPS544C25 EVM

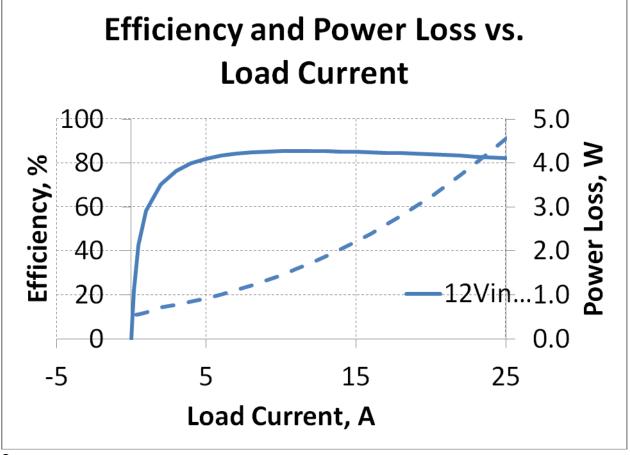
Greater than 60 degrees phase margin at 38kHz crossover. In proposed design with 190 nH main inductor crossover will increase to about 48 kHz. Similar phase margin:

Load dynamics simulation for the 15A design: 17mV target and 13 mV from simulation PSPICE schematic also shown page 8

page 7



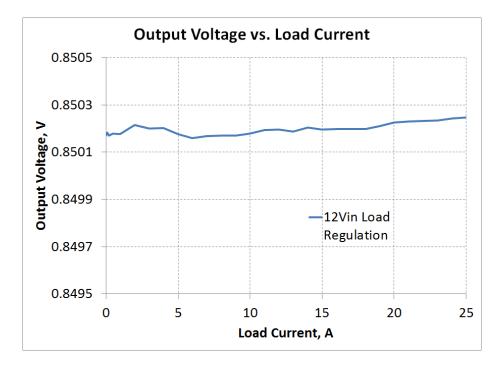
PMP11328 Test Report


Regulation, Loss and efficiency data on EVM with IHLP4040DZ-11 240nH Taken Friday August 14, 2015 by Ryan Manack

| Taken Hudy August 14, 2015 by Nyan Manaek |       |        |         |        |        |       |        |
|-------------------------------------------|-------|--------|---------|--------|--------|-------|--------|
| VIN                                       | IVIN  | ILOAD  | VOUT    | PIN    | POUT   | PLOSS | EFF    |
| 12.002                                    | 2.153 | 25.018 | 0.85025 | 25.840 | 21.271 | 4.569 | 82.318 |
| 12.002                                    | 2.058 | 24.018 | 0.85024 | 24.704 | 20.421 | 4.283 | 82.663 |
| 12.002                                    | 1.964 | 23.015 | 0.85023 | 23.575 | 19.568 | 4.007 | 83.004 |
| 12.002                                    | 1.871 | 22.014 | 0.85023 | 22.459 | 18.717 | 3.742 | 83.339 |
| 12.002                                    | 1.779 | 21.011 | 0.85023 | 21.352 | 17.864 | 3.488 | 83.663 |
| 12.002                                    | 1.688 | 20.011 | 0.85023 | 20.261 | 17.014 | 3.247 | 83.974 |
| 12.002                                    | 1.598 | 19.008 | 0.85021 | 19.177 | 16.161 | 3.016 | 84.271 |
| 12.002                                    | 1.509 | 18.008 | 0.85020 | 18.111 | 15.311 | 2.800 | 84.538 |
| 12.002                                    | 1.421 | 17.005 | 0.85020 | 17.050 | 14.458 | 2.592 | 84.796 |
| 12.002                                    | 1.333 | 16.003 | 0.85020 | 16.003 | 13.606 | 2.397 | 85.023 |
| 12.002                                    | 1.247 | 15.003 | 0.85020 | 14.968 | 12.755 | 2.213 | 85.216 |
| 12.002                                    | 1.162 | 14.000 | 0.85020 | 13.942 | 11.903 | 2.040 | 85.371 |
| 12.002                                    | 1.077 | 12.999 | 0.85019 | 12.930 | 11.052 | 1.878 | 85.475 |
| 12.002                                    | 0.994 | 11.997 | 0.85020 | 11.926 | 10.200 | 1.726 | 85.528 |
| 12.003                                    | 0.911 | 10.996 | 0.85019 | 10.933 | 9.349  | 1.584 | 85.512 |
| 12.003                                    | 0.829 | 9.993  | 0.85018 | 9.947  | 8.496  | 1.451 | 85.410 |
| 12.003                                    | 0.748 | 8.994  | 0.85017 | 8.975  | 7.646  | 1.328 | 85.200 |
| 12.003                                    | 0.667 | 7.989  | 0.85017 | 8.006  | 6.792  | 1.213 | 84.844 |
| 12.003                                    | 0.587 | 6.988  | 0.85017 | 7.048  | 5.941  | 1.108 | 84.287 |
| 12.003                                    | 0.508 | 5.988  | 0.85016 | 6.101  | 5.091  | 1.011 | 83.437 |
| 12.003                                    | 0.430 | 4.987  | 0.85018 | 5.164  | 4.240  | 0.924 | 82.102 |
| 12.003                                    | 0.353 | 3.986  | 0.85020 | 4.233  | 3.389  | 0.844 | 80.056 |
| 12.003                                    | 0.276 | 2.984  | 0.85020 | 3.311  | 2.537  | 0.775 | 76.603 |
| 12.003                                    | 0.200 | 1.984  | 0.85022 | 2.400  | 1.687  | 0.713 | 70.289 |
| 12.003                                    | 0.119 | 0.982  | 0.85018 | 1.429  | 0.835  | 0.594 | 58.431 |
| 12.003                                    | 0.080 | 0.481  | 0.85018 | 0.962  | 0.409  | 0.553 | 42.529 |
| 12.003                                    | 0.058 | 0.179  | 0.85017 | 0.692  | 0.152  | 0.540 | 21.997 |
| 12.003                                    | 0.050 | 0.080  | 0.85018 | 0.606  | 0.068  | 0.538 | 11.255 |
| 12.003                                    | 0.045 | 0.000  | 0.85017 | 0.538  | 0.000  | 0.538 | N/A    |
|                                           |       |        |         |        |        |       |        |

Going forward IHLP4040DZ-01 190nH will be used, losses similar but DZ-01 more reliable in high temperature operation due to lower hot spot temperatures for similar losses: Losses at 22.5A or 90% max electrical are 3.875W based upon average of 22A & 23A losses.




Loss / Efficiency chart:



Q

Load regulation: 80uV total variation with load







PMP9008B 500kHz TPS544C20 Top side:

Thermal proxy for 0.85Vout TPS544C25 with higher Vout of 1.0V from TPS544C20 offsetting slightly lower Rdson of high side FET. Low side FETs have same Rdson and switching frequency same at 500kHz setting. (TPS544C20 is DCAP mode vs. TPS544C25 synchronizable voltage mode control) No fan and stabilized > 20 minutes run 12.106Vin 2.191ain 1.0043Vout 22.50A or 3.93W loss

Compare with 3.87W at 22.5A on TPS544C25EVM

Top side TPS544C20 at 77 deg. C

PCB at far edge ~ 2 inches away at 47 deg. C or 30 deg. Cooler



Q

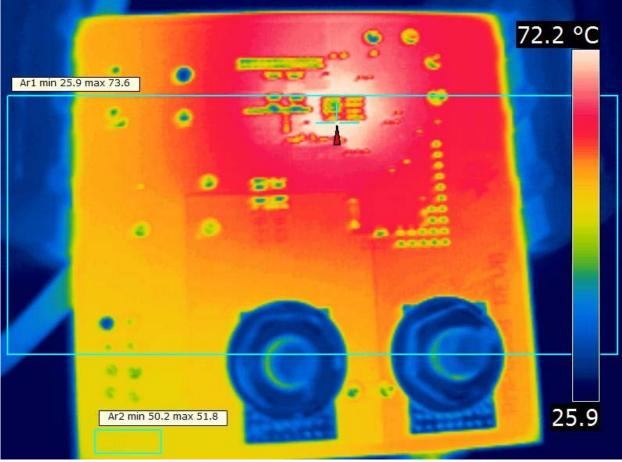
If PCB can be held to 75 degrees C or 28 degrees C hotter:

PCB Copper losses will increase from 500mWmW (estimated) to 555mW or by 55mW;

Main inductor losses will increase from 943mW to 1026mW or 83mW based upon Vishay loss calculator; Conduction losses in TPS544C25 will increase from 1.300W to 1.362W per figures 5 & 6 on page 12 of TPS544C25 datasheet

Other losses of about 1.2W, mostly switching should not change much

Overall increase will be about 200mW or less than 5%.

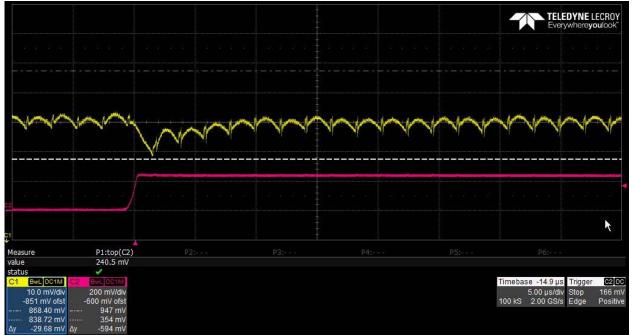

Hence, the temperature rise of 30 degrees C seen above should not be more than 32 degrees C. Hence, for a PCB at 75 degrees C about 2 inches from TPS544C25 I am estimating a max of 107 degrees C reading with actual junction temperature quite close.

Josh Mandelcorn / Ryan Manack Page 5 of 9

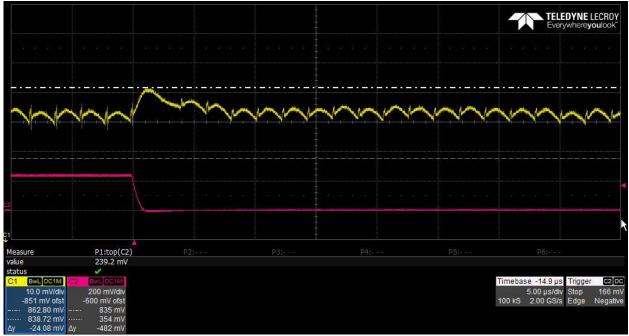
August 14-18, 2015



PMP9008B 500kHz TPS544C20 Bottom side 12.106Vin 2.191ain 1.0043Vout 22.50A or 3.93W loss Compare with 3.87W at 22.5A on TPS544C25EVM Bottom side: hot spot at U1 at 74 deg. C Top side TPS544C20 at 77 deg. C PCB at far edge ~ 2 inches away at 51 deg. C or 26 degrees cooler than TPS544C20




Q




Dynamic response:

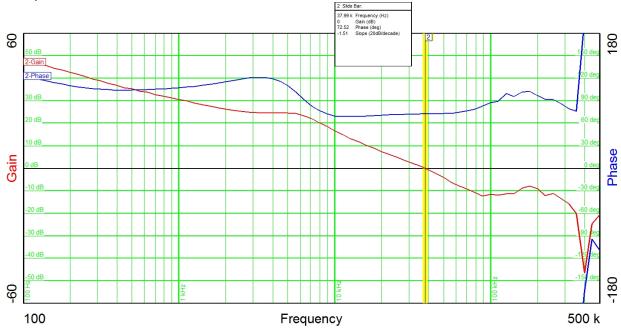
Step load response: zero to 8A in 800nsec: 12mV peak undershoot



Channel 1 yellow is Vout at output caps and show peak undershoot of 12mV from DC value of Vout Channel 2 is dynamic load current measured as voltage across 30mohms rising from zero mV to 240 mV in 0.8 usec or 0A to 8A at 10A per usec.



Load dump reponse:


Channel 1 yellow is Vout at output caps and show peak overershoot of 12mV from DC value of Vout

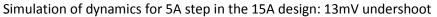
Josh Mandelcorn / Ryan Manack Page 7 of 9

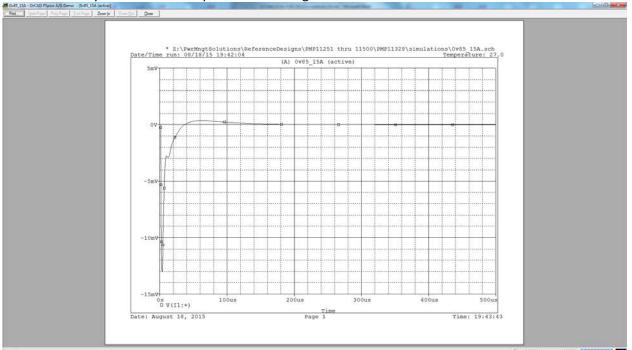


Channel 2 is dynamic load current measured as voltage across 30mohms falling from 240 mV to 0 mV in 0.8 usec or 8A to 0A at -10A per usec.

Total load step and dump band within +/-12mV vs. target of less than +/-17mV. Bode plot: taken at 12Vin and 12.5A off 0.85Vout:

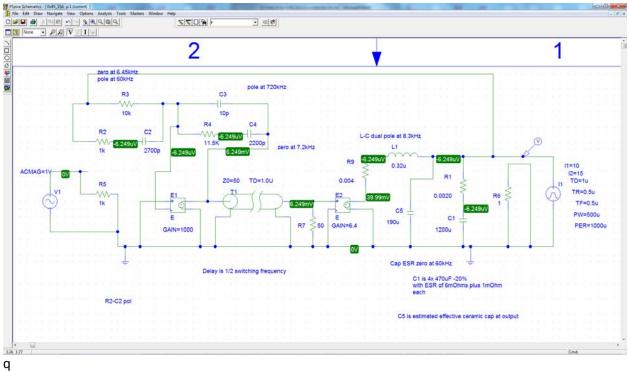



#### Q


Notes: tested with 240 nH inductor vs. 190 nH inductor proposed in design:

Reducing inductor value will increase switching frequency ripple by 25% or by 1mV p-p from the 4-5mV now seen.

Bode plot will see increase of crossover from 38 kHz to 48 kHz with similar > 60 degrees phase margin. Dynamic response should actually be improved to at least offset the added switching frequency ripple.








### Q





Josh Mandelcorn / Ryan Manack

### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated