

TIDA00322 TEST DATA

I. <u>General Description</u>

This document describes the setup and results for testing the TIDA00322EVM with an 88cm tank. The TIDA00322EVM contains a TDC1000 ultrasonic analog-front-end, C2000 MCU to process data, and a 5V-to-30V boost converter for the transmit (Tx) pulses. In test setup the EVM interfaces with a 1MHz transducer to measure the surface level of the water inside the tank. The application for this TI Design includes automotive fluid level, identification, and concentration.

II. <u>Equipment</u>

List of equipment

- TIDA00322 evaluation board with USB-to-TTL serial cable
- Test cylinder with 1MHz transducer mounted on the bottom. This test uses STEMiNC's transducer (p/n: SMD10T2R111)
- RTD1000 or another accurate temperature sensor
- Tektronix Voltage Probe
- 20V DC Power Supply

A. Test cylinder:

34.64" (88 cm) tank with water and 1MHz transducer mounted at the bottom of tank

Cylinder specifications					
Diameter	6.9 mm				
Base Height	4 mm				
Cylinder Height	880 mm				
Cylinder Material	Acrylic (Perspex)				

Table 1- Cylinder Specification

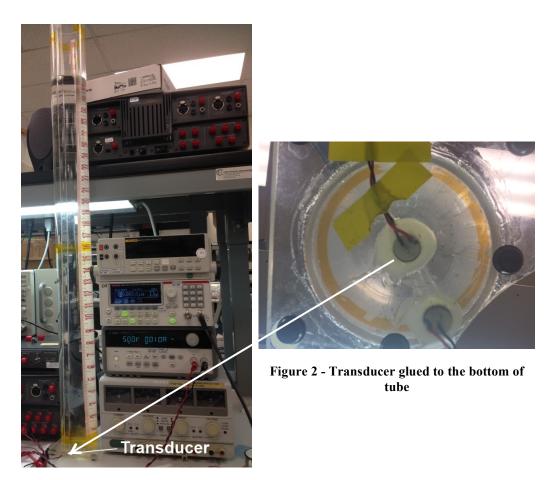


Figure 1 - Cylinder tube

B. Tektronix Voltage Probe

Tektronix P6243 1 GHz, TEKPROBE BNC Single-Ended Low Voltage Probe was used to corroborate the STOP pulses with the echo signal at the COMPIN node at C32. An active FET prove is needed to avoid offsetting the signal at the COMPIN node

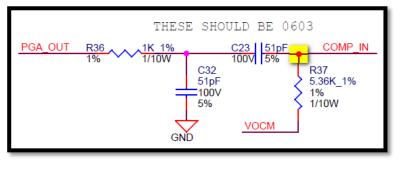
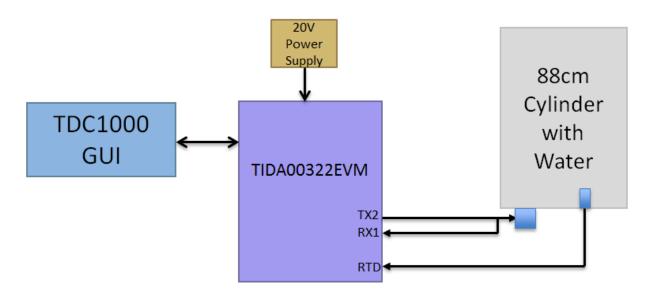
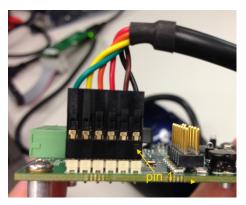


Figure 3 - Schematic COMPIN section

Figure 4 - FET probe

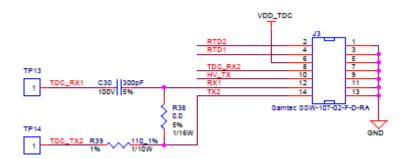
III. Block Diagram of Test Setup




Figure 3 – Test Setup Block Diagram

IV. <u>Test Setup</u>

A. **Getting Started with Software** – refer to the "*TIDA00322EVM* – *Quick Start Guide.pdf*" to install the TDC1000 GUI for this TIDA00322EVM.


B. Getting Started with Hardware

1. Connect a USB-to-TTL serial cable to the TIDA00322EVM's J5 connector (for instructions on how to install the driver for this cable, see *TIDA00322EVM – Quick Start Guide.pdf*)

Figure 4 - FTDI connector

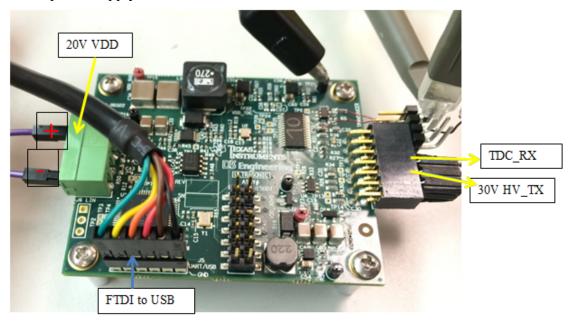

2. Connect the transducer TX/RX wire to J3.P8, and the sensor's ground to J3.P10

Figure 6 – Transducer Connector

C. TIDA00322EVM Power

1. Connect 20V to pin 1 of J4 (J4.P1), and the supply's ground to J4.P4. Limit the power supply current to 0.10mA

Figure 5 - EVM connections

D. Opening the GUI

- 1. Open the TDC1000_C2000EVM GUI software. By default it can be found by clicking on Start >> All Programs >> Texas Instruments >> TDC1000_C2000.
- 2. In order to enable the high voltage TX on channel 1, follow the steps below: a. In the "Setup" tab, select TDC 1000 –HV Driver EN1

SETUP	TDC1000	TOF_ONE_SHOT	GRAPH	TANK LEVEL	FLUID ID	TABLE	TEMPERATURE	DEBUG	
		SERIAL PORT							
		L COM3	_	•	TRIGG 500m	ER UPDATI		•	
				_					
	ſ	CONNECT	DISCONN		R	_			
		CONNECT	DISCONN	ECT	R				
		TDC 1000-HV Driver E	N1		C2000	_SPI_CLK	_CONFIG		
		EN1 Period (us)	_		Clk Pł	nase Low, I	Polarity Low	-	
		30		- 11	C2000	_SPI_CLK	DIVIDER (>=1)		
		TDC1000-HV Driver E	N2		×000	0		-	
		EN2 Period (us)			R			W	
		30							

Figure 6 - EVM GUI SETUP tap

- b. Click on the "TDC1000" tab
- c. In the "CH SEL" register, select "CH1 (TX1)"

1	TDC 1000	TOF_ONE_SHOT	GRAPH	TANK LEVEL	FLUID ID	TABLE	TEMPERATURE	DEBUG					1.2.0.5
	TX		R	CONFIG1 (NUM_AVG 1 Cycle NUM_RX 1 STOP	[• • R	CONFIG VCOM_SI Internal EXT_CHS Disable	a. [▼] 8.	MEAS_MODE TOF Measurement OH_SBL CH1 (TX1)	•	DAMPENING Disabled • TOF_MEAS_MODE Mode 0 •	CH_SWP Disabled R	
	TEM RD ⁴ BLAI	PIG3 (0x03) P_MODE _RTD1_RTD2 • xCING bled •	TEMP_RT Pt1000 ECHO_Q 10mV	D_SEL • JAL_THLD •	TEMP_Q. Divide b		CONFIGE RECEIVE Single Ex TX_PH_S 31	MODE	TRIG_EDGE_POL Rsing R		CONTINUOUS TRIGGER		
	PGA 21d LNA	101	PGA_CTR Active TIMING_I 1	٠	LNA_CTR Active R	u. [•	TOF-0 (0 TIMUNG_ d 30 R				ERROR FLAGS (0x07) ERR_SIG_WEAK 0 ERR_SIG_HIGH 0	ERR_NO_SIG 0 R	-
	FOR Disc ECH	COUT (0x08) CE_SHORT_TOF bled • O_TIMEOUT bled •	lus	OF_BLANK_PEF	LIOD R		GLOOK_F BMHz	ATE (0×09) REQ :0_PERIOD	R		LOAD CONFIG SAVE CONFIG		

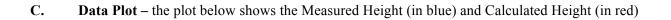
Figure 7 - EVM GUI TDC1000 tap

- **3.** Slowly pour the tap water into the tube. On this test, we used random water levels (millimeters): 39, 70, 98, 133, 164, 212.5, 271, 402, 457.5, 550, 630, 760, 781 and 876
- 4. Before increasing the water levels, go to the "Graph" tab on the TDC1000-C2000EVM GUI and click "Start Graph". The time of flight (TOF) will be displayed in the window. Record the value that appears on the TDC AVG VALUE window.
- 5. Measure the level of the water in the tank using the measuring tape on the side of the tank, and record this value.
- 6. Use the equation on the next section to calculate the level using the TOF from the GUI

V. <u>Test Results</u>

A. Test conditions

Test conditions	Units
Average water temperature	23 C ⁰
Substance in tube	Tap Water
Speed of sound in tap water at 23 C ⁰	1,491.50 m/s
Transducer excitation pulse	30V
EVM C2000 D3 VDD	20V


Table 2 – Test Conditions

Note: The average temperature should be taken with a RTD1000 or another accurate temperature sensor. Speed of sound was obtain from *Journal of Rese arch of the National Bureau of Standards* http://nvlpubs.nist.gov/nistpubs/jres/59/jresv59n4p249_A1b.pdf

- **B.** Measurements and test results- use the equations below to calculate for Calculated Height and Percentage Error:
 - 1. Calculated Height using the GUI TOF = (Time-of-Flight from GUI)*1491.50 / 2
 - 2. Percentage error (%) = |Measured ht. calculated height| / (Measured height) * 100

	Measured height with tape ruler [mm]	Time Of Flight From GUI [us]	Calculated Height from GUI's TOF	Measured height - experimental height [mm]	Percent Error [%]
n	39	51.42	[mm] 38.35	0.65	1.7%
1					
2	70	93.05	69.39	0.61	0.9%
3	98	129.57	96.63	1.37	1.4%
4	133	175.85	131.14	1.86	1.4%
5	164	220.77	164.64	0.64	0.4%
6	212.5	285.57	212.97	0.47	0.2%
7	271	365.10	272.27	1.27	0.5%
8	402	539.41	402.27	0.27	0.1%
9	457.5	613.59	457.58	0.08	0.0%
10	550	738.05	550.40	0.40	0.1%
11	630	845.89	630.82	0.82	0.1%
12	760	1018.77	759.75	0.25	0.0%
13	781	1047.61	781.26	0.26	0.0%
14	876	1174.43	875.83	0.17	0.0%
		AVERAGE		0.38875038 [mm]	0.48%

Table 3- Measurement Results

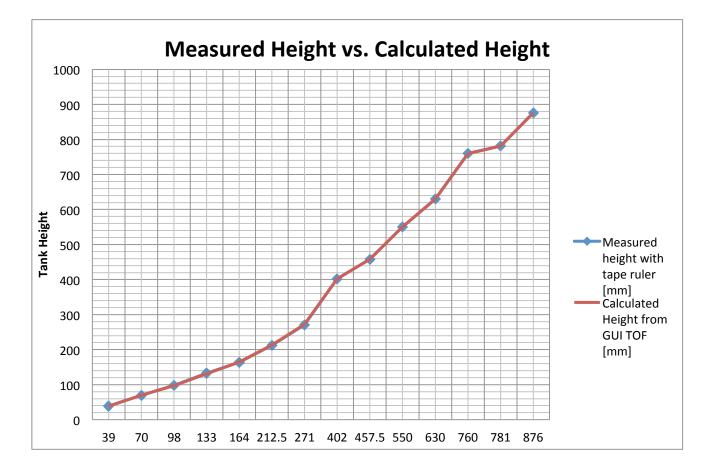


Figure 8 – Measured Height vs. Calculated Height

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated