Test Report: PMP22075

High Efficiency 12-V/5-A Active-Clamp Forward With Wide Input Range 9-V to 60-V Reference Design

TEXAS INSTRUMENTS

Description

This forward converter was designed for an isolated 60 W intermediate bus voltage rail 12 V . It features LM5026100 V active clamp current mode PWM controller. A self-driven secondary rectifier with UCC27511 4A/8A driver was used for high efficiency. It is good for isolated supplies where high efficiency and hiccup protection are needed.

1 Test Prerequisites

1.1 Voltage and Current Requirements

Table 1. Voltage and Current Requirements

PARAMETER	SPECIFICATIONS
Input voltage, Vin	$9 \mathrm{~V} \sim 60 \mathrm{~V}$
Output Voltage, Vo	$12 \mathrm{~V} / 5 \mathrm{~A}$

1.2 Required Equipment

- Power Supply, 0~60V, 0~10A
- Load: 12V/5A

Instruments

2 Startup and shutdown

Turn-on, 12Vin, 12V/5A

Turn-on, 48Vin, 12V/5A

3 Startup with Enable

Turn-on, 24Vin

Turn-off, 12Vin, 12V/5A

4 Input Ripple and Primary Switching Node

12 Vin, 12 Vout, 0A Load, 254 mV (2.1%) ($1 \times 68 \mathrm{uF}, 100 \mathrm{~V}$, 320 mohm +1x10uF, $80 \mathrm{~V}, 2.4 \mathrm{ohm}+3 x 2.2 \mathrm{uF}, 100 \mathrm{~V}, 1210$)

$24 \mathrm{Vin}, 12 \mathrm{Vout}, 0 \mathrm{~A}$ Load, 301 mV (1.25\%) (1x68uF, 100V, 320mohm +1x10uF, $80 \mathrm{~V}, 2.4 \mathrm{ohm}+3 \times 2.2 \mathrm{uF}, 100 \mathrm{~V}, 1210$)

$36 \mathrm{Vin}, 12 \mathrm{Vout}, 0 \mathrm{~A}$ Load, $310 \mathrm{mV}(0.86 \%)(1 \times 68 \mathrm{uF}, 100 \mathrm{~V}, 320 \mathrm{mohm}$ +1x10uF, 80V, $2.4 \mathrm{ohm}+3 \times 2.2 \mathrm{uF}, 100 \mathrm{~V}, 1210$)

48Vin, 12Vout, 0A Load, 376mV (0.78\%) (1x68uF, 100V, 320mohm $+1 \times 10 \mathrm{uF}, 80 \mathrm{~V}, 2.4 \mathrm{ohm}+3 \mathrm{x} 2.2 \mathrm{uF}, 100 \mathrm{~V}, 1210$)

12Vin, 12Vout, 5A Load, 1.2V (10\%) (1x68uF, 100V, 320mohm +1x10uF, 80V, 2.4ohm+ 3x 2.2uF,100V,1210)

24Vin, 12Vout, 5A Load, 1.25V (5.2\%) (1x68uF, 100V, 320mohm +1x10uF, 80V, 2.4ohm+3x 2.2uF,100V,1210)

36Vin, 12Vout, 5A Load, 1.305V (3.6\%)(1x68uF, 100V, 320mohm +1x10uF, 80V, 2.4ohm+3x 2.2uF,100V,1210)

48Vin, 12Vout, 5A Load, 1.274V (2.65\%) (1x68uF, 100V, 320mohm +1x10uF, 80V, 2.4ohm+3x 2.2uF,100V,1210)

5 Output Ripple

$12 \mathrm{Vin}, 12 \mathrm{Vout}, 0 \mathrm{~A}$ Load, 100 mV (+/-0.5\%) (1x100uF, 25 V , $260 \mathrm{mohm}+2 \times 22 \mathrm{uF}, 25 \mathrm{~V}, 1210)$

$24 \mathrm{Vin}, 12$ Vout, OA Load, 180 mV (+/-0.75\%) (1x100uF, 25V,
$260 \mathrm{mohm}+2 \times 22 \mathrm{uF}, 25 \mathrm{~V}, 1210)$

36Vin, 12 Vout, 0A Load, 240 mV (+/-1\%) (1x100uF, 25V, 260mohm+ 2x 22uF, 25V, 1210)

48Vin, 12Vout, 0A Load, 240 mV (+/-1\%) (1x100uF, 25V, $260 \mathrm{mohm}+2 \mathrm{x} 22 \mathrm{uF}, 25 \mathrm{~V}, 1210$)
 $260 \mathrm{mohm}+2 \mathrm{x} 22 \mathrm{uF}, 25 \mathrm{~V}, 1210$)

$24 \mathrm{Vin}, 12$ Vout, 5 A Load, 180 mV (+/-0.75\%) (1x100uF, 25V, $260 \mathrm{mohm}+2 \mathrm{x} 22 \mathrm{uF}, 25 \mathrm{~V}, 1210)$

$36 \mathrm{Vin}, 12 \mathrm{Vout}, 5 \mathrm{~A}$ Load, $240 \mathrm{mV}(+/-1 \%)(1 \times 100 \mathrm{uF}, 25 \mathrm{~V}$, $260 \mathrm{mohm}+$

48Vin, 12Vout, 5A Load, 240 mV (+/-1\%) (1x100uF, 25V, $260 \mathrm{mohm}+2 \mathrm{x} 22 \mathrm{uF}, 25 \mathrm{~V}, 1210$)

6 Secondary Switching Node

7 Transient

8 Over-current protection

12 Vin , Over-load applied, OCP=6.3A.

9 Short-circuit protection

$48 \mathrm{Vin}, 12 \mathrm{Vout}$, Short circuit applied, $\mathrm{SCP}=9.2 \mathrm{~A}$.

10 Short-circuit thermal

48 Vin , 0 Vout, 9.2 A short circuit average current, $\mathrm{T}_{\text {FET(SEC) }}=97.2 \mathrm{C}$

TEXAS
INSTRUMENTS

11 Efficiency

Test conditions: 12Vout, 160 kHz .

Vin	Vout	lin	lout	eff	ploss
9.011	10.579	0.193	0.016	9.8%	1.57
9.009	10.460	0.746	0.497	77.3%	1.52
9.007	10.365	1.317	0.993	86.8%	1.57
9.005	10.280	1.892	1.488	89.8%	1.74
9.003	10.193	2.469	1.985	91.0%	2.00
9.001	10.109	3.047	2.481	91.5%	2.35
8.999	10.037	3.630	2.979	91.5%	2.76
8.997	9.952	4.209	3.475	91.3%	3.29
8.996	9.853	4.780	3.973	91.0%	3.86
8.994	9.762	5.353	4.471	90.7%	4.50
8.992	9.680	5.925	4.968	90.2%	5.20
12.001	11.842	0.160	0.016	9.9%	1.73
11.999	11.844	0.637	0.497	77.1%	1.75
11.998	11.846	1.132	0.993	86.7%	1.81
11.996	11.846	1.634	1.489	89.9%	1.97
11.994	11.846	2.148	1.986	91.3%	2.24
11.992	11.847	2.667	2.482	91.9%	2.58
11.991	11.847	3.194	2.979	92.2%	3.00
11.989	11.847	3.725	3.475	92.2%	3.49

11.987	11.847	4.264	3.974	92.1%	4.04
11.985	11.847	4.814	4.472	91.8%	4.71
11.984	11.847	5.367	4.968	91.5%	5.45
24.003	11.852	0.136	0.016	5.9%	3.08
24.003	11.852	0.375	0.498	65.6%	3.10
24.002	11.851	0.621	0.994	79.0%	3.12
24.001	11.850	0.867	1.489	84.8%	3.16
24.000	11.850	1.119	1.986	87.7%	3.31
23.999	11.849	1.374	2.482	89.2%	3.56
23.998	11.849	1.634	2.980	90.0%	3.91
23.997	11.848	1.895	3.476	90.6%	4.29
23.996	11.848	2.160	3.974	90.8%	4.76
23.996	11.847	2.428	4.472	90.9%	5.29
23.995	11.846	2.699	4.968	90.9%	5.90
36.028	11.851	0.068	0.015	7.4%	2.28
36.028	11.851	0.232	0.497	70.5%	2.46
36.027	11.851	0.403	0.993	81.1%	2.75
36.027	11.851	0.576	1.489	85.1%	3.10
36.026	11.851	0.751	1.986	87.0%	3.50
36.026	11.851	0.924	2.482	88.3%	3.89
36.025	11.851	1.100	2.980	89.1%	4.31
36.024	11.850	1.276	3.476	89.6%	4.78
36.024	11.849	1.455	3.974	89.9%	5.31
36.023	11.848	1.634	4.472	90.0%	5.89
36.023	11.848	1.816	4.969	90.0%	6.53
48.027	11.852	0.060	0.016	6.6%	2.69
48.026	11.852	0.181	0.498	68.0%	2.78
48.026	11.852	0.309	0.994	79.3%	3.07
48.025	11.851	0.443	1.489	82.9%	3.65
48.025	11.850	0.582	1.987	84.3%	4.39
48.024	11.850	0.714	2.483	85.8%	4.86
48.024	11.849	0.847	2.980	86.8%	5.35
48.023	11.849	0.980	3.477	87.5%	5.89
48.023	11.847	1.115	3.974	87.9%	6.46
48.023	11.847	1.251	4.472	88.2%	7.08
48.022	11.846	1.386	4.969	88.4%	7.72
60.030	11.850	0.056	0.015	5.5%	3.15
60.029	11.851	0.152	0.498	64.5%	3.25
60.029	11.850	0.255	0.994	77.0%	3.52
60.029	11.850	0.364	1.489	80.7%	4.22
60.029	11.849	0.480	1.987	81.8%	5.25

Instruments
www.ti.com

60.028	11.848	0.588	2.483	83.3%	5.89
60.028	11.848	0.696	2.980	84.6%	6.45
60.027	11.847	0.804	3.477	85.3%	7.07
60.027	11.847	0.914	3.974	85.9%	7.75
60.026	11.845	1.022	4.473	86.4%	8.37
60.026	11.844	1.132	4.969	86.6%	9.08

12 Thermal

$48 \mathrm{Vin}, 12 \mathrm{~V} 5 \mathrm{~A}, \mathrm{~T}_{\mathrm{FET}(\mathrm{SEC})}=60.8 \mathrm{C}$ Front view

Test conditions: $48 \mathrm{Vin}, 12 \mathrm{~V} / 5$ Aout, 160 kHz , Room Temperature, 200LFM. $\mathrm{T}_{\text {FET(SEC })}=60.8 \mathrm{C}, \mathrm{T}_{\mathrm{XFMR}}=40 \mathrm{C}$, $\mathrm{T}_{\text {FET(PRI) }}=39 \mathrm{C}$.

13 Bode Plot

www.ti.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.
Tl's products are provided subject to TI's Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

