
Application Report
SPRABZ5–July 2015

Single Axis Motor Control and PFC

Ramesh Ramamoorthy, Shamim Choudhury

ABSTRACT
This application note describes how to control a power factor correction (PFC) and a permanent magnet
synchronous motor (PMSM) using the TMS320F2805x microcontrollers. TMS320F2805x devices are part
of the family of C2000 microcontrollers with programmable gain amplifiers (PGAs), which enable cost-
effective design of intelligent controllers for power electronics applications, by reducing the system
components and increasing efficiency. With these devices, it is possible to realize more precise digital
control of PFC, and field-oriented control (FOC) of motors. The evaluation of the implementation of these
devices is discussed in this document, involving 2-phase interleaved PFC and sensorless FOC of PMSM.
The FOC algorithm maintains efficiency in a wide range of speeds, and considers torque changes with
transient phases by processing a dynamic model of the motor.

This application note describes the following:
• A theoretical background on field-oriented motor control principle
• Incremental motor builds based on modular software blocks, for evaluation of PFC and sensorless

PMSM
• Experimental results

Contents
1 Introduction ... 3
2 Permanent Magnet Motors ... 3
3 Field-Oriented Control... 5
4 Benefits of 32-Bit C2000 Controllers .. 11
5 TI Literature and Digital Motor Control (DMC) Library... 12
6 System Overview... 13
7 Hardware Configuration ... 15
8 Control Software Flow ... 19
9 PFC Software Overview ... 20
10 Motor Control Software Overview .. 21
11 Procedure for Running PFC Incremental Builds ... 24
12 Procedure for Running Motor Control Incremental Builds .. 29
13 Integrated Software Test Strategy ... 46

List of Figures

1 A Three-Phase Synchronous Motor With One Permanent Magnet Pair Pole Rotor................................ 3
2 Interaction Between Rotating Stator Flux and Rotor Flux Produces a Torque, Causing Motor to Rotate 4
3 Separated Excitation DC Motor Model, Flux, and Torque are Independently Controlled and Current

Through Rotor Windings Determines How Much Torque is Produced ... 5
4 Stator Current Space Vector and its Component in (a,b,c) .. 7
5 Stator Current Space Vector and Its Components in the Stationary Reference Frame 7
6 Stator Current Space Vector and Its Components in (α, β) and in the d,q Rotating Reference Frame 8
7 Basic Scheme of FOC for AC Motor .. 9
8 Current, Voltage, and Rotor Flux Space Vectors in the d,q Rotating Reference Frame and their

Relationship with a,b,c and (α, β) Stationary Reference Frame ... 10

All trademarks are the property of their respective owners.

1SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com

9 Overall Block Diagram of Sensorless FOC of PMSM .. 11
10 A Typical DMC Macro Definition ... 12
11 PWM Carrier Alignment for Inverter and PFC .. 13
12 Single-Axis Motor + PFC Board Diagram With F2805x ... 15
13 Using External Power Supply to Provide the DC Bus Voltage for the Inverter 16
14 Using AC Input to Generate DC Bus Voltage for the Inverter, Bypassing PFC.................................... 17
15 Using AC Input and PFC to Generate DC Bus Voltage for the Inverter .. 18
16 Wiring Diagram of the Kit With an Isolator and a Variac .. 18
17 Software Flow Chart for PFC and Motor Control... 19
18 IL PFC Software Flow Diagram .. 20
19 Software Flow for Sensorless PMSM Control .. 21
20 Expressions Window Variables... 23
21 Build 1 Software Blocks ... 25
22 Build 2 Software Blocks ... 28
23 Level 1 Incremental System Build Block Diagram ... 29
24 Output of SVGEN, Ta, Tb, Tc, and Tb-Tc Waveforms .. 30
25 DAC 1 – 4 Outputs Showing Ta, Tb, Tc, and Tb-Tc Waveforms .. 31
26 Level 2 Incremental System Build Block Diagram ... 32
27 Calculated Phase A and B Voltages by volt1 Module, rg1.Out and svgen_dq1.Ta 34
28 The Waveforms of Svgen_dq1.Ta, rg1.Out, and Phase A and B Currents .. 35
29 Level 3 Incremental System Build Block Diagram ... 36
30 rg1.Out, Measured Theta and Phase A and B Current Waveforms ... 37
31 Level 4 Incremental System Build Block Diagram ... 39
32 Measured Theta, Estimated Theta (SMO), rg1. Out and Phase A Current... 40
33 Level 5 Incremental System Build Block Diagram ... 41
34 Level 5B Incremental System Build Block Diagram ... 42
35 Level 6 Incremental System Build Block Diagram ... 43
36 Waveforms of Phase A and B Currents, Calculated Phase A Voltage, and Estimated Theta by SMO

Under No-load and 0.3-pu Speed ... 45
37 Waveforms of Phase A and B Currents, Calculated Phase A Voltage, and Estimated Theta by SMO

Under 0.33-pu Load and 0.5-pu Speed ... 45
38 Flux and Torque Components of the Stator Current in the Synchronous Reference Frame Under 0.33-pu

Step-Load and 0.5-pu Speed Monitored from PWMDAC Output .. 46

List of Tables

1 System Features ... 14
2 Library Modules... 20
3 Incremental Build Options for PFC... 21
4 Software Modules and Macros ... 22
5 Incremental Build Options for PFC... 22
6 Testing Modules in Each Incremental System Build... 22

2 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Introduction

1 Introduction
A brushless permanent magnet synchronous motor (PMSM) has a wound stator, a permanent magnet
rotor assembly, and internal or external devices to sense rotor position. The sensing devices provide
position feedback to adjust frequency and amplitude of stator voltage, referenced to maintain rotation of
the magnet assembly. The combination of an inner permanent magnet rotor and outer windings offers the
advantages of low rotor inertia, efficient heat dissipation, and reduced motor size. Additionally, the
elimination of brushes reduces noise and EMI generation, and suppresses the need for brush
maintenance.

Power factor correction (PFC) of the motor drive system improves the line-side power factor, in addition to
providing a stable DC bus voltage for the drive. This factor extends the line-side low voltage operating
range of the drive.

This document describes how the TMS320F2805x device can control both PFC and a PMSM. This new
family of DSPs with programmable gain amplifiers (PGAs) enables a cost-effective design of intelligent
controllers for PFC and brushless motors, which can fulfill enhanced operations consisting of fewer system
components, lower system cost, and increased performance.

2 Permanent Magnet Motors
The control method presented relies on the field-oriented control (FOC). This algorithm maintains
efficiency in a wide range of speeds, and considers torque changes with transient phases by controlling
the flux directly from the rotor coordinates. This application report presents the implementation of a control
for a sinusoidal PMSM motor. The sinusoidal voltage waveform applied to this motor is created by using
the space vector modulation technique. A minimum amount of torque ripple appears when driving this
sinusoidal BEMF motor with sinusoidal currents.

There are two primary types of 3-phase PMSM. One uses rotor windings fed from the stator, and the other
uses permanent magnets. A motor fitted with rotor windings requires brushes to obtain its current supply
and generate rotor flux. The contacts are made of rings, and have commutator segments. The drawbacks
of this type of structure are increased maintenance needs and lower reliability. For a brushless motor,
replace the common rotor field windings and pole structure with permanent magnets. Brushless
permanent magnet motors can be built with any even number of magnet poles. The use of magnets
enables an efficient use of the radial space and replaces the rotor windings, therefore suppressing the
rotor copper losses. Advanced magnet materials permit a considerable reduction in motor dimensions
while maintaining a high power density.

Figure 1. A Three-Phase Synchronous Motor With One Permanent Magnet Pair Pole Rotor

3SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Permanent Magnet Motors www.ti.com

2.1 Synchronous Motor Operation
• Synchronous motor construction: Permanent magnets are rigidly fixed to the rotating axis to create a

constant rotor flux. This rotor flux usually has a constant magnitude. The stator windings, when
energized, create a rotating electromagnetic field. To control the rotating magnetic field, the user must
control the stator currents.

• The structure of the rotor varies depending on the power range and rated speed of the machine.
Permanent magnets are suitable for synchronous machines ranging up to a few kilowatts. For higher
power ratings, the rotor usually consists of windings in which a DC current circulates. The mechanical
structure of the rotor is designed for the desired number of poles, and the desired flux gradients.

• The interaction between the stator and rotor fluxes produces a torque. Because the stator is firmly
mounted to the frame and the rotor is free to rotate, the rotor will rotate and produce a useful
mechanical output.

• The angle between the rotor magnetic field and stator field must be carefully controlled to produce
maximum torque and achieve high electromechanical conversion efficiency. For this purpose, a fine
tuning is needed after closing the speed loop, using a sensorless algorithm to draw the minimum
amount of current under the same speed and torque conditions.

• The rotating stator field must rotate at the same frequency as the rotor permanent magnetic field;
otherwise, the rotor experiences rapidly alternating positive and negative torque. Alternating torques
results in less than optimal torque production, and excessive mechanical vibration, noise, and
mechanical stresses on the machine parts. Also, if the rotor inertia prevents the rotor from responding
to these oscillations, the rotor stops rotating at the synchronous frequency, and responds to the
average torque as seen by the stationary rotor: zero. This means that the machine experiences a
phenomenon known as pull-out. This is why the synchronous machine is not self-starting.

• The angle between the rotor field and the stator field must be equal to 90 degrees to obtain the highest
mutual torque production. This synchronization requires knowing the rotor position to generate the right
stator field.

• The stator magnetic field can have any direction and magnitude, by combining the contribution of
different stator phases to produce the resulting stator flux.

Figure 2. Interaction Between Rotating Stator Flux and Rotor Flux Produces a Torque, Causing Motor to
Rotate

4 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Field-Oriented Control

3 Field-Oriented Control

3.1 Introduction
For better dynamic performance, apply a more complex control scheme to control the PM motor. With the
mathematical processing power offered by the microcontrollers, advanced control strategies can be
implemented. These strategies use mathematical transformations to decouple the torque generation and
the magnetization functions in PM motors. Such decoupled torque and magnetization control is commonly
called rotor flux-oriented control, or FOC.

3.2 The Philosophy Behind the FOC
To understand the spirit of the FOC technique, start with an overview of the separately excited DC motor.
In this type of motor, the excitation for the stator and rotor is independently controlled. Electrical study of
the DC motor shows that the produced torque and the flux can be independently tuned. The strength of
the field excitation (such as the magnitude of the field excitation current) sets the value of the flux. The
current through the rotor windings determines how much torque is produced. The commutator on the rotor
plays an interesting part in the torque production. The commutator is in contact with the brushes, and the
mechanical construction is designed to switch into the circuit the windings that are mechanically aligned to
produce the maximum torque. This arrangement means that the torque production of the machine is
nearly optimal all the time. The windings are managed to keep the flux produced by the rotor windings
orthogonal to the stator field.

Figure 3. Separated Excitation DC Motor Model, Flux, and Torque are Independently Controlled and
Current Through Rotor Windings Determines How Much Torque is Produced

AC machines do not have the same key features as the DC motor. Both cases have only one source that
can be controlled: the stator currents. On the synchronous machine, the rotor excitation is given by the
permanent magnets mounted onto the shaft. On the synchronous motor, the only source of power and
magnetic field is the stator phase voltage. Unlike the DC motor, in AC machines flux and torque depend
on each other.

The goal of the FOC (also called vector control) on synchronous and asynchronous machines is to
separately control the torque-producing and magnetizing flux components. The control technique goal is to
imitate the operation of the DC motor. FOC allows decoupling of the torque and the magnetizing flux
components of the stator current. With decoupled control of the magnetization, the torque-producing
component of the stator flux is now independent torque control. To decouple the torque and flux, the user
must engage several mathematical transforms, as this is where the microcontrollers add the most value.
The processing capability provided by the microcontrollers enables these mathematical transformations to
be carried out quickly. This implies that the entire algorithm controlling the motor can be executed rapidly,
enabling higher dynamic performance. In addition to the decoupling, a dynamic model of the motor is now
used for the computation of many quantities, such as rotor flux angle and rotor speed. This indicates that
their effect is accounted for, and the overall quality of control is better.

According to the electromagnetic laws, the torque produced in the synchronous machine is equal to vector
cross product of the two existing magnetic fields:

(1)

5SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Field-Oriented Control www.ti.com

Equation 1 shows that the torque is maximum if the stator and rotor magnetic fields are orthogonal, and if
the load is maintained at 90 degrees. If this condition is constant and the flux is oriented correctly, the
torque ripple is reduced and a better dynamic response ensured. The constraint is knowing the rotor
position, which can be achieved with a position sensor such as an incremental encoder. For a low-cost
application where the rotor is not accessible, different rotor position observer strategies are applied to
remove the position sensor.

The goal is to maintain the rotor and stator flux in quadrature by aligning the stator flux with the q axis of
the rotor flux, orthogonal to the rotor flux. To accomplish this, control the stator current component in
quadrature with the rotor flux to generate the commanded torque, and set the direct component to zero. In
some cases, the direct component of the stator current can be used for field weakening, which has the
effect of opposing the rotor flux and reducing the back-emf, which allows for operation at higher speeds.

3.3 Technical Background
The FOC consists of controlling the stator currents represented by a vector. This control is based on
projections which transform a 3-phase time and speed-dependent system into a 2-coordinate (d and q
coordinates) time-invariant system. These projections lead to a structure similar to that of a DC machine
control. Field-oriented controlled machines need two constants as input references: the torque component
(aligned with the q coordinate) and the flux component (aligned with d coordinate). As FOC is based on
projections, the control structure handles instantaneous electrical quantities. The control is thus accurate
in every working operation (steady state and transient), and independent of the limited bandwidth
mathematical model. The FOC thus solves the classic scheme problems, in the following ways:
• The ease of reaching constant reference (torque component and flux component of the stator current)
• The ease of applying direct torque control, because in the (d,q) reference frame the expression of the

torque is:
m α ΨRiSq (2)

By maintaining the amplitude of the rotor flux (ΨR) at a fixed value, there is a linear relationship between
torque and torque component (i Sq). The user can then control the torque by controlling the torque
component of stator current vector.

3.4 Space Vector Definition and Projection
The 3-phase voltages, currents, and fluxes of AC motors can be analyzed in terms of complex space
vectors. With regard to the currents, the space vector can be defined as follows. Assuming that i a, i b, and
i c are the instantaneous currents in the stator phases, then the complex stator current vector is is defined
by:
is = ia + αib + α2ic

where

• and represent the spatial operators. (3)

Figure 4 shows the stator current complex space vector.

6 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Field-Oriented Control

Figure 4. Stator Current Space Vector and its Component in (a,b,c)

where (a,b,c) are the 3-phase system axes. This current space vector depicts the 3-phase sinusoidal
system, which still must be transformed into a 2-time invariant coordinate system. This transformation can
be split into two steps:
• (a,b,c) → (α, β) (the Clarke transformation) which outputs a 2-coordinate time-variant system
• (α, β) → (d,q) (the Park transformation) which outputs a 2-coordinate time-invariant system

3.4.1 The (a,b,c) → (α, β) Projection (Clarke Transformation)
The space vector can be reported in another reference frame with only two orthogonal axes called (α, β).
Assuming that axis a and axis α are in the same direction, observe the following vector diagram:

Figure 5. Stator Current Space Vector and Its Components in the Stationary Reference Frame

7SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Field-Oriented Control www.ti.com

The projection that modifies the 3-phase system into the (α, β) 2-dimension orthogonal system is
presented in Equation 4.

(4)

The 2-phase (α, β) currents still depend on time and speed.

3.4.2 The (α, β) → (d,q) Projection (Park Transformation)
This is the most important transformation in the FOC, as it modifies a 2-phase orthogonal system (α, β) in
the d,q rotating reference frame. If the d axis is aligned with the rotor flux, Figure 6 shows, for the current
vector, the relationship from the 2-reference frame:

Figure 6. Stator Current Space Vector and Its Components in (α, β) and in the d,q Rotating Reference
Frame

The flux and torque components of the current vector are determined by Equation 5:

where
• θ is the rotor flux position (5)

These components depend on the current vector (α, β) components and on the rotor flux position; if the
right rotor flux position is known, then, by this projection, the d,q component becomes a constant. Two-
phase currents now turn into DC quantity (time-invariant). At this point, the torque control becomes easier
where the constant i sd (flux component) and i sq (torque component) current components are controlled
independently.

8 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Field-Oriented Control

3.5 The Basic Scheme for the FOC
Figure 7 summarizes the basic scheme of torque control with FOC.

Figure 7. Basic Scheme of FOC for AC Motor

Two motor phase currents are measured. These measurements feed the Clarke transformation module.
The outputs of this projection are designated i sα and i sβ. These two components of the current are the
inputs of the Park transformation that gives the current in the d,q rotating reference frame. The i sd and i sq
components are compared to the references i sdref (the flux reference) and i sqref (the torque reference),
respectively. At this point, this control structure shows an interesting advantage: it can control either
synchronous or HVPM machines by simply changing the flux reference and obtaining rotor flux position.
As in PMSM, the rotor flux is fixed determined by the magnets; there is no need to create one. Thus,
when controlling a PMSM, i sdref should be set to zero. Because HVPM motors require a rotor flux creation
to operate, the flux reference must not be zero. This conveniently solves one of the major drawbacks of
the classic control structures: the portability from asynchronous to synchronous drives. The torque
command i sqref could be the output of the speed regulator when using a speed FOC. The outputs of the
current regulators are V sdref and V sqref; they are applied to the inverse Park transformation. The outputs of
this projection are V sαref and V sβref, which are the components of the stator vector voltage in the (α, β)
stationary orthogonal reference frame. These are the inputs of the space vector PWM. The outputs of this
block are the signals that drive the inverter. Both Park and inverse Park transformations require the rotor
flux position. Obtaining this rotor flux position depends on the AC machine type (synchronous or
asynchronous machine). Rotor flux position considerations are made in the following section.

9SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Field-Oriented Control www.ti.com

3.6 Rotor Flux Position
Knowledge of the rotor flux position is the core of the FOC. If there is an error in this variable, the rotor flux
is not aligned with the d-axis, and i sd and i sq are incorrect flux and torque components of the stator
current. The following diagram shows the (a,b,c), (α, β), and (d,q) reference frames, and the correct
position of the rotor flux, the stator current, and stator voltage space vector that rotates with d,q reference
at synchronous speed.

Figure 8. Current, Voltage, and Rotor Flux Space Vectors in the d,q Rotating Reference Frame and their
Relationship with a,b,c and (α, β) Stationary Reference Frame

The measure of the rotor flux position is different when considering synchronous or asynchronous motors:
• In the synchronous machine, the rotor speed is equal to the rotor flux speed. Then θ (rotor flux

position) is directly measured by a position sensor or by integration of the rotor speed.
• In the asynchronous machine, the rotor speed is not equal to the rotor flux speed (there is a slip

speed), and requires another method to calculate θ. The basic method is to use the current model,
which requires two equations of the motor model in the d,q reference frame.

Theoretically, the FOC for the PMSM drive allows the motor torque to be controlled independently with the
flux-like DC motor operation. In other words, the torque and flux are decoupled from each other. The rotor
position is required for variable transformation from a stationary reference frame to a synchronously
rotating reference frame. As a result of this transformation (the Park transformation), the q-axis current
controls torque while the d-axis current is forced to zero. Thus, the key module of this system is the
estimation of rotor position using a sliding-mode observer. Figure 9 shows the overall block diagram of this
project.

10 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Benefits of 32-Bit C2000 Controllers

Figure 9. Overall Block Diagram of Sensorless FOC of PMSM

4 Benefits of 32-Bit C2000 Controllers
The C2000 family of devices possesses the desired computation power to execute complex control
algorithms, along with the correct mix of peripherals to interface with the various components of the DMC
hardware such as the ADC, ePWM, QEP, eCAP, and so forth. These peripherals have all the necessary
hooks for implementing systems which meet safety requirements, such as the trip zones for PWMs and
comparators. The F2805x device has a PGA to help amplify shunt current signals, thus reducing kit BOM
and saving board space and cost.

Additionally, the C2000 ecosystem of software (libraries and application software) and hardware
(application kits) can reduce the time and effort required to develop the solution. The digital power and
digitial motor control library provides configurable blocks that can be reused to implement new control
strategies. The IQMath library enables easy migration from floating point algorithms to fixed point, thus
accelerating the development cycle.

Thus, with the C2000 family of devices, complex control algorithms (sensored and sensorless) for digital
power and motor control can be implemented quickly and easily. The use of C2000 devices and advanced
control schemes provides the following system improvements:
• Favors system cost reduction by an efficient control in all speed ranges, implying correct dimensioning

of power device circuits
• Uses advanced control algorithms to reduce torque ripple, thus resulting in lower vibration and longer

life time of the motor
• Uses advanced control algorithms to reduce harmonics generated by the inverter, thus reducing filter

cost
• Uses sensorless algorithms to eliminate the need for speed or position sensors
• The real-time generation of smooth, near-optimal reference profiles and move trajectories results in

increased performance
• Generates high resolution PWMs by using the ePWM peripheral to control the power-switching

inverters

11SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

TI Literature and Digital Motor Control (DMC) Library www.ti.com

• Provides a single-chip control system

For advanced controls, C2000 controllers can also perform the following:
• Enables control of multivariable and complex systems using modern intelligent methods, such as

neural networks and fuzzy logic
• Performs adaptive control, as C2000 controllers have the speed capabilities to concurrently monitor the

system and control it. A dynamic control algorithm adapts itself in real time to variations in system
behavior.

• Performs parameter identification for sensorless control algorithms, self-commissioning, and online
parameter estimation updates

• Performs advanced torque ripple and acoustic noise reduction
• Provides diagnostic monitoring with spectrum analysis. By observing the frequency spectrum of

mechanical vibrations, failure modes can be predicted in early stages.
• Produces sharp-cut-off notch filters that eliminate narrow band mechanical resonance. Notch filters

remove energy that would otherwise excite resonant modes and possibly make the system unstable.

5 TI Literature and Digital Motor Control (DMC) Library
The digital motor control (DMC) library is composed of functions represented as blocks. These blocks are
categorized as transforms and estimators (Clarke, Park, sliding mode observer, phase voltage calculation,
and resolver, flux, and speed calculators and estimators), control (signal generation, PID, BEMF
commutation, space vector generation), and peripheral drivers (PWM abstraction for multiple topologies
and techniques, ADC drivers, and motor sensor interfaces). Each block is a modular software macro and
is separately documented with source code, use, and technical theory. Check the following folders for the
source codes and explanations of macro blocks:
• C:\TI\controlSUITE\libs\app_libs\motor_control\math_blocks\v4.2
• C:\TI\controlSUITE\libs\app_libs\motor_control\drivers\f2805x_v2.0

These modules let users quickly build or customize their own systems. The library supports the three
motor types (ACI, BLDC, and PMSM), and comprises both peripheral-dependent (software drivers) and
target-dependent modules.

TI uses the DMC library components to provide system examples. At initialization, all DMC library
variables are defined and interconnected. At runtime, the macro functions are called in order. Each system
is built using an incremental build approach, which allows building some sections of the code, so that the
developer can verify each section of their application one step at a time. This is critical in real-time control
applications, where many different variables can affect the system and many different motor parameters
must be tuned.

TI DMC modules are written in the form of macros for optimization purposes (refer to application note
SPRAAK2 for more details). The macros are defined in the header files. The user can open the respective
header file and change the macro definition, if needed. In the macro definitions, there should be a
backslash (\) at the end of each line, as shown in Figure 10, which means that the code continues in the
next line. Any character after the backslash, including invisible ones such as a space cause a compilation
error. Ensure that the backslash is the last character in the line. In terms of code development, the macros
are almost identical to a C function, and the user can easily convert the macro definition to a C function.

Figure 10. A Typical DMC Macro Definition

12 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRAAK2
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com TI Literature and Digital Motor Control (DMC) Library

5.1 Note on PWM Frequencies
Ensure that the PWM frequency of PFC is an appropriate multiple of the PWM frequency of the motor, so
that current sampling instances do not overlap and create GND disturbances, and inject noise in the
current measurement of the other block.

Figure 11. PWM Carrier Alignment for Inverter and PFC

6 System Overview
This document describes the “C” real-time control framework used to demonstrate the sensorless FOC of
HVPM motors. The C framework is designed to run on TMS320C280x-based controllers on Code
Composer Studio. The framework uses the following modules:

Macro Names Explanation (1)

CLARKE Clarke transformation
PARK / IPARK Park and Inverse Park transformation
PI PI regulators
RC Ramp controller (slew rate limiter)
RG Ramp and sawtooth generator
QEP / CAP QEP and CAP drives (optional for speed loop tuning with a speed sensor)
SE Speed estimation (based on sensorless position estimation)
SPEED_FR Speed measurement (based on sensor signal frequency)
SMO Sliding mode observer for sensorless applications
SVGEN Space vector PWM with quadrature control (includes Clarke transformation)
PHASEVOLT Phase voltage calculator
PWM / PWMDAC PWM and PWMDAC drives

(1) Refer to the .pdf documents in the motor control folder explaining the details and theoretical background of each macro.

13SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

System Overview www.ti.com

Figure 12 shows the overall system implementing a 2-phase interleaved PFC and speed control of a 3-
phase permanent magnet motor. In Figure 12, the sensorless FOC of the PMSM is experimented with for
speed control. The PM motor is driven by a conventional voltage-source inverter. The TMS320x2805x
CPU generates the pulse-width modulation (PWM) signals for the motor and the PFC module. The motor
is driven by an integrated power module, using the space vector PWM technique. By connecting shunt
resistors to the bottom switch of the inverter and PFC current return path, voltages representing the motor
phase currents (I a, I b, and I c) and PFC current (I pfc) are generated and Kelvin-connected to the PGAs of
the TMS320F2805x CPU, where they are amplified and fed to analog-to-digital converters (ADCs). In
addition, the DC bus voltage in the inverter is measured and sent to the TMS320x2805x using an ADC.
This DC bus voltage is required to calculate the 3-phase voltages when the switching functions are known.

This project has the following properties:

Table 1. System Features

Feature Description
Code Composer Studio V6.0 (or above) with real-timeDevelopment /Emulation debugging

Target controller TMS320F2805x
PFC PWM frequency 100 kHz
Motor PWM frequency 10-kHz PWM (default), 60-kHz PWMDAC

PWM mode Symmetrical with a programmable dead band
ADC, end of conversion – Implements 10-kHz ISR executionInterrupts rate

PWM 1, 2, and 3 for motor control
PWM 5 for PFC

PWM 6A, 6B, 4A, and 4B for DAC outputs
Peripherals used QEP1 A, B, I or CAP1

ADC A7 for DC bus voltage sensing, A1 and B1 for phase
current sensing

PGA for amplifying motor and PFC shunt currents

Figure 12 shows the overall system implementing a 3-phase HVPM motor control. The HVPM motor is
driven by the conventional voltage-source inverter. The TMS320F2805x generates the six PWM signals
using a space vector PWM technique, for six power-switching devices in the inverter. Two input currents
of the HVPM motor (ia and ib) are measured from the inverter and sent to the PGAs of the
TMS320F2805x, then on to two ADCs. In addition, the DC bus voltage in the inverter is measured and
sent to the TMS320F2805x using an ADC. This DC bus voltage is required to calculate 3-phase voltages
of the HVPM motor when the switching functions are known.

14 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

PWM-1

F2805x MCU

CAN

UART

I2C

CPU

32 bit

A

B

PWM-2
A

B

PWM-3
A

B

PWM-5
A

B

CAP-1

PWM-1A

PWM-1B

PWM-2A

PGA

ADC

12 bit

Vref

1

2

3

4

5

16

2H

3H

2L

3L

2H 3H

2L 3L

1

2

3

1H

1L

IPM

PWM-2B
4

DC-Bus

spare

3 Phase

Motor

Voltage

sensing

Inc.
Encoder
/ Taco

QEP /

CAP

3

15V

QEP
3

HOST

Vac
PFC-2PhIL

PWM-

5B

PWM-

5A

Phase

Current

Feedback

PWM-3A
5

PWM-3B

3

Aux

Power

Supply

15V

5V

6

BS1 BS3

BS4 BS5

Bridge

PFC

Out

[Main]-J2

BS2

Current

Sense

Inverter Bus

Voltage

Feedback

Voltage

Feedback

Vpfc Out

feedback

BS6

www.ti.com Hardware Configuration

Figure 12. Single-Axis Motor + PFC Board Diagram With F2805x

7 Hardware Configuration
For an overview of the kit hardware and steps on how to setup this kit, refer to the 1AxisMtrPfc_5x kit's
hardware guide and user’s guide found at:

C:\TI\controlSUITE\development_kits\TIDM_1AXISMTR-PFC-5x_v1.0\~Docs

Some of the hardware setup instructions are described in Section 7.1 for quick reference.

7.1 Hardware Setup Instructions
1. Program the FTDI chip for xds100 emulation on board. Follow the instructions given in this TI E2E

forum post. If the link is broken, search in https://e2e.ti.com.
2. Install the jumper [Main]-J5 for JTAG reset line.
3. Connect a USB cable to connector [M3]-JP1. This enables isolated JTAG emulation to the C2000

device. [M3]-LD1 should turn on.
4. Ensure that [M6]-SW1 is in the Off position. Connect a 15-V DC power supply to [M6]-JP1.
5. Turn on [M6]-SW1. [M6]-LD1 should turn on.
6. Note that the motor should be connected to the [Main]-TB1 terminals after finishing with the first

incremental build step.
7. Only apply the DC bus power when instructed. The various options for DC bus power are:

• To use the DC power supply: Set the power supply output to zero and connect [Main]-BS5 and
BS2 to the DC power supply and ground, respectively. Also, connect [Main]-BS5 and [Main]-BS4,
as the CPU senses bus voltage information from the PFC output stage where [Main]-BS4 is
located. See Figure 13.

• To use AC mains power without PFC: Connect [Main]-BS1 and BS5 to each other using a banana
plug cord. Also, connect [Main]-BS5 and [Main]-BS4. Now connect one end of the AC power cord
to [Main]-P1. The other end must be connected to the output of an isolated variable AC supply. If a
variable AC supply is not available, then connect it to a variac that is connected to AC mains
through an isolation transformer, as shown in Figure 16. Ensure that the variac output is set to

15SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
https://e2e.ti.com/support/microcontrollers/c2000/f/171/t/21086
https://e2e.ti.com/support/microcontrollers/c2000/f/171/t/21086
https://e2e.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Hardware Configuration www.ti.com

zero before connecting. See Figure 14.
• To use AC mains power with PFC: Connect [Main]-BS1 and BS3 to each other using a banana

plug cord. Also, connect [Main]-BS5 and [Main]-BS4 as shown in Figure 15. Now connect one end
of the AC power cord to [Main]-P1. The other end must be connected to the output of an isolated
variable AC supply. If a variable AC supply is not available, connect it to a variac that is connected
to AC mains through an isolation transformer, as shown in Figure 15. Ensure that the variac output
is set to zero before connecting. See Figure 16.

CAUTION
Isolation is required if measurement equipment is connected to the board.

Figure 13. Using External Power Supply to Provide the DC Bus Voltage for the Inverter

16 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Hardware Configuration

Figure 14. Using AC Input to Generate DC Bus Voltage for the Inverter, Bypassing PFC

17SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Hardware Configuration www.ti.com

Figure 15. Using AC Input and PFC to Generate DC Bus Voltage for the Inverter

Figure 16. Wiring Diagram of the Kit With an Isolator and a Variac

CAUTION
DC bus capacitors remain charged for a long time after the mains supply is
disconnected. Use caution.

18 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

c_int0

Initialize s/w

modules

Initialize s/w

modules

Enable end of

conversion ISR

Initialize other

system and module

parameters

Background

Loop
INT 1

EOC ISR (INT1)

Save contexts and

clear interrupt flag

100KHz PFC ISR

Core functions

Gating of MotorISR

based on motor

PWM carrier status

Restore context

Return

SOC

Execute ADC

conversion

www.ti.com Control Software Flow

8 Control Software Flow
Figure 17 shows the software flow for PFC and sensorless PMSM control. After initializing the peripherals
for the ADC and PWM generations, the CPU performs background tasks by default, and is pulled into the
PFC and motor control ISRs based on when the latest samples of ADC are available, and the position of
tthe motor control PWM carrier.

Figure 17. Software Flow Chart for PFC and Motor Control

19SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Assembly

ISR

ADC

Context Save

100 kHz

Assembly

ISR

ADC

100 kHz

EXIT

Context Restore

Inv Rms Sqr

Line Cycle Polarity Detect,

Rectification,

PWM Configuration

PFC ICMD

PFC Current Controller

PFC Voltage Controller

PWM Drv 1, 2

EM Average

PFC Software Overview www.ti.com

9 PFC Software Overview
The main fast interrupt service routine (ISR) (100 kHz) for the PFC runs in an assembly environment. The
motor ISR runs slower than the PFC ISR, and is made interruptible by the fast PFC ISR.

Figure 18. IL PFC Software Flow Diagram

The assembly code is strictly limited to the fast ISR, which runs the critical PFC control code. Typically,
this includes reading ADC values, input line cycle polarity detect, sensed line volt rectification, control
calculations, and PFC PWM updates. The slower motor control ISR in the C environment calculates the
RMS input voltage and frequency of the input line voltage.

The fast ISR consists of a single file:

PFC_PM-ISR.asm – This file contains all time-critical control-type code. This file has an initialization
section (one time execute) and a run-time section which executes at 100 kHz.

The slow ISR uses the following file:

SineAnalyzer.h – This file contains code for calculating the RMS voltage and frequency of the input line
voltage. This file has an initialization section (one time execute) and a run-time section which executes at
10 kHz.

The power library functions (modules) are called from the fast ISR framework.

Library modules may have both a C and an assembly component. In this project, the following library
modules are used. Table 2lists the C and corresponding assembly module names.

Table 2. Library Modules

C Configure Function ASM Initialization Macro ASM Run-Time Macro
PWM_2ch_UpDwnCnt_Cnf.c PWMDRV_2ch_UpDwnCnt_INIT n PWMDRV_2ch_UpDwnCnt n
ADC_SOC_Cnf.c ADCDRV_1ch_INIT m,n,p,q ADCDRV_1ch m,n,p,q

PFC_InvRmsSqr_INIT n PFC_ InvRmsSqr n
MATH_EMAVG_INIT n MATH_EMAVG n
PFC_ICMD_INIT n PFC_ICMD n
CNTL_2P2Z_INIT n CNTL_2P2Z n

20 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Execute the park

and clarke trans.

Execute the PID

modules

Execute the ipark

and svgen modules

Execute the eSMO

and speed meas.

module

Execute the PWM

drive

Restore context

Return

Execute the voltage

calc modules

MotorISR

www.ti.com PFC Software Overview

9.1 PFC Incremental Builds
The complete CCS project for the PFC is divided into two incremental builds. This approach also simplifies
the task of debugging and testing the boards.

The build options are shown in Table 3. To select a particular build option, set the parameter INCR_BUILD
to the corresponding build selection as shown. This parameter is found in the Pfc_PM_Sensorless-
Settings.h file. Once the build option is selected, compile the complete project by selecting rebuild-all
compiler option.

Table 3. Incremental Build Options for PFC

INCR_BUILD = 1 Open loop test for boost PFC and ADC feedback (Check sensing circuitry)
INCR_BUILD = 2 Closed voltage loop and closed current loop control of IL PFC

10 Motor Control Software Overview
Figure 19 shows the software flow for sensorless PMSM control. Most of the building blocks for motor
control are available as macros, while the sliding mode observer that helps to identify the position of the
rotor, is available in library format.

Figure 19. Software Flow for Sensorless PMSM Control

21SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Motor Control Software Overview www.ti.com

Table 4 shows the software modules and macros to demonstrate the sensorless field-oriented control of
HVPM motors. The C framework is designed to run on TMS320C280x-based controllers on Code
Composer Studio. The framework uses the following modules; refer to the .pdf documents in the motor
control folder for the details and theoretical background of each macro.

Table 4. Software Modules and Macros

Macro Names Explanation
CLARKE Clarke Transformation

PARK / IPARK Park and Inverse Park Transformation
PI PI Regulators
RC Ramp Controller (slew rate limiter)
RG Ramp / Sawtooth Generator

QEP / CAP QEP and CAP Drives (optional for speed loop tuning with a speed sensor)
SE Speed Estimation (based on sensorless position estimation)

SPEED_FR Speed Measurement (based on sensor signal frequency)
SMO Sliding Mode Observer for Sensorless Applications

SVGEN Space Vector PWM with Quadrature Control (includes IClarke Trans.)
PHASEVOLT Phase Voltage Calculator

PWM / PWMDAC PWM and PWMDAC Drives

10.1 PFC Incremental Builds
The complete CCS project for PFC is divided into two incremental builds. This approach simplifies the task
of debugging and testing the boards.

Table 5 shows the build options. To select a particular build option, set the parameter INCR_BUILD to the
corresponding build selection as shown. This parameter is found in the Pfc_PM_Sensorless-Settings.h file.
Once the build option is selected, compile the complete project by selecting rebuild-all compiler option.

Table 5. Incremental Build Options for PFC

INCR_BUILD = 1 Open loop test for boost PFC and ADC feedback (check sensing circuitry)
INCR_BUILD = 2 Closed voltage loop and closed current loop control of IL PFC

10.2 Incremental System Build for Motor Control
The system is gradually built up so that the final system can be confidently operated. Five phases of the
incremental system build are designed to verify the major software modules used in the system. Table 6
summarizes the module tested and used in each incremental system build.

Table 6. Testing Modules in Each Incremental System Build
Software Module (1) Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

PWMDAC_MACRO √ √ √ √ √ √

RC_MACRO √ √ √ √ √ √

RG_MACRO √ √ √ √ √ √

IPARK_MACRO √√ √ √ √ √ √

SVGEN_MACRO √√ √ √ √ √ √

PWM_MACRO √√ √ √ √ √ √

CLARKE_MACRO √√ √ √ √ √

PARK_MACRO √√ √ √ √ √

PHASEVOLT_MACRO √√ √ √ √ √

QEP_MACRO √√ √ √ √

SPEED_FR_MACRO √√ √ √ √

(1) The symbol √ means this module is being used, and the symbol √√ means this module is being tested, in this phase.

22 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Motor Control Software Overview

Table 6. Testing Modules in Each Incremental System Build (continued)
Software Module (1) Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

PI_MACRO (IQ) √√ √ √ √

PI_MACRO (ID) √√ √ √ √

eSMO_MODULE() √√ √√ √

SE_MACRO √√ √

PI_MACRO (SPD) √√ √

10.2.1 Software Setup Instructions
Refer to the Software Setup for 1AxisMtrPFC5X Kit Projects section in the 1AxisMtrPFC5X user’s_guide,
which can be found at:

C:\TI\controlSUITE\development_kits\TIDM-1AXIS-PFC-5x_v1.0\~Docs
1. Select 1AxisMtrPfc5x_PM_Sensorless as the active project.
2. Set the active build configuration as F2805x_FLASH.
3. Verify that the motor build is set to 1, then right-click on the project name and select Rebuild Project.
4. When the build completes, launch a debug session to load the code into the controller.
5. Open an Expressions window and add the critical variables as shown in Figure 20, and select the

appropriate Q format.

Figure 20. Expressions Window Variables

6. Alternately, a group of variables can be imported into the Expressions window as follows. Click on
View, then select Scripting Console. Within Scripting Console, click the Open icon, browse to
Variables_1AxisMtrPfc5x.js, and click Open. This loads the variables as shown in Figure 20.

23SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Procedure for Running PFC Incremental Builds www.ti.com

7. Set up time graph windows by importing Graph1.graphProp and Graph2.graphProp from the following
location: C:\TI\ControlSUITE\developement_kits\TIDM-1AXISMTR-PFC-
5x\1AxisMtrPfc5x_PM_Sensorless.

8. Click on the Continuous Refresh button on the top-left corner of the graph tab to enable periodic
capture of data from the microcontroller.

11 Procedure for Running PFC Incremental Builds

11.1 Build 1: Open-Loop PFC With ADC Measurements
The objectives of this build are:
• Evaluate PFC PWM and ADC software driver modules
• Verify the MOSFET gate driver circuit
• Verify voltage and current sensing circuits

Under this build the system runs in open-loop mode, and thus the measured ADC values are used for
circuit verification and instrumentation purposes only.

11.1.1 Overview
The software in Build 1 is configured so that the user can quickly evaluate the PWM driver module
(software driver) by viewing the related waveforms on a scope, and observing the effect of duty cycle
change on PFC output voltage. The user can adjust the PWM duty cycle from the CCS watch window.
The user can also evaluate the ADC driver module (software driver) by viewing the ADC-sampled data in
the CCS watch window.

The PWM and ADC driver macro instantiations are executed inside the fast PFC ISR. Figure 21 shows the
software blocks used in this build. In this board, the two PWM signals for the two PFC switches are
obtained from the ePWM5 module (see Figure 9). ePWM5A drives one of the PFC switches, while
ePWM5B drives the other. These PWM outputs are generated using the PWM driver module
PWMDRV_2chUpDownCnt.

The PFC stage signals sensed and input to the MCU include:
• Line and neutral voltages (VL_fb, VN_fb)
• PFC input inductor current (Ipfc)
• DC bus voltage (V pfc)

These quantities are read using the ADC driver module and are indicated in Figure 21. The ADC driver
module converts the 12-bit ADC result to a 32-bit Q24 value. A few lines of code in the ISR implements
the detection of the input AC line half-cycle (positive and negative half cycles) and the rectification of the
input voltage. This generates the input rectified signal Vrect, shown in Figure 21.

24 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

PFCDuty

VpfcVcmd

MATH_EMAVG:2:

InOut

Multiplier

InvRmsSqr

PFC_InvRmsSqr:1:

InOut

VminOverVmax
Vmin

PFC_ICMD:1:

Vcmd

Out

VmaxOverVmin

VinvRmsSqr

VacRect

PfcIcmd

100 khz

100 khz

ADC A2
Ipfc

VN_fb

VL_fb

Vpfc

100 khz

P

W

M PWM1B

PWMDRV_2chUpDwnCnt:1:

Duty
Period

100 khz

A

D

C

ADCDRV_1ch:1:

RltPtr

A

D

C

ADCDRV_1ch:2:

RltPtr

A

D

C

ADCDRV_1ch:3:

RltPtr

A

D

C

ADCDRV_1ch:4:

RltPtr

ADC A0

ADC A1

ADC A6

Assembly Code in ISR:

x Positive & Negative

Half Cycle Detect,

x Rectification

Vrect

.Vrms
.Vin

SineAnalyzer

(struct)

SampleFreq
Threshold

.Vavg

.freq

.ZCD

.PosCycT=1/f

100 khz

Vpfc_avg

100 khz

PWM1A

www.ti.com Procedure for Running PFC Incremental Builds

Figure 21. Build 1 Software Blocks

The PWM signals are generated at a frequency of 100 kHz, that is, a period of 10 µs. With the controller
operating at 60 MHz, one count of the time base counter of ePWM1 corresponds to 16.6667 ns. This
implies a PWM period of 10 µs is equivalent to 600 counts of the time base counter (TBCNT5). The
ePWM5 module is configured to operate in up-down count mode. This means a time-base period value of
300 (period register value) gives a total PWM period value of 600 counts (that is, 10 µs).

The total inductor current of the PFC is sampled at the midpoint of the PWM ON pulse, because the
sampled value represents the average inductor current under continuous conduction mode (CCM)
condition. The voltage signal conversions are also initiated when the PFC switch is on.

All ADC results are read in the ISR by executing the ADC driver module from the 100-kHz ISR labeled as
PFC_PM-ISR.asm.

This ISR in assembly is triggered by the ADC at the end of the ADC conversion. Inside the ISR
PWMDRV_2ch_UpDwnCnt, macros are executed and the PWM compare shadow registers are updated.
These registers are loaded into the active register at the next TBCNT5 = ZERO event.

11.1.2 Protection
An overvoltage protection (OVP) mechanism is implemented in software for this PFC stage.

The sensed DC bus output voltage from the ADC input is compared against the OVP threshold set by the
user. The OV threshold point for this kit has been set to 410 V. In case of an OV condition, the PWM
outputs are shut off using the TZ (trip zone) registers. The flexibility of the trip mechanism on C2000
devices provides the possibilities for taking different actions on different trip events. In this project, both
PWM outputs are driven low in case of a trip event. Both outputs are held in this state until a device reset
is executed.
1. Select the PFC incremental build option as 1.
2. Click the Project → Rebuild All button and watch the tools run in the build window. The program is

compiled and loaded into the flash. You should now be at the start of Main().
3. Enable real-time mode in CCS.

25SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Procedure for Running PFC Incremental Builds www.ti.com

4. Add the PFC-related variables DutyA, start_flag, Gui_Vbus, Gui_Freq_Vin, and Gui_VrectRMS in the
watch window. Set the Q format for the DutyA as Q24. Set the Q format for three parameters
Gui_Vbus, Gui_Freq_Vin, and Gui_VrectRMS as Q6.

5. Click on the Continuous Refresh buttons for the watch view.
6. With the AC power off, run the code by using the Run button on the toolbar.
7. Set EnableFlag to 1.
8. In the watch view, check the variable DutyA. This should be set to 0.1 (=1677721 in Q24). This

variable sets the duty cycle for the PFC converter. Use an oscilloscope to verify the PWM outputs at
the PFC MOSFETs gate (gate to source voltage). These PWM outputs should show 100-kHz PWM
with a duty ratio of 10%.

9. Apply a resistive load to the PFC system at the DC output (8 k/20 W, or 4 k/40 W, or 2 k/80 W).
10. Use a fully isolated AC source and slowly apply AC power to the board. Slowly increase input AC

voltage to 100 V AC, 50/60 Hz. Use a multimeter (DMM) to measure the DC bus voltage and input
RMS voltage. Verify these voltage readings with the corresponding values shown in the watch window.
For example, input RMS voltage measured with a voltmeter should match the watch window parameter
Gui_VrectRMS. Input AC frequency (set at the AC source) should also match that displayed at the
watch window using the variable Gui_Freq_Vin.

11. Use DutyA to slowly change the duty from the watch window. The boost converter output voltage
should change accordingly. Verify that the measured values and the watch window parameters again
match.

12. Reduce the AC input voltage to zero and turn off the AC source.

CAUTION
In Step 10, observe the output voltage carefully, as this should not be allowed
to exceed the maximum voltage rating of the board (400 V).

11.2 Build 2: PFC With Closed Voltage and Current Loop
Figure 22 shows the software blocks used in this build. Notice the additional software blocks added to the
Build 1 diagram (see Figure 21) to implement this closed-current and voltage-loop system. The
SineAnalyzer block calculates the RMS voltage and frequency of the input voltage. The PFC InvRmsSqr
block calculates the inverse of the square of the RMS input voltage. This calculated value, together with
the rectified voltage (Vrect), is used in the software block PFC_ICMD to generate the reference current
command PfcIcmd for the PFC current control loop. The PFC_ICMD block uses a third input VpfcVcmd to
control the magnitude of the reference current command. This parameter VpfcVcmd is connected to
voltage loop controller output, which adjusts the magnitude of the reference current, and thus the PFC bus
voltage. Two different 2p2z (two pole two zero) controllers are used to implement the voltage and the
current control loops. These are software blocks shown in Figure 22 as CNTL_2P2Z:1 and CNTL_2P2Z:2,
for current and voltage loops, respectively.

Figure 22 shows the current loop control block is executed at a rate of 100-KHz. CNTL_2P2Z is a second-
order compensator realized from an IIR filter structure. This function is independent of any peripherals and
thus does not require a CNF function call.

This 2p2z controller requires five control coefficients. These coefficients, and the clamped output of the
controller, are stored as the elements of a structure named CNTL_2P2Z_CoefStruct1. The CNTL_2P2Z
block can be instantiated multiple times if the system requires multiple loops. Each instance can have a
separate set of coefficients. The CNTL_2P2Z instance for the current loop uses the coefficients stored as
the elements of structure CNTL_2P2Z_CoefStruct1. This way, a second instantiation of CNTL_2P2Z with
a different structure, CNTL_2P2Z_CoefStruct2, can be used for PFC voltage loop control.

26 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Procedure for Running PFC Incremental Builds

The controller coefficients can be changed directly by modifying the values for B0, B1, B2, A1, and A2
inside the structure CNTL_2P2Z_CoefStruct1. Alternately, the 2p2z controller can be expressed in PID
form, and the controller coefficients changed by changing the PID coefficients. The following equations
relate the five controller coefficients to the three PID gains. For the current loop, these P, I, and D
coefficients are named as: Pgain_I, Igain_I, and Dgain_I, respectively. For the voltage loop, these
coefficients are named as: Pgain_V, Igain_V, and Dgain_V, respectively. These coefficients are used in
Q26 format.

The compensator block (CNTL_2P2Z) has a reference input and a feedback input. The feedback input
labeled as Fdbk comes from the ADC driver block. The reference input labeled as Ref comes from the
PFC_ICMD block as mentioned earlier. The z-domain transfer function for CNTL_2P2Z is given by:

(6)

The recursive form of the PID controller is given by the difference equation:
u(k) = u(k – 1) + b0e(k) + b1e(k – 1) + b2e(k – 2)

where
• b0 = Kp + Ki + Kd

• b1 = –Kp + Ki – 2Kd

• b2 = Kd (7)

And the z-domain transfer function of this PID is:

(8)

Comparing this with the general form, we can see that PID is a special case of CNTL_2P2Z control,
where:

a1 = –1 and a2 = 0

The MATH_EMAVG (exponential moving average) block calculates the average of the output DC bus
voltage. The output from this block is used to detect an overvoltage condition followed by a PWM
shutdown.

Figure 22 shows the software block labeled as CNTL_2P2Z:2. This is the second instantiation of the 2p2z
control block, to implement the PFC voltage loop control. This voltage loop controller is executed at a 50-
kHz rate, which is half the rate for the current loop. The output from this control block drives the input
node VpfcVcmd of the PFC_ICMD block.

27SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

PFCDuty

Ipfc

VpfcVcmd

Out
Ref

Fdbk

CNTL_2P2Z:1:

Coef

B0
B1
B2
A1
A2

Dmin
Dmax

CNTL_2P2Z_CoefStruct

DBUFF

MATH_EMAVG:2:

InOut

Multiplier

InvRmsSqr

PFC_InvRmsSqr:1:

InOut

VminOverVmax
Vmin

PFC_ICMD:1:

Vcmd

Out

VmaxOverVmin

VinvRmsSqr

VacRect

PfcIcmd

100 khz

100 khz

100 khz

ADC A2
Ipfc

VN_fb

VL_fb

Vpfc

100 khz

P

W

M PWM1B

PWMDRV_2chUpDwnCnt:1:

Duty
Period

100 khz

A

D

C

ADCDRV_1ch:1:

RltPtr

A

D

C

ADCDRV_1ch:2:

RltPtr

A

D

C

ADCDRV_1ch:3:

RltPtr

A

D

C

ADCDRV_1ch:4:

RltPtr

ADC A0

ADC A1

ADC A6

Assembly Code in ISR:

x Positive & Negative

Half Cycle Detect,

x Rectification

Vrect

.Vrms
.Vin

SineAnalyzer

(struct)

SampleFreq
Threshold

.Vavg

.freq

.ZCD

.PosCycT=1/f

100 khz

Vpfc_avg

100 khz

Out
Ref

Fdbk

CNTL_2P2Z:2:

Coef

B0
B1
B2
A1
A2

Dmin
Dmax

CNTL_2P2Z_CoefStruct

DBUFF

VpfcSet

50 khz

Vpfc
PWM1A

Procedure for Running PFC Incremental Builds www.ti.com

Figure 22. Build 2 Software Blocks

Similar to the current loop controller, this voltage loop controller, CNTL_2P2Z:2, also requires five control
coefficients. These coefficients and the clamped output of the controller are stored as the elements of a
second structure named CNTL_2P2Z_CoefStruct2. The coefficients for this controller can be changed
directly by modifying the values for B0, B1, B2, A1, and A2 inside the structure CNTL_2P2Z_CoefStruct2,
or by changing the equivalent PID gains as discussed earlier.

11.2.1 Start-up, Inrush Current Control, and Slew-Limit
At start-up, the controller monitors the variable start_flag and PFC DC bus voltage. When the start_flag is
set to 1 and the DC bus voltage reaches a minimum level (the minimum level for this PFC is set around
160 Vdc), PFC action is enabled and the output DC bus slowly ramps up to the preset value of
approximately 390 Vdc. This output voltage level is set by the constant VBUS_RATED_VOLTS, defined in
the header file Pfc_PM_Sensorless-Settings.h. The ramp-up speed is set by the parameter
VbusSlewRate.

11.3 Build and Load Project
Follow these steps to execute this build:
1. Follow steps 1 through 7 exactly as in build 1 (see Section 11.1.2), the only difference being selecting

the build 2 option instead of build 1 in the first step.
2. Apply an appropriate resistive load to the PFC output. For example, allow for four power resistors, in

parallel, across the PFC output, each with a rating of 2.0 kΩ and 160 W (each). This provides a total
load of approximately 300 W at 390-V bus voltage. Initially, only use two resistors before the PFC
powers up, so that the PFC powers up with an initial load less than 150 W.

3. Configure the isolated AC source to output 120-V, 60-Hz AC voltage output. Use a voltmeter to monitor
the DC bus voltage.

4. Turn on the AC source output for 120 Vrms.
5. When the DC bus voltage reaches 160 V or higher, set the start_flag to 1. PFC action will start, and

the bus voltage will slowly increase to approximately 390 V. As in build 1, verify the watch window
values for Gui_Vbus and Gui_VrectRMS with those from the multimeter (DMM). The frequency reading
from the AC source should also match the watch widow variable Gui_Freq_Vin. The variable
pfc_on_flag is set to 1 when the soft-start is complete and the PFC bus voltage reaches the desired
set point.

6. Connect two more power resistors across the PFC output to increase the PFC load to 300 W.

28 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

SVGEN

MACRO

PWM1 A/B

PWM2 A/B

PWM3 A/B

Mfunc_C1

Mfunc_C3

Mfunc_C2

Ta

Tc

Tb

Ualpha

Ubeta

PWMDAC

MACRO
MFuncC1

MFuncC2

PWMxA

PWMxB

Low

Pass

Filter

Cct

DATALOG

Dlog1

Dlog2

Dlog3

Dlog4

Level 1 verifies the target-independent modules, duty cycles, and

PWM updates. The motor is disconnected at this level.

Scope
Graph

Window

Alpha

Beta

IPARK

MACRO

Ds

Angle

Qs

VdTesting

VqTesting

TargetValue

RC

MACRO
SetPointValue Freq

SpeedRef
Watch

Window

PWM

MACRO

PWM

HW

Sine/Cos
Out

RG

MACRO

www.ti.com Procedure for Running Motor Control Incremental Builds

7. Use an oscilloscope with a voltage probe (high-voltage differential probe) and a current probe to
observe the input voltage and input current waveforms. With 120-Vrms input, 500-Ω resistive load, and
bus voltage set to 390 V, the power factor (PF) should be greater than 0.95.

8. Vary the input voltage (100 Vrms~260 Vrms) or the load resistance (0~600 W) to see the PFC
operation under closed current and voltage control loop. The bus voltage should be regulated at 390 V.

9. Reduce the AC input voltage to zero and turn off the AC source.

12 Procedure for Running Motor Control Incremental Builds

12.1 Level 1 Incremental Build

Figure 23. Level 1 Incremental System Build Block Diagram

At this step, keep the motor disconnected. Assuming the load and build steps described in the
1AxisMtrPFC5X user’s guide completed successfully, this section describes the steps for a minimum
system check-out, which confirms operation of system interrupt, the peripheral and target-independent
I_PARK_MACRO (inverse park transformation), SVGEN_MACRO (space vector generator), and the
peripheral-dependent PWM_MACRO (PWM initializations and update) modules.
1. Open Pfc_PM_Sensorless-Settings.h, and select the level 1 incremental build option by setting the

BUILDLEVEL to LEVEL1 (#define BUILDLEVEL LEVEL1).
2. Right-click on the project name, and click Rebuild Project.
3. When the build completes, click the Debug button, reset the CPU, restart, enable real-time mode, and

run the program.
4. Add variables to the Expressions window by opening Variables_1AxisMtrPfc5x.js, located in the root

directory, from the Scripting Console window.
5. Set the EnableFlag to 1 in the Expressions window. The IsrTicker variable counts upwards, and when

it stops Isr1Ticker continues increasing. This confirms that the system interrupt is working properly.

Notice the variable lsw in the Expressions window. This variable controls the motor as follows:
• –1: All bottom switches of inverter ON, no display variables are updated.
• 0: DC current flows in the motor, bringing the PM motor to initial alignment.
• 1: Forces rotation of the PM motor by applying sinusoidal PWM voltage on the motor.
• 2: Sensorless control of motor -> rotor flux position determines the angle of applied voltage.

29SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Procedure for Running Motor Control Incremental Builds www.ti.com

In the software, the key variables to be adjusted are summarized as follows:
• SpeedRef (Q24): for changing the rotor speed in per-unit
• VdTesting (Q24): for changing the d-qxis voltage in per-unit
• VqTesting (Q24): for changing the q-axis voltage in per-unit

12.1.1 Level 1A (SVGEN_MACRO Test)
Because the motor is disconnected, the significance of the lsw variable is limited to enabling PWM
algorithms and updating display variables by changing to any value other than –1. Thus, change lsw to
any value value other than –1. The SpeedRef value is specified to the RG_MACRO module using the
RC_MACRO module. The IPARK_MACRO module generates the outputs to the SVGEN_MACRO
module. Three outputs from SVGEN_MACRO module are monitored through the graph window, as shown
in Figure 24, where the Ta, Tb, and Tc waveforms are 120° apart from each other. Specifically, Tb lags Ta
by 120° and Tc leads Ta by 120°. Check the PWM test points on the board to observe PWM pulses
(PWM-1H to 3H and PWM-1L to 3L) and ensure that the PWM module is running properly.

Figure 24. Output of SVGEN, Ta, Tb, Tc, and Tb-Tc Waveforms

12.1.2 Level 1B (Testing the PWMDAC Macro)
To monitor internal signal values in real time, PWM DACs are very useful tools. PWM DACs use an
external low-pass filter, such as a simple first-order RC filter, to filter out the high-frequency PWM carrier
and show the modulated waveform. These are brought out on test points TP4 to TP7. The selection of R
and C values (or the time constant, τ) is based on the cut-off frequency (f c). For this type of filter the
relation is as follows:

(9)

For example, if R = 1.8 kΩ and C = 100 nF, Equation 9 gives f c = 884.2 Hz. This cut-off frequency must
be below the PWM frequency. Using Equation 9, one can customize low-pass filters used for signals being
monitored. Macro block M8 has the DAC circuit low-pass filters with 2.2 kΩ and 220 nF, bringing out
filtered analog signals on TP4 to TP7. For more details, refer to application note SPRAA88.

30 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRAA88
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Procedure for Running Motor Control Incremental Builds

Figure 25. DAC 1 – 4 Outputs Showing Ta, Tb, Tc, and Tb-Tc Waveforms

12.1.3 Level 1C (PWM_MACRO and INVERTER Test)
After verifying the SVGEN_MACRO module in level 1a, the PWM_MACRO software module and the 3-
phase inverter hardware are tested by looking at the low-pass filter outputs. For this purpose, if using the
external DC power supply, gradually increase the DC bus voltage and check the Vfb-U, Vfb-V, and Vfb-W
test points using an oscilloscope; if using AC power entry, slowly change the variac to generate the DC
bus voltage. Once the DC bus voltage is greater than 15 V to 20 V, start observing the inverter phase
voltage dividers and waveform monitoring filters (Vfb-U, Vfb-V, Vfb-W), enable the generation of the
waveform, and ensure the inverter is working appropriately. The default RC values are optimized for AC
motor state observers employing phase voltages.

CAUTION
After verifying this, reduce the DC bus voltage, take the controller out of real-
time mode (disable), reset the processor (see the 1AxisMtrPFC5X user’s guide
for details). After each test, this step must be repeated for safety purposes.
Improper shutdown might halt the PWMs at some certain states where high
currents can be drawn, thus take caution while performing these experiments.

31SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

PWM1 A/B

PWM2 A/B

PWM3 A/B

Mfunc_C1

Mfunc_C3

Mfunc_C2

Ta

Tc

Tb

Ualpha

Ubeta

PWMDAC

MACRO
MFuncC1

MFuncC2

PWMxA

PWMxB

Low

Pass

Filter

Cct

DATALOG

Dlog1

Dlog2

Dlog3

Dlog4

Level 2 verifies the analog-to-digital conversion, offset compensation, Clarke / Park transformations,

and phase voltage calculations.

Scope

Graph

Window

Alpha

Beta

Ds

Angle

Qs

VdTesting

VqTesting

TargetValue

RC

MACRO
SetPointValue

RG

MACRO
Freq

SpeedRef

PM

Motor

3-Phase

Inverter

PWM

MACRO

PWM

HW

ADCIn1 (Ia)

ADCIn2 (Ib)

ADCIn3 (Ic)

IPARK

MACRO

CLARKE

MACRO
AdcResult0

AdcResult1

As

Bs

Alpha

Beta

PARK

MACRO

Alpha

Beta

Out

ADCIn4 (Vdc)AdcResult3

SVGEN

MACRO

ADC

HW

Vabc

Valpha

Vbeta

Sine/Cos

Ta

Tc

Tb

DcBusVolt

ADC

MACRO

PHASE

VOLT

MACRO

Procedure for Running Motor Control Incremental Builds www.ti.com

12.2 Level 2 Incremental Build

Figure 26. Level 2 Incremental System Build Block Diagram

Assuming build 1 completes successfully, this section verifies the analog-to-digital conversion, Clarke and
Park transformations, and phase voltage calculations. Now the motor can be connected to the eval board,
as the PWM signals are successfully proven through the level 1 incremental build. The open-loop
experiments are meant to test the ADCs, inverter stage, software modules, and so forth. Thus, running the
motor under load or at various operating points is not recommended.
1. Open Pfc_PM_Sensorless-Settings.h, and select the level 2 incremental build option by setting the

BUILDLEVEL to LEVEL2 (#define BUILDLEVEL LEVEL2).
2. Right-click on the project name, and click Rebuild Project.
3. When the build completes, click the Debug button, reset the CPU, restart, enable real-time mode, and

run the program.
4. Set the EnableFlag to 1 in the Expressions window.
5. The IsrTicker variable continues increasing; confirm this by watching the variable in the Expressions

window. While this occurs, the CPU computes the offset of the analog channels, sensing phase-current
feedback.

6. Isr1Ticker continues to count, indicating the main control ISR is running. This confirms that the system
interrupt is working properly.

In the software, the key variables to be adjusted are:
• SpeedRef (Q24): for changing the rotor speed in per-unit
• VdTesting(Q24): for changing the d-qxis voltage in per-unit
• VqTesting(Q24): for changing the q-axis voltage in per-unit

32 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Procedure for Running Motor Control Incremental Builds

During the open-loop tests, VqTesting, SpeedRef, and the DC bus voltages should be adjusted carefully
for PM motors so that the generated Bemf is lower than the average voltage applied to motor winding.
This prevents the motor from stalling or vibrating. Set lsw to 1 to apply sinusoidal PWM voltage on the
motor.

12.2.1 Phase 2A – Setting Overcurrent Limit in Software
The F2805x has on-chip programmable comparators in the analog front end (AFE) that can detect positive
and negative overcurrents. Thus, overcurrent monitoring is provided for shunt signals, to generate TRIP
signals to shut down the inverter. To avoid spurious overcurrent tripping, use the programmable digital
filter that qualifies the comparator output before generating the TRIP signal. The reference to the
comparator is user-programmable for both positive and negative current limits. The digital filter module
qualifies the comparator output signal by periodically verifying the genuineness of the signal over a certain
period of time, by counting the output for a certain number of count times within a certain count window,
where the periodicity, count, and count window are user-programmable.

In the Expressions window, some new variables are added:
• clkPrescale sets the frequency of sampling of digital filter.
• sampwin sets the count window.
• thresh sets the minimum count to qualify the signal within sampwin.
• SHUNT_curHi sets the positive current maximum through the SHUNT current sensor.
• SHUNT_curLo sets the negative current maximum through the SHUNT current sensor.

NOTE: The median value corresponding to zero current is 32.

TripFlagDMC is a flag variable used to represent the overcurrent trip status of the inverter. If this flag is
set, the user can adjust the preceeding settings and retry running the inverter by setting clearTripFlagDMC
to 1. This clears TripFlagDMC and restarts the PWMs.

The default current limit setting is to shutdown at 10 A. The user can change any of these settings to suit
their system. Once satisfactory values are identified, write down and modify the code with these new
values, and rebuild and load for further tests.

12.2.2 Level 2B – Testing the Phase Voltage Module
The phase voltage calculation module, PHASEVOLT_MACRO, can now be tested. Gradually increase the
DC bus voltage. The outputs of this module can be checked using the graph window, as shown in
Figure 27.

33SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Procedure for Running Motor Control Incremental Builds www.ti.com

Figure 27. Calculated Phase A and B Voltages by volt1 Module, rg1.Out and svgen_dq1.Ta

• The VphaseA, VphaseB, and VphaseC waveforms should be 120° apart from each other. Specifically,
VphaseB lags VphaseA by 120° and VphaseC leads VphaseA by 120°.

• The Valpha waveform and the VphaseA waveform should be the same.
• The Valpha waveform should lead the Vbeta waveform by 90° at the same magnitude.

12.2.3 Phase 2C – Testing the Clarke Module
In this section, the Clarke module is tested. The three measured line currents are transformed to two
phase dq currents in a stationary reference frame. The outputs of this module can be checked from a
graph window.
• The clark1.Alpha waveform should be the same as the clark1.As waveform.
• The clark1.Alpha waveform should lead the clark1.Beta waveform by 90° at the same magnitude.

The measured line current must be trailing with the reconstructing phase voltage, because of the nature of
the AC motor. This can be checked as follows:
• The clark1.Alpha waveform should trail the Valpha waveform at an angle by nature of the reactive load

of the motor.
• The clark1.Beta waveform should trail the Vbeta waveform at the same angle.

If the clark1.Alpha and Valpha or clark1.Beta and Vbeta waveforms in the previous step are not truly
affecting the trailing relationship, then set OutofPhase to 1 at the beginning of the PHASEVOLT_MACRO
module. The outputs of this test can be checked using the graph window.

34 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Procedure for Running Motor Control Incremental Builds

Deadband = 1.66 µsec, Vdcbus = 300 V , dlog.prescalar = 3

Figure 28. The Waveforms of Svgen_dq1.Ta, rg1.Out, and Phase A and B Currents

12.2.4 Level 2D – Adjusting PI Limits
The vectorial sum of the d-q PI outputs should be less than 1.0, which refers to the maximum duty cycle
for the SVGEN macro. Another limiting factor of the duty cycle is the current sense through shunt
resistors, which depends on hardware and software implementation. Depending on the application
requirements, three, two, or a single shunt resistor can be used for current waveform reconstruction. A
higher number of shunt resistors allow for higher duty cycle operation and better DC bus use.
1. Run the system with default VdTesting, VqTesting, and SpeedRef, and gradually increase the

VdTesting and VqTesting values.
2. Watch the current waveforms in the graph window. Keep increasing the VdTesting and VqTesting

values until you notice distorted current waveforms, and write down the maximum allowed.
3. Ensure that these values are consistent with expected d-q current component maximums while running

the motor.
4. After this motor build, PI outputs automatically generate the voltage reference and determine the PWM

duty cycle depending on the d-q current demand, thus set pi_id.Umax/min and pi_iq.Umax/min
according to recorded VdTesting and VqTesting values.

CAUTION
Running the motor without proper PI limits can yield distorted current
waveforms and unstable closed-loop operations, which may damage the
hardware.

5. Bring the system to a safe stop, as described at the end of build 1, by reducing the bus voltage, taking
the controller out of real-time mode, and reset.

35SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

SVGEN
MACRO

PWM1 A/B

PWM2 A/B

PWM3 A/B

Mfunc_C1

Mfunc_C3

Mfunc_C2

Ta

Tc

Tb

Ualpha

Ubeta

 Level 3 verifies the dq-axis current regulation performed by PI macros and speed measurement macros

Alpha

Beta

Qs

Ds
IdRef

PM
Motor

PWM
MACRO

PWM
HW

IPARK
MACRO

CLARKE
MACRO

As

Bs

Alpha

Beta

PARK
MACRO

Alpha

Beta

QEPn

SPEED FR
MACRO ElecTheta

Direction
QEP

MACRO
QEP
HW

Speed

SpeedRpm

Q_Out
Ref

PI
 MACRO
Iq Reg

PI
 MACRO
Id Reg

D_Out

Fbk

Ref

Fbk

Ds

Qs

PHASE
VOLT

MACRO

Vabc

Valpha

Vbeta

ADCIn1 (Ia)

ADCIn2 (Ib)

ADCIn3 (Ic)

AdcResult0

AdcResult1

ADCIn4 (Vdc)AdcResult3

ADC
HW

3-Phase
Inverter

Ta

Tb

Tc

DcBusVolt

ADC
MACRO

TargetValue

RC
MACRO

SetPointValue

RG
MACRO

Freq

SpeedRef Out
Sine/Cos

Constant 0
lsw=0

lsw=1

IqRef

Constant 0
lsw=0

lsw=1

Switched manually
in CCS watch

window

Procedure for Running Motor Control Incremental Builds www.ti.com

12.3 Level 3 Incremental Build

Figure 29. Level 3 Incremental System Build Block Diagram

Assuming the previous section completes successfully, this section verifies the dq-axis current regulation
performed by the PI modules and speed measurement modules using QEP (optional). To confirm the
operation of current regulation, the gains of these two PI controllers must be tuned for proper operation.
1. Open Pfc_PM_Sensorless-Settings.h, and select the level 3 incremental build option by setting the

BUILDLEVEL to LEVEL3 (#define BUILDLEVEL LEVEL3).
2. Right-click on the project name, and click Rebuild Project.
3. When the build completes, click the Debug button, reset the CPU, restart, enable real-time mode, and

run the program.
4. Set EnableFlag to 1 in the Expressions window. The IsrTicker variable will continue increasing; confirm

this by watching the variable in the Expressions window. While this occurs, the CPU computes the
offset of the analog channels sensing phase-current feedback. After this is done, Isr1Tickerill continues
to count, indicating the main control ISR is running. This confirms that the system interrupt is working
properly.

In the software, the key variables to be adjusted are:
• SpeedRef (Q24): for changing the rotor speed in per-unit
• IdRef(Q24): for changing the d-qxis voltage in per-unit
• IqRef(Q24): for changing the q-axis voltage in per-unit

In this build, the motor is supplied by AC input voltage, and the (AC) motor current is dynamically
regulated by using the PI module through the Park transformation on the motor currents.

36 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Procedure for Running Motor Control Incremental Builds

The steps are explained as follows:
1. Compile, load, and run the program with real-time mode.
2. Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different), Idref to zero, and Iqref

to 0.05 pu.
3. Gradually increase voltage at the variac or DC power supply to get an appropriate DC bus voltage.
4. Add the soft-switch variable lsw to the Expressions window to switch from current loop to speed loop.

In the code, lsw manages the loop setting as follows:
• lsw=0, lock the rotor of the motor
• lsw=1, run the motor with closed-current loop

5. Check pi_id.Fbk in the Expressions windows with the continuous refresh feature, whether or not it
should be keeping track of pi_id.Ref for the PI module. If not, adjust its PI gains properly.

6. Check pi_iq.Fbk in the Expressions windows with the continuous refresh feature, whether or not it
should be keeping track of pi_iq.Ref for the PI module. If not, adjust its PI gains properly.

7. Confirm these two PI modules, by trying different values of pi_id.Ref and pi_iq.Ref, or SpeedRef.
8. For both PI controllers, the proportional, integral, derivative, and integral correction gains may be re-

tuned for the satisfied responses.
9. Bring the system to a safe stop as described at the end of build 1, by reducing the bus voltage, taking

the controller out of real-time mode, and resetting.
10. The motor should stop. Once stopped, terminate the debug session.

While running this build, the current waveforms in the CCS graphs should appear as shown in Figure 30.

Deadband = 1.66 µsec, Vdcbus = 300 V , dlog.trig_value = 100

Figure 30. rg1.Out, Measured Theta and Phase A and B Current Waveforms

37SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Procedure for Running Motor Control Incremental Builds www.ti.com

12.3.1 Level 3B – QEP / SPEED_FR Test
This section verifies the QEP1 driver and its speed calculation. The QEP drive macro determines the rotor
position and generates a direction (of rotation) signal from the shaft position encoder pulses. Ensure that
the output of the incremental encoder is connected to [Main]-H1, and the QEP and SPEED_FR macros
are initialized properly in the Pfc_PM_Sensorless.c file, depending on the features of the speed sensor.
Refer to the .pdf files regarding the details of related macros in motor control folder
(C:\TI\controlSUITE\libs\app_libs\motor_control). The steps to verify these two software modules related to
the speed measurement are:
1. Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different).
2. Compile, load, and run the program with real-time mode, then increase the voltage at the variac or DC

power supply for the appropriate DC bus voltage.
3. Add the soft-switch variable lsw to the Expressions window to switch from current loop to speed loop.

In the code, lsw manages the loop setting as follows:
• lsw=0, lock the rotor of the motor
• lsw=1, close the current loop

4. Set lsw to 1. Now the motor is running close to reference speed. Check the speed1.Speed in the
Expressions window with the continuous refresh feature, whether or not the measured speed is around
the speed reference.

5. Confirm these modules by trying different values of SpeedRef to test the speed.
6. Use an oscilloscope to view the electrical angle output, ElecTheta, from the QEP_MACRO module,

and the emulated rotor angle, Out, from the RG_MACRO at the PWMDAC outputs with external low-
pass filters.

7. Check that both qep1.ElecTheta and rg1.Out have a saw-tooth wave shape and have the same period.
If the measured angle is in opposite direction, change the order of the motor cables connected to the
inverter output (TB3 for HVDMC kit).

8. Qep1.ElecTheta should be slightly trailing rg1.out; if not, adjust the calibration angle.
9. Check in the Expressions window that qep1.IndexSyncFlag is set back to 0xF0 every time it resets to 0

by hand. Add the variable to the Expressions window if it is not already in the Expressions window.
10. Bring the system to a safe stop, as described at the end of build 1, by reducing the bus voltage,

taking the controller out of real-time mode, and resetting. Once stopped, terminate the debug session.
11. The calibration angle of the encoder is detected in the code as detailed in the following steps. This is

an optional procedure for sensorless FOC speed loop tuning. If the user prefers to use an encoder to
tune the speed loop and apply the schemes given in level 5A, then the exact rotor position is not
needed. However, if the user tunes the speed loop as in level 5C, then the exact rotor position
information is needed, thus the calibration angle must be detected.

Use the following steps to verify and perform the calibration angle of the encoder.
1. Ensure EQep1Regs.QPOSCNT, EQep1Regs.QPOSILAT, Init_IFlag, qep1.CalibratedAngle, and lsw

are displayed in the Expressions window.
2. Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different).
3. Compile, load, and run the program with real-time mode, then increase the voltage at the variac or DC

power supply for the appropriate DC bus voltage.
4. The rotor should now be locked. Set lsw to 1 to spin the motor. When the first index signal is detected

by QEP, the EQep1Regs.QPOSILAT register latches the angle offset between initial rotor position and
the encoder index in the code. Later, EQep1Regs.QPOSILAT is set to the maximum of
EQep1Regs.QPOSCNT as it latches the counter value for each index signal. In the code,
qep1.CalibratedAngle keeps the initial offset value. This value can be recorded to initialize
qep1.CalibratedAngle at the initialization section in Pfc_PM_Sensorless.c, or it can be detected in the
code each time the motor restarts. The calibration angle might be different for different start-ups and
can be formulated as follows:

Calibration Angle = Offset Angle ± n . Line Encoder

38 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

SVGEN_MF
MACRO

PWM1 A/B

PWM2 A/B

PWM3 A/B

Mfunc_C1

Mfunc_C3

Mfunc_C2

Ta

Tc

Tb

Ualpha

Ubeta

 Level 4 verifies the rotor position and speed estimation performed by eSMO and SE macros

Alpha

Beta

Qs

Ds
IdRef

PM
Motor

PWM
MACRO

PWM
HW

IPARK
MACRO

CLARKE
MACRO

As

Bs

Alpha

Beta

Alpha

Beta

QEPn

SPEED FR
MACRO ElecTheta

Direction
QEP

MACRO
QEP
HW

Speed

SpeedRpm

Q_Out
Ref

PI
 MACRO
Iq Reg

PI
 MACRO
Id Reg

D_Out

Fbk

Ref

Fbk

Ds

Qs

PHASE
VOLT

MACRO

Vabc

Valpha

Vbeta

ADCIn1 (Ia)

ADCIn2 (Ib)

ADCIn3 (Ic)

AdcResult0

AdcResult1

ADCIn4 (Vdc)AdcResult3

ADC
HW

3-Phase
Inverter

Ta

Tb

Tc

DcBusVolt

ADC
MACRO

Valpha

Vbeta

Isalpha

Isbeta
Theta

Estimated
Speed

PARK
MACRO

TargetValue

RC
MACRO

SetPointValue

RG
MACRO

Freq

SpeedRef Out
Sine/Cos

Constant 0
lsw=0

lsw=1

IqRef

Constant 0
lsw=0

lsw=1

Switched manually
in CCS watch

window

SMO
MODULE

Enhanced
Sliding

mode rotor
angle

estimator

SE
MACRO

Rotor speed
estimator

www.ti.com Procedure for Running Motor Control Incremental Builds

12.4 Level 4 Incremental Build

Figure 31. Level 4 Incremental System Build Block Diagram

Assuming the steps in the previous section complete successfully, this section verifies the estimated rotor
position and speed estimation performed by the SMO_MODULE (enhanced sliding mode observer) and
SE_MACRO modules, respectively.
1. Open Pfc_PM_Sensorless-Settings.h, and select the level 4 incremental build option by setting the

BUILDLEVEL to LEVEL4 (#define BUILDLEVEL LEVEL4).
2. Right-click on the project name, and click Rebuild Project.
3. When the build completes, click the Debug button, reset the CPU, restart, enable real-time mode, and

run the program.
4. Set EnableFlag to 1 in the Expressions window. The IsrTicker variable continues increasing; confirm

this by watching the variable in the Expressions window. While this occurs, the CPU computes the
offset of the analog channels sensing phase-current feedback. After this is done, Isr1Ticker continues
to count, indicating the main control ISR is running. This confirms that the system interrupt is working
properly.

In the software, the key variables to be adjusted are:
• SpeedRef (Q24): for changing the rotor speed in per-unit
• IdRef (Q24): for changing the d-qxis voltage in per-unit
• IqRef (Q24): for changing the q-axis voltage in per-unit

The tuning of sliding-mode and low-pass filter gains (Kslide and Kslf, respectively) inside the rotor position
estimator may be critical for low-speed operation. The key steps are:

39SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Procedure for Running Motor Control Incremental Builds www.ti.com

1. Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different).
2. Compile, load, and run the program with real-time mode, then increase the voltage at the variac or DC

power supply to get the appropriate DC bus voltage.
3. Set lsw = 0 to align and lock the rotor of the motor.
4. Set lsw to 1 to get the motor running close to reference speed. Compare esmo1.Theta with rg1.Out at

the test points TP6 and TP4, respectively. They points should be identical, with a small phase shift.
5. If esmo1.Theta does not give the saw tooth waveform, the Kslide and Kslf inside the sliding mode

observer must be retuned.
6. Try different values of SpeedRef to confirm rotor position estimation.
7. Compare speed3.EstimatedSpeed with the reference speed in the Expressions windows with the

continuous refresh feature, whether or not it is nearly the same.
8. Try different values of SpeedRef to confirm the open-loop speed estimator.
9. Bring the system to a safe stop as described at the end of build 1, by reducing the bus voltage, taking

the controller out of real-time mode, and resetting.

While running this build, the current waveforms in the CCS graphs should appear as shown in Figure 32.

dlog.trig_value = 100, deadband = 1.66 µsec, Vdcbus = 300 V

Figure 32. Measured Theta, Estimated Theta (SMO), rg1. Out and Phase A Current

40 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

SVGEN_MF
MACRO

PWM1 A/B

PWM2 A/B

PWM3 A/B

Mfunc_C1

Mfunc_C3

Mfunc_C2

Ta

Tc

Tb

Ualpha

Ubeta

 Level 5 verifies the speed PI macro and speed loop. The Speed loop is closed using measured speed as
feedback

Alpha

Beta

Qs

Ds
IdRef

PM
Motor

PWM
MACRO

PWM
HW

IPARK
MACRO

CLARKE
MACRO

As

Bs

Alpha

Beta

Alpha

Beta

QEPn

SPEED FR
MACRO ElecTheta

Direction
QEP

MACRO
QEP
HW

Speed

SpeedRpm

Q_Out
Ref

PI
 MACRO
Iq Reg

PI
 MACRO
Id Reg

D_Out

Fbk

Ref

Fbk

Ds

Qs

PHASE
VOLT

MACRO

Vabc

Valpha

Vbeta

ADCIn1 (Ia)

ADCIn2 (Ib)

ADCIn3 (Ic)

AdcResult0

AdcResult1

ADCIn4 (Vdc)AdcResult3

ADC
HW

3-Phase
Inverter

Ta

Tb

Tc

DcBusVolt

ADC
MACRO

Valpha

Vbeta

Isalpha

Isbeta
Theta

Estimated
Speed

PARK
MACRO

TargetValue

RC
MACRO

SetPointValue

RG
MACRO

Freq

SpeedRef Out
Sine/Cos

Constant 0

lsw=0

lsw=1

Switched manually
in CCS watch

window

IqRef

Constant 0 lsw=0

lsw=1

PI
 MACRO
Spd Reg Spd_Out

Ref

Fbk

SpeedRef

lsw=2

lsw=2

SMO
MODULE

Enhanced
Sliding

mode rotor
angle

estimator

SE
MACRO

Rotor speed
estimator

www.ti.com Procedure for Running Motor Control Incremental Builds

12.5 Level 5 Incremental Build

Figure 33. Level 5 Incremental System Build Block Diagram

Assuming the steps in the previous section complete successfully, this section verifies the speed regulator
performed by the PI module. The system speed loop is closed by using the measured speed from QEP as
a feedback. Because the SMO MODULE is already verified, its angle output is used to decouple the motor
currents to Id and Iq.
1. Open Pfc_PM_Sensorless-Settings.h, and select the level 5 incremental build option by setting the

BUILDLEVEL to LEVEL5 (#define BUILDLEVEL LEVEL5).
2. Right-click on the project name, and click Rebuild Project.
3. When the build completes, click the Debug button, reset the CPU, restart, enable real-time mode, and

run the program.
4. Set EnableFlag to 1 in the Expressions window. The IsrTicker variable continues increasing; confirm

this by watching the variable in the Expressions window. While this occurs, the CPU computes the
offset of the analog channels sensing phase-current feedback. After this is done, Isr1Ticker continues
to count, indicating the main control ISR is running. This confirms that the system interrupt is working
properly.

In the software, the key variables to be adjusted are:
• SpeedRef (Q24): for changing the rotor speed in per-unit
• IdRef (Q24): for changing the d-qxis voltage in per-unit

41SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

SVGEN_MF
MACRO

PWM1 A/B

PWM2 A/B

PWM3 A/B

Mfunc_C1

Mfunc_C3

Mfunc_C2

Ta

Tc

Tb

Ualpha

Ubeta

 Level 5 verifies the estimated theta

Alpha

Beta

Qs

Ds
IdRef

PM
Motor

PWM
MACRO

PWM
HW

IPARK
MACRO

CLARKE
MACRO

As

Bs

Alpha

Beta

Alpha

Beta

QEPn

SPEED FR
MACRO ElecTheta

Direction
QEP

MACRO
QEP
HW

Speed

SpeedRpm

Q_Out
Ref

PI
 MACRO
Iq Reg

PI
 MACRO
Id Reg

D_Out

Fbk

Ref

Fbk

Ds

Qs

PHASE
VOLT

MACRO

Vabc

Valpha

Vbeta

ADCIn1 (Ia)

ADCIn2 (Ib)

ADCIn3 (Ic)

AdcResult0

AdcResult1

ADCIn4 (Vdc)AdcResult3

ADC
HW

3-Phase
Inverter

Ta

Tb

Tc

DcBusVolt

ADC
MACRO

Valpha

Vbeta

Isalpha

Isbeta
Theta

Estimated
Speed

PARK
MACRO

TargetValue

RC
MACRO

SetPointValue

RG
MACRO

Freq

SpeedRef Out
Sine/Cos

Constant 0

lsw=0

lsw=1

Switched manually
in CCS watch

window

Constant 0
lsw = 0

lsw = 1, 2

lsw=2

IqRef

SMO
MODULE

Enhanced
Sliding

mode rotor
angle

estimator

SE
MACRO

Rotor speed
estimator

Procedure for Running Motor Control Incremental Builds www.ti.com

12.5.1 Level 5A
The speed loop is closed by using measured speed. The key steps are:
1. Compile, load, and run the program with real-time mode.
2. Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different).
3. Set lsw to 0 to align and lock the rotor of the motor.
4. Set lsw to 1. Gradually increase the voltage at the variac or DC power supply to get an appropriate DC

bus voltage. The motor should now be running at the reference speed (0.3 pu).
5. Set lsw to 2 and close the speed loop.
6. Compare Speed with SpeedRef in the Expressions windows with the continuous refresh feature,

whether or not it is nearly the same.
7. To confirm this speed PI module, try different values of SpeedRef.
8. For the speed PI controller, the proportional, integral, derivative, and integral correction gains may be

retuned for good responses.
9. At very low-speed range, the performance of speed response relies heavily on the good rotor flux

angle computed by the flux estimator.
10. Bring the system to a safe stop as described at the end of build 1, by reducing the bus voltage, taking

the controller out of real-time mode, and resetting.

NOTE: IdRef must be set to zero at all times.

12.5.2 Level 5B (Alternative Method)

Figure 34. Level 5B Incremental System Build Block Diagram

42 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

SVGEN_MF
MACRO

PWM1 A/B

PWM2 A/B

PWM3 A/B

Mfunc_C1

Mfunc_C3

Mfunc_C2

Ta

Tc

Tb

Ualpha

Ubeta

 Level 6 verifies the complete system

Alpha

Beta

Qs

Ds
IdRef

PM
Motor

PWM
MACRO

PWM
HW

IPARK
MACRO

CLARKE
MACRO

As

Bs

Alpha

Beta

Alpha

Beta

Q_Out
Ref

PI
 MACRO
Iq Reg

PI
 MACRO
Id Reg

D_Out

Fbk

Ref

Fbk

Ds

Qs

PHASE
VOLT

MACRO

Vabc

Valpha

Vbeta

ADCIn1 (Ia)

ADCIn2 (Ib)

ADCIn3 (Ic)

AdcResult0

AdcResult1

ADCIn4 (Vdc)AdcResult3

ADC
HW

3-Phase
Inverter

Ta

Tb

Tc

DcBusVolt

ADC
MACRO

Valpha

Vbeta

Isalpha

Isbeta
Theta

Estimated
Speed

PARK
MACRO

TargetValue

RC
MACRO

SetPointValue

RG
MACRO

Freq

SpeedRef Out
Sine/Cos

Constant 0

lsw=0

lsw=1

Switched manually
in CCS watch

window

IqRef

Constant 0 lsw=0

lsw=1

PI
 MACRO
Spd Reg Spd_Out

Ref

Fbk

SpeedRef

lsw=2

lsw=2

SMO
MODULE

Enhanced
Sliding

mode rotor
angle

estimator

SE
MACRO

Rotor speed
estimator

www.ti.com Procedure for Running Motor Control Incremental Builds

Tuning both speed PI and SMO at the same time may not be possible for some applications. Test the
eSMO without speed PI in the loop by disconnecting the speed PI and Iq PI modules in the code, as
shown in Figure 34, and apply constant Iqref as the reference for Iq PI. After tuning SMO (Kslide), the
motor should spin smoothly, and the estimated angle should be clear sawtooth.

In this scheme the speed is not controlled, and a nonzero torque reference (Iqref) spins the motor very
fast, unless loaded. Thus, keep the Iqref low initially, and load the motor using a brake or generator (or
manually if the motor is small enough). If the motor speed is too low or the torque generated by the motor
cannot handle the applied load, increase Iqref or reduce the amount of load. After tuning the SMO
MODULE, add speed PI into the system, as shown in Figure 35, and tune the PI coefficients, if necessary.
This method helps the user tune SMO and speed PI separately.

If the test is implemented on a custom inverter or a different motor is used, then:
• Check the parameters in Pfc_PM_Sensorless-Settings.h. Ensure that the base (pu) quantities are set

to maximum measurable current and voltage, and the motor electrical parameters are correct.
• The DC bus voltage should be high enough so as not to saturate the PI outputs.
• Re-run the same experiment and keep tuning the SMO gains.

12.6 Level 6 Incremental Build

Figure 35. Level 6 Incremental System Build Block Diagram

Assuming the steps in the previous section complete successfully, this section verifies the speed regulator
performed by the PI module. The system speed loop is closed by using the estimated speed as a
feedback.
1. Open Pfc_PM_Sensorless-Settings.h, and select the level 6 incremental build option by setting the

BUILDLEVEL to LEVEL6 (#define BUILDLEVEL LEVEL6).
2. Right-click on the project name, and click Rebuild Project.

43SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Procedure for Running Motor Control Incremental Builds www.ti.com

3. When the build completes, click the Debug button, reset the CPU, restart, enable real-time mode, and
run the program.

4. Set EnableFlag to 1 in the Expressions window. The IsrTicker variable continues increasing; confirm
this by watching the variable in the Expressions window. While this occurs, the CPU computes the
offset of the analog channels sensing phase-current feedback. After this is done, Isr1Ticker continues
to count, indicating the main control ISR is running. This confirms that the system interrupt is working
properly.

In the software, the key variables to be adjusted are:
• SpeedRef (Q24): for changing the rotor speed in per-unit
• IdRef (Q24): for changing the d-qxis voltage in per-unit

The speed loop is closed by using estimated speed. The key steps are:
1. Compile, load, and run the program with real-time mode.
2. Set SpeedRef to 0.3 pu (or another suitable value if the base speed is different) and Iqref to 0.1 pu.
3. Set lsw to 0 to align and lock the rotor of the motor.
4. Set lsw to 1. Gradually increase the voltage at the variac or DC power supply to get an appropriate DC

bus voltage. The motor should now be running at this reference speed (0.3 pu).
5. Set lsw to 2 to close the speed loop. After a few tests, the user can determine the best time to close

the speed loop, depending on the load-speed profile, then close the speed loop in the code. For most
applications, the speed loop can be closed before the motor speed reaches SpeedRef.

6. Compare speed3.EstimatedSpeed with SpeedRef in the Expressions windows with the continuous
refresh feature, whether or not it is nearly the same.

7. To confirm this speed PI module, try different values of SpeedRef.
8. For the speed PI controller, the proportional, integral, derivative, and integral correction gains may be

retuned for good responses.
9. At very low-speed range, the performance of speed response relies heavily on the good rotor flux

angle, computed by the flux estimator.
10. Bring the system to a safe stop as described at the end of build 1, by reducing the bus voltage, taking

the controller out of real-time mode, and resetting.

While running this build, the current waveforms in the CCS graphs should appear as shown in Figure 36
and Figure 37.

44 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Procedure for Running Motor Control Incremental Builds

dlog.trig_value = 100, deadband = 1.66 µsec, Vdcbus = 300 V, pi_spd.Kp = 1.0

Figure 36. Waveforms of Phase A and B Currents, Calculated Phase A Voltage, and Estimated Theta by
SMO Under No-load and 0.3-pu Speed

dlog.trig_value = 100, deadband = 1.66 µsec, Vdcbus = 300 V, pi_spd.Kp = 1.0

Figure 37. Waveforms of Phase A and B Currents, Calculated Phase A Voltage, and Estimated Theta by
SMO Under 0.33-pu Load and 0.5-pu Speed

45SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

Integrated Software Test Strategy www.ti.com

Figure 38. Flux and Torque Components of the Stator Current in the Synchronous Reference Frame
Under 0.33-pu Step-Load and 0.5-pu Speed Monitored from PWMDAC Output

13 Integrated Software Test Strategy
If the PFC and motor control blocks are individually verified, they can be connected together and tested.
1. Set up the hardware configuration as shown in Figure 15. Do not turn on the power switch yet.
2. Ensure that isolation requirements are met for the safety of the test setup, and for any instruments that

may be connected to the test.
3. Apply a control power supply to the board through [M6]-JP1, and turn on the switch [M6]-SW1.
4. Because both the PFC and motor control software are already verified, the user can set the

BUILD_LEVEL of PFC and MOTOR at their highest LEVEL, which is 2 and 6, respectively.
5. Ensure the PFC output voltage command is set to a safe rating of the motor. The default setting is for

300 V, which will suit a 110-V/60-Hz supply. For 220-V/50-Hz mains, a higher voltage command (>380
V) may be required for a better line current. The motor must be rated for the bus voltage. If a voltmeter
is available, connect it across the DC bus to track the bus voltage.

6. Compile, load, and run the program with real-time mode.
7. Set the AC voltage to 120 V and turn it on to power the board
8. Preferably, operate the PFC with minimal load. Before turning on the PFC, turn on the motor by setting

lsw = 0, which forces some current through the motor for alignment.

46 Single-Axis Motor Control and PFC SPRABZ5–July 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

www.ti.com Integrated Software Test Strategy

9. Turn the PFC on by setting start_flag = 1 in the Expressions window. Watch the DC bus voltage ramp
gently to the commanded level and hold there.

10. Watch the line current waveform improve. At light loads and low DC bus voltage conditions, the power
factor improvement may be moderate. After this, the motor control section may be evaluated as in
BUILD_LEVEL 6.

11. After the evaluation completes, turn off the AC power and wait until the motor stops, or until there is
no DC bus voltage.

47SPRABZ5–July 2015 Single-Axis Motor Control and PFC
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRABZ5

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Single-Axis Motor Control and PFC
	1 Introduction
	2 Permanent Magnet Motors
	2.1 Synchronous Motor Operation

	3 Field-Oriented Control
	3.1 Introduction
	3.2 The Philosophy Behind the FOC
	3.3 Technical Background
	3.4 Space Vector Definition and Projection
	3.4.1 The (a,b,c) → (α, β) Projection (Clarke Transformation)
	3.4.2 The (α, β) → (d,q) Projection (Park Transformation)

	3.5 The Basic Scheme for the FOC
	3.6 Rotor Flux Position

	4 Benefits of 32-Bit C2000 Controllers
	5 TI Literature and Digital Motor Control (DMC) Library
	5.1 Note on PWM Frequencies

	6 System Overview
	7 Hardware Configuration
	7.1 Hardware Setup Instructions

	8 Control Software Flow
	9 PFC Software Overview
	9.1 PFC Incremental Builds

	10 Motor Control Software Overview
	10.1 PFC Incremental Builds
	10.2 Incremental System Build for Motor Control
	10.2.1 Software Setup Instructions

	11 Procedure for Running PFC Incremental Builds
	11.1 Build 1: Open-Loop PFC With ADC Measurements
	11.1.1 Overview
	11.1.2 Protection

	11.2 Build 2: PFC With Closed Voltage and Current Loop
	11.2.1 Start-up, Inrush Current Control, and Slew-Limit

	11.3 Build and Load Project

	12 Procedure for Running Motor Control Incremental Builds
	12.1 Level 1 Incremental Build
	12.1.1 Level 1A (SVGEN_MACRO Test)
	12.1.2 Level 1B (Testing the PWMDAC Macro)
	12.1.3 Level 1C (PWM_MACRO and INVERTER Test)

	12.2 Level 2 Incremental Build
	12.2.1 Phase 2A – Setting Overcurrent Limit in Software
	12.2.2 Level 2B – Testing the Phase Voltage Module
	12.2.3 Phase 2C – Testing the Clarke Module
	12.2.4 Level 2D – Adjusting PI Limits

	12.3 Level 3 Incremental Build
	12.3.1 Level 3B – QEP / SPEED_FR Test

	12.4 Level 4 Incremental Build
	12.5 Level 5 Incremental Build
	12.5.1 Level 5A
	12.5.2 Level 5B (Alternative Method)

	12.6 Level 6 Incremental Build

	13 Integrated Software Test Strategy

	Important Notice

