

PRU CAPE Hardware

Verified Design

Literature Number: TIDU426 July 2014

Contents

1	Introdu	ction4
	1.1	Description
	1.2	EVM System View
2	System	Description5
	2.1	System Board Diagram
	2.2	Signals Used6
3	PRU Ca	ape Functional Block Descriptions
	3.1	Audio
	3.2	Electrically Erasable Programmable Read-Only Memory (EEPROM)
	3.3	Enhanced Capture (eCAP)
	3.4	Light-Emitting Diodes (LEDs)
	3.5	Switches
	3.6	Temperature Sensor
	3.7	Test Space
	3.8	Universal Asynchronous Receiver/Transmitter (UART)

www.ti.com

	List of Figures	
1	PRU Cape Angle	4
2	PRU Cape Board Layout	5
3	PRU Cape Functional Block Diagram	5
	List of Tables	
1	Signals Used	6

PRU CAPE Hardware

Lawrence Ronk

1 Introduction

This document describes the hardware architecture of the PRU Cape that is compatible with the Beagle Bone Black development platform.

1.1 Description

The PRU Cape is a test, development, and evaluation module system that enables developers to write software and develop hardware around the PRU subsystem. Examples of basic I/O such as push buttons and LEDs as well as more complicated examples such as audio and 1-Wire for temperature sensing are available on this cape to showcase what the PRU can accomplish in terms of inputs and outputs.

The following sections give more details regarding the PRU Cape.

1.2 **EVM System View**

The PRU Cape is shown in Figure 1.

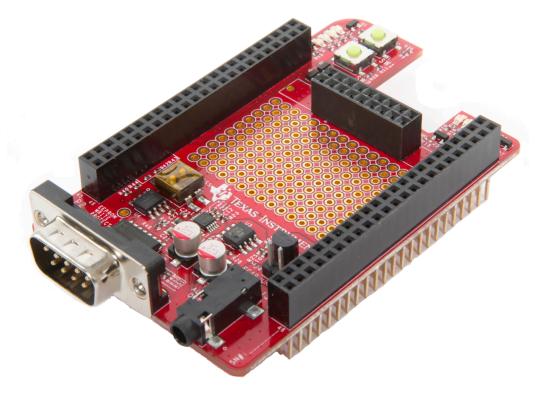


Figure 1. PRU Cape Angle

All trademarks are the property of their respective owners.

www.ti.com System Description

2 System Description

2.1 System Board Diagram

The system block diagram of the PRU Cape are shown in Figure 2 and Figure 3.

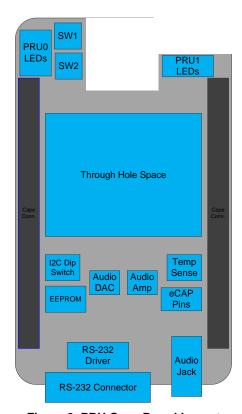


Figure 2. PRU Cape Board Layout

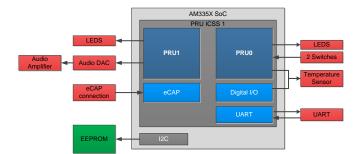


Figure 3. PRU Cape Functional Block Diagram

System Description www.ti.com

2.2 Signals Used

Table 1. Signals Used

CAPE NAME	BBB HEADER NUMBER	BBB MODE 0 NAME	CAPE USE
PR1_PRU0_GPO0	P9-31	MCASP0_ACLKX	PRU0 Blue LED
PR1_PRU0_GPO1	P9-29	MCASP0_FSX	PRU0 Orange LED
PR1_PRU0_GPO2	P9-30	MCASP0_AXR0	PRU0 Green Led
PR1_PRU0_GPO3	P9-28	MCASP0_AHCLKR	PRU0 Red LED
PR1_PRU1_GPO3	P8-44	LCD_DATA3	PRU1 Blue LED
PR1_PRU1_GPO4	P8-41	LCD_DATA4	PRU1 Green LED
PR1_PRU1_GPO5	P8-42	LCD_DATA5	PRU1 Red LED
PR1_PRU0_GPI7	P9-27	GPIO3_19	SW1
PR1_PRU0_GPI5	P9-25	GPIO3_21	SW2
PR1_PRU1_GPO0	P8-45	LCD_DATA0	Audio Data
PR1_PRU1_GPO1	P8-46	LCD_DATA1	Audio Clock
PR1_PRU1_GPO2	P8-43	LCD_DATA2	Audio Sync
PR1_UART0_TXD	P9-24	UART1_TXD	UART TxD
PR1_UART0_RXD	P9-26	UART1_RXD	UART RxD
PR1_UART0_RTS	P9-21	UART2_TXD	UART RTS
PR1_UART0_CTS	P9-22	UART2_RXD	UART CTS
PR1_PRU_EDIO_DATA_OUT6	P8-39	LCD_DATA6	LCD RS
PR1_PRU_EDIO_DATA_OUT4	P8-28	LCD_PCLK	LCD E
PR1_PRU_EDIO_DATA_OUT0	P9-18	I2C1_SDA	LCD Data4
PR1_PRU_EDIO_DATA_OUT1	P9-17	I2C1_SCL	LCD Data5
PR1_PRU_EDIO_DATA_OUT2	P8-27	LCD_VSYNC	LCD Data6
PR1_PRU_EDIO_DATA_OUT3	P8-29	LCD_HSYNC	LCD Data7
PR1_PRU_EDIO_DATA_OUT5	P8-30	LCD_DE	HDQ input
PR1_PRU0_GPI14	P8-16	GPIO1_14	HDQ output
I2C2_SDA	P9-20	I2C2_SDA	I2C SCL
I2C2_SCL	P9-19	I2C2_SCL	I2C SDA
PR1_ECAP0_IN_PWM0_OUT	P9-42	ECAP0_IN_PWM0_OUT	ECAP0_IN_PWM0_OUT
PR1_PRU0_GPI15	P8-15	GPMC_AD15	PRU0_GPI_15
VDD_3V3C	P9-3, P9-4	VDD_3V3C	VDD_3V3C
DGND	P8-1, P8-2, P9-1,P9-2	DGND	DGND
DGND	P9-43, P9-44, P9-45, P9-46	DGND	DGND

3 PRU Cape Functional Block Descriptions

This section describes major functional blocks of the PRU Cape.

3.1 Audio

The audio portion of the PRU Cape is composed of a dual 8-bit DAC (DAC082S085) and a dual 105-mW amplifier (LM4808). The output is then sent to a 3.5-mm audio jack with a max pk-pk of .89 V, following the consumer standard.

CAPE NAME	BBB HEADER NUMBER	BBB MODE 0 NAME	CAPE USE
PR1_PRU1_GPO0	P8-45	LCD_DATA0	Audio Data
PR1_PRU1_GPO1	P8-46	LCD_DATA1	Audio Clock
PR1_PRU1_GPO2	P8-43	LCD_DATA2	Audio Sync

3.2 Electrically Erasable Programmable Read-Only Memory (EEPROM)

The EEPROM on the PRU cape is the CAT24C256WI-G EEPROM 256-Kb I2C SOIC8, and has an attached DIP switch to manipulate the I2C address. The first 78 bytes hold a file that the Beagle Bone Black will read to identify the cape. The rest of the EEPROM is available for use.

CAPE NAME	BBB HEADER NUMBER	BBB MODE 0 NAME	CAPE USE
I2C2_SDA	P9-20	I2C2_SDA	I2C SCL
I2C2_SCL	P9-19	I2C2_SCL	I2C SDA

3.3 Enhanced Capture (eCAP)

These pins are brought out on the board that connect to the eCAP0 PWM0 IN to allow use of the eCAP IP.

CAPE NAME	BBB HEADER NUMBER	BBB MODE 0 NAME	CAPE USE
PR1_ECAP0_IN_PWM0_OUT	P9-42	ECAP0_IN_PWM0_OUT	ECAP0_IN_PWM0_OUT
PR1_PRU0_GPI15	P8-15	GPMC_AD15	PRU0_GPI_15

3.4 Light-Emitting Diodes (LEDs)

The PRU Cape has seven surface mounted LEDs including red, orange, blue, and green colors. Four LEDs connect to the PRU0 output and three LEDs connect to the PRU1 output.

CAPE NAME	BBB HEADER NUMBER	BBB MODE 0 NAME	PRU CAPE USE
PR1_PRU0_GPO0	P9-31	MCASP0_ACLKX	PRU0 Blue LED
PR1_PRU0_GPO1	P9-29	MCASP0_FSX	PRU0 Orange LED
PR1_PRU0_GPO2	P9-30	MCASP0_AXR0	PRU0 Green Led
PR1_PRU0_GPO3	P9-28	MCASP0_AHCLKR	PRU0 Red LED
PR1_PRU1_GPO3	P8-44	LCD_DATA3	PRU1 Blue LED
PR1_PRU1_GPO4	P8-41	LCD_DATA4	PRU1 Green LED
PR1_PRU1_GPO5	P8-42	LCD_DATA5	PRU1 Red LED

3.5 Switches

The PRU Cape has two pushbutton switches connected to PRU0 inputs.

CAPE NAME	BBB HEADER NUMBER	BBB MODE 0 NAME	PRU CAPE USE
PR1_PRU0_GPI7	P9-27	GPIO3_19	SW1
PR1_PRU0_GPI5	P9-25	GPIO3_21	SW2

3.6 Temperature Sensor

The temperature sensor is a MAX31820 ambient temperature sensor with a 1-Wire interface. Two pins are tied together from the PRU to create input and output on a single wire.

CAPE NAME	BBB HEADER NUMBER	BBB MODE 0 NAME	CAPE USE
PR1_PRU_EDIO_DATA_OUT5	P8-30	LCD_DE	HDQ input
PR1_PRU0_GPI14	P8-16	GPIO1_14	HDQ output

3.7 Test Space

The test space is a set of 150 through holes (15x10). The through holes have no connection in between and are meant for attaching a through hole component, whether it be passive or an IC, to test with the PRU or any signal that can be accessed through the cape headers.

3.8 Universal Asynchronous Receiver/Transmitter (UART)

The PRU Cape has one RS-232 connector (DB9 male). The MAX3232ECD is the line driver and receiver.

CAPE NAME	BBB HEADER NUMBER	BBB MODE 0 NAME	CAPE USE
PR1_UART0_TXD	P9 24	UART1_TXD	UART TxD
PR1_UART0_RXD	P9 26	UART1_RXD	UART RxD
PR1_UART0_RTS	P9 21	UART2_TXD	UART RTS
PR1_UART0_CTS	P9 22	UART2_RXD	UART CTS

IMPORTANT NOTICE FOR TI REFERENCE DESIGNS

Texas Instruments Incorporated ("TI") reference designs are solely intended to assist designers ("Buyers") who are developing systems that incorporate TI semiconductor products (also referred to herein as "components"). Buyer understands and agrees that Buyer remains responsible for using its independent analysis, evaluation and judgment in designing Buyer's systems and products.

TI reference designs have been created using standard laboratory conditions and engineering practices. TI has not conducted any testing other than that specifically described in the published documentation for a particular reference design. TI may make corrections, enhancements, improvements and other changes to its reference designs.

Buyers are authorized to use TI reference designs with the TI component(s) identified in each particular reference design and to modify the reference design in the development of their end products. HOWEVER, NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY THIRD PARTY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT, IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI REFERENCE DESIGNS ARE PROVIDED "AS IS". TI MAKES NO WARRANTIES OR REPRESENTATIONS WITH REGARD TO THE REFERENCE DESIGNS OR USE OF THE REFERENCE DESIGNS, EXPRESS, IMPLIED OR STATUTORY, INCLUDING ACCURACY OR COMPLETENESS. TI DISCLAIMS ANY WARRANTY OF TITLE AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT, QUIET POSSESSION, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS WITH REGARD TO TI REFERENCE DESIGNS OR USE THEREOF. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY BUYERS AGAINST ANY THIRD PARTY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON A COMBINATION OF COMPONENTS PROVIDED IN A TI REFERENCE DESIGN. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, ARISING IN ANY WAY OUT OF TI REFERENCE DESIGNS OR BUYER'S USE OF TI REFERENCE DESIGNS.

TI reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques for TI components are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

Reproduction of significant portions of TI information in TI data books, data sheets or reference designs is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous failures, monitor failures and their consequences, lessen the likelihood of dangerous failures and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in Buyer's safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed an agreement specifically governing such use.

Only those TI components that TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components that have *not* been so designated is solely at Buyer's risk, and Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.