{? TEXAS

Application Report

l NSTRUMENTS SPRA838A - February 2004
TMS320C6416 Power-On Self Test
David Abensur Wireless Infrastructure Applications

Sebastien Tomas

ABSTRACT

The Power-On Self Test (POST) is designed to verify the operation of the TMS320C6416.
Six modules are included in this test: Chk6xTest, MemoryEdmaTest, VcpTest, TcpTest,
McbspTest, and TimerTest. These modules check the proper operation of the CPU core,
internal memory and several on-chip peripherals (EDMA, McBSPs, timers, Viterbi and turbo
decoder coprocessors).

It is important to note that this program only provides a confidence check. It is not as
comprehensive as the tests done at production, which thoroughly check the device’s logic,
performance, and electrical parameters. The sample code described in this application
report can be downloaded from http://www.ti.com/lit/zip/SPRA838.

Contents
1 Introduction i e aa e 2
1.1 System REQUIFEMENTSooiiiiiii ettt e e e e e e e e ns 2
L =S S U o (1] = R 2
P2 "o Yo LW (=30 1= od g o) o O 4
2.1 TMS320C64X Core MOAUIEiiiii e e e e 4
2.2 Internal Memory and EDMA MOAUIEcooiiiiiiiie 5
23 VCP ModUle 8
24 TCP Module 8
25 MCBSP MOAUIE.... .o 9
b2 T 12T 1Y o T [PP 10
3 Changing the TMS320C6416 POST ENdianesscccccerriiiriiiinnmmmnnrsinsssssssns s ssssnnees 10
O 1 4 o g 0o Yo - 10
£ = =Y =] 4 Lo = 16
List of Figures
Figure 1. Main() Routine Flowchart 3
Figure 2. MemoryEdmaTest() Module FIOWChart............cooiiiiiiiii e 6
Figure 3. BUFTEE TEST ...ttt ettt et e e neenaee s 7
List of Tables
Table 1. C64x Specific Instructions by Functional Unit 4
Table 2. The VCP_BaseParams e 8
Table 3. The TCP_BaseParams e 9
Table 4. Yy o G O Yo [SRR 10

Trademarks are the property of their respective owners.

http://www.ti.com/lit/zip/SPRA838

Q‘ TEXAS

SPRAB838A INSTRUMENTS

1

1.1

1.2

2

Introduction

The Power-On Self Test (POST) is designed to verify the operation of the TMS320C6416. Six
modules are included in this test: Chk6xTest, MemoryEdmaTest, VcpTest, TcpTest,
McbspTest and TimerTest. These modules check the proper operation of the CPU core,
internal memory and some on-chip peripherals (EDMA, McBSPs, Timers, Viterbi and turbo
coprocessors). The test needs to be performed when the TMS320C6416 DSP is in its initial
state (after reset). All modules consist of C-callable functions.

The CPU core module (Chk6xTest) is based on the TMS320C62x Self-Check Test (SPRAG35).
To be able to test the TMS320C64 16 instruction set entirely, it is crucial to add the new specific
instructions on the CPU core test. These modifications are described in the third chapter.

The chip support library (CSL) is used when testing the enhanced DMA (EDMA), Viterbi decoder
coprocessor (VCP), turbo decoder coprocessor (TCP), multichannel buffered serial port
(McBSP) and Timers. The CSL provides a C-language interface for configuring and controlling
on-chip peripherals.

It is important to note that this program only provides a confidence check. It is not as
comprehensive as the tests done at production, which thoroughly check the device’s logic,
performance, and electrical parameters. This program is not capable of detecting all potential
faults.

System Requirements

The following is required to use the TMS320C6416 POST:
A suitable host PC to support Tl tools

Code Composer Studio 2.10 or later revisions
Emulator tools (XDS510, etc.)
A board with the TMS320C6416 processor to run the POST test

Test Structure

The test contains six modules:

e Module 1. Chk6xTest ()

Verifies the CPU instruction set. This module has eight assembly files to perform the CPU
test:

1. alu_64x.asm Arithmetic operations

2. alu40.asm 40-bit Arithmetic

3. basic_64x.asm: Basic operations

4. bit.asm: Bit management

5. circular_64x.asm: Circular addressing instructions

6. cond.asm: Branch and conditional instructions
7. mult_64x: Multiplier operations

8. sat_64x: Saturation instructions

TMS320C6416 Power-On Self Test

{'f TeEXxAS
INSTRUMENTS

SPRAB838A

e Module 2. MemoryEdmaTest ()

Verifies the enhanced DMA (EDMA) and on-chip memory by writing, moving, comparing and
restoring internal data memory through the EDMA.

e Module 3. VcpTest ()
Checks the VCP on a 3GPP AMR type of frame

e Module 4. TcpTest ()
Checks the TCP on a 3GPP 128kbps type of frame

e Module 5. McBspTest ()
Verifies the McBSP operation by switching on the digital loopback bit in the serial port control
register (SPCR)
e Module 6. TimerTest ()

Verifies the timers by starting a counter in a closed loop and by waiting until a timer
interruption is generated. The value of the counter variable should be similar to the number
of cycles executed in the test.

As soon as one module fails, the test will skip the rest of the modules and will then enter an
infinite loop, keeping the error value of the first failed module in a C variable called Error
(see Figure 1).

C

Start

D

v
Tror = No Yes
CSL_init() Error =0
etCPUinfo

v
Error = Chk6xTest No Error =0 Yes
v
E = No Yes
Memo%?&maTest Error =0
M N Y
Error = VcpTest ° Error =0 es
v
Error = TcpTest W Yes
v
N Y
Error = McBspTest 40@ es
v

Error = TimerTest

Figure 1. Main() Routine Flowchart

TMS320C6416 Power-On Self Test 3

Q‘ TEXAS

SPRAB838A INSTRUMENTS
2 Modules Description
21 TMS320C64x Core Module
This module is based on the TMS320C62x Self-Check Program (SPRA635), which verifies the
proper operation of the TMS320C62x instructions. As the TMS320C64x provides a superset of
the TMS320C62x architecture, all the TMS320C62x instructions are still tested. Nevertheless,
extensions are required to include the additional instructions of the TMS320C64x. These
additional instructions are tested in alu_64x.asm, basic_64x.asm, mult_64x and sat_64x
assembly files.
Table 1 shows the TMS320C64x specific instructions. For more details, see TMS320C6000 CPU
and Instruction Set (SPRU189F).
Table 1. C64x Specific Instructions by Functional Unit
.L Unit .M Unit .S Unit .D Unit
ABS2 AVG2 ADD2 ADD2
ADD2 AVGU4 ADDKPC ADDAD
ADD4 BITC4 AND AND
AND BITR ANDN ANDN
ANDN DEAL BDEC LDDW
MAX2 DOTP2 BNOP LDNDW
MAXU4 DOTPN2 BPOS LDNW
MIN2 DOTPNRSU2 CMPEQ2 MVK
MINU4 DOTPNRUS2 CMPEQ4 OR
MVK DOTPRSU2 CMPGT2 STDW
OR DOTPRUS2 CMPGTU4 STDNW
PACK2 DOTPSU4 CMPL2 STNW
PACKH2 DOTPUS4 CMPLTU4 SuB2
PACKH4 DOTPU4 MVK XOR
PACKHL2 GMPY4 OR
PACKL4 MPY2 PACK2
PACKLH2 MPYHI PACKH2
SHLMB MPYIH PACKHL2
SHRMB MPYHIR PACKLH2
suB2 MPYIHR SADD2
suB4 MPYLI SADDU4
SUBABS4 MPYIL SADDSU2
SWAP2 MPYLIR SADDUS2
SWAP4 MPYILR SHLMB
UNPKHU4 MPYSU4 SHR2
UNPKLU4 MPYUS4 SHRMB
XOR MPYU4 SHRU2
4 TMS320C6416 Power-On Self Test

{'? TEXAS

INSTRUMENTS SPRA838A
.L Unit .M Unit .S Unit .D Unit
MVD SPACK2
ROTL SPACKU4
SHFL SUB2
SMPY2 SWAP2
SSHVL UNPKHU4
SSHVR UNPKLU4
XPND2 XOR
XPND4

2.2 Internal Memory and EDMA Module

In addition to a memory buffer (0OxO00FA000-0x00100000), the internal memory is split into 125
blocks. The buffer is used to back up, write, read, and compare each block. Figure 2 describes
the internal memory test process for data block 1. This process is repeated until all the125
blocks have been tested.

TMS320C6416 Power-On Self Test 5

Q‘ TEXAS

SPRAB838A INSTRUMENTS
0x00000000 <4
Data Block 1
0x00002000 h
Data Block 2
0x00004000
Data Block 3

ONORONO

0x000F8000
Data Block 125

0x000FA000

> BITRBLOCKT

0x000FCOOO

> IMAGEBL <

0x000FE000 4
BACKUP

0x00100000

Save Data Block 1 in the BACKUP space

Write the data from BITRBLOCK to Data Block 1
Read and write the data from Data Block 1 to IMAGEBL

Restore the Data Block 1 values from the BACKUP memory

O&HEO®®

Compare IMAGEBL with BITRBLOCK
T BITRBLOCK is filled with generated data described later in this chapter (steps 1-5).

Figure 2. MemoryEdmaTest() Module Flowchart

The buffer plays a key role in the memory test, so it is important to first check the proper
operation of the memory where the buffer resides. The procedure described below tests the
reserved memory used as a buffer.

1. Save the 32 bits address number Addna (see Figure 3) at the address Addna. When n
equals 1, Add15 = 0xO00FAO000.

2. Invert the address number Addng and save it back to the address Addnp (Addnp = Addna
+0x4). When n=1, Add1p = 0xO00FAQ04.

3. Bit reverse the address number Addna and save it back to the address Addnc (Addnc =
Addna +0x8). When n=1, Add1¢ = 0XxO00FA008.

6 TMS320C6416 Power-On Self Test

{'f TeEXxAS
INSTRUMENTS

SPRAB838A

4. Invert the previous bit-reversed word (specified in step 3) and save it back to the address
Addnd (Addngd = Addpg + 0xC). When n=1, Add1q = 0xO00FAQOC.

5. Repeat this process until the end of the buffer is reached (Add153g).

Addqa = 0x000FA000

Add1p = 0x000FA004

0000000000001111 1010000000000000 b
o 0 0O F A 0 O 0 h

11111111 111100000101 1111 11111111 b
F F F 0 5 F F Fh

Add1c = 0x000FA008

0000000000000101 1111 000000000000 b
o 0 O &5 F 0 O 0 h

Add1d = 0x000FA00C

11111111 111110100000 1111 11111111 b
F F F A 0 F F Fh

Add23 = 0x000FA010

0000000000001111 1010000000010000 b
0o 0 o F A 0 1 0 h

Addna

Addnb
Addnc

Addnd

Add1536a =0x000FFFF0

000000000000 1111 11111111 1111 0000b
o o0 0O F F F F 0 h

Add1536b =0x000FFFF4

1111 1111 1111 0000000000000000 1111b
F F F F 0 0 0 Fonh

Add1536c =0x000FFFF8

0000 11111111 1111 1111 000000000000b
o F F F F 0 O 0 h

Add1536d = 0X000FFFFQ

1111 0000000000000000 1111 1111 1111b
F 0 0O O 0O F F F h

a4

-
Valueqa = Addqa

\4

Value1p = ~{Value1a}

BITRBLOCK
Valueq¢ = bit reverse {Value1a}
Value1d = ~ (bit reverse {Value1¢})
Value2z = Add2,
Valuenpa
Valuenb IMAGEBL
Valuenc
Valuend
Valueq1536a = Add{1536a
Value1536b = ~{Value1536a}
Valueq536¢ = bit reverse {Value1536a} BACKUP
Valueq1536d = ~(bit reverse {Value1536d})
ad -
- L

Figure 3. Buffer Test

Once the buffer is filled, the next step is to recalculate each word and compare it to the values
contained in the memory buffer. If the buffer values don’t match the expected number, the test
will output an error.

6. Compare the address number Addna (see Figure 3) with the value contained at the
address Addng (Valueng). When n=1, Valueq13 = 0x000FAQ00.

7. Invert the address number Addng and compare it to the value contained at the address
Addnp (Valuenp). When n=1, Valueqp = OXFFFO5FFF.

8. Bit-reverse the address number Addng and compare it to the value contained at the
address Addnc (Valuenc). When n=1 = Value1¢ = 0x0005F000.

9. Invert the previous bit-reversed word (specified in step 8) and compare it to the value
contained at the address Addnd (Valuend). When n=1 = Value1q = OXFFFAOFFF.

10. Repeat this process until the end of the buffer is reached (Add1536).

Note that there is an automatic process that maintains coherency between L1D cache and L2
SRAM when using the EDMA. For more details regarding this topic, please review
TMS320C6000 Peripherals (SPRU190D) section 3.7.10, EDMA Coherency.

TMS320C6416 Power-On Self Test

7

Q‘ TEXAS

SPRAB838A INSTRUMENTS

2.3

24

VCP Module

The VCP is tested by comparing known values with the result generated by the Viterbi
coprocessor. The VCP outputs and inputs are sent and received through the EDMA.

Explanation of the Viterbi algorithm is beyond the scope of this document, but details can be
found in the Viterbi Decoder Coprocessor User’s Guide (SPRU533) and Using TMS320C6416
Coprocessors: Viterbi Coprocessor (VCP) (SPRA750).

The VCP base parameters structure used to set up the VCP programmable parameters is listed
in Table 2.

Table 2. The VCP_BaseParamst

Code Rate 3
Constraint Length 9
Frame Length 81
Yamamoto Threshold 0
State Index 0
Hard/Soft Decision 0
Output Parameter Read Flag 1

T Variable located in vep_parameters.h file.
The following steps roughly describe the VCP test (vepTcep.c file).

1 Generate the VCP input configuration register. vCPIC0-VCPIC5 registers are generated
using the VCP_BaseParams variable (Table 2) in conjunction with VCP_genParams and
VCP_genIc Application Programming Interfaces (APIs) of CSL.

2 Run the VepSubmi tEdma function. This will configure the EDMA to transmit? and receive?

all the information required by the VCP. More information on how to program the VCP

through the EDMA can be found in the VCP User’s Guide (SPRU533), chapter 10.

NOTE 1: Input Configuration Registers and Branch Metrics.
NOTE 2: Decisions (the EDMA has programmed 4 different possibilities to receive data depending on whether it is a Hard or Soft
Decision and whether the traceback mode is tailed or not) and output parameters data.

3 Execute the vCP_Start function included in the Chip Support Library (SPRU401D). This
API will generate a VCP Transmit event3 (VCPXEVT) that will trigger the EDMA and

execute step 2.
NOTE 3: VCPREVT (EDMA channel 28) and VCPXEVT (EDMA channel 29) are used as synchronization event for EDMA
transfer.

4 Check the decisions of the VCP. If the known values do not match the VCP output
decisions, an error value is returned.
TCP Module

The TCP test works in a similar way as the VCP. The TCP is tested by comparing known values
with the result generated by the Turbo coprocessor.

Explanation of the Turbo decoder process is beyond the scope of this document, but details can
be found in the Turbo Decoder Coprocessor User’s Guide (SPRU534) and Using TMS320C6416
Coprocessors: Turbo Coprocessor (TCP) (SPRA749).

TMS320C6416 Power-On Self Test

{'f TeEXxAS
INSTRUMENTS SPRA838A

2.5

The TCP base parameters structure used to set up the TCP programmable parameters is listed
in Table 3.

Table 3. The TCP_BaseParamst
TCP Decoder Standard3GPP/1S2000 0

Code Rate 3
Frame Length 2576
Prolog Size 32
Maximum lteration 8
SNR Threshold 0
Interleaver Flag 1
Output Parameter Read Flag 1

1 Variable located in tcp parameters.hfile.
The following steps roughly describe the TCP test (vepTcp.c file).

1 Generate the TCP input configuration register. TCPTIC0O-TCPIC11 registers are generated
using the TCP_BaseParams and hXabData variables in conjunction with
TCP_genParams and TCP_genIc APIs of CSL.

2 Runthe TcpSubmitEdma function. This will configure the EDMA to transmit4 and receive®

all the information required by the TCP. More information on how to program the TCP
through the EDMA can be found in the TCP User’s Guide (SPRU534), chapter 10.

NOTE 4: Input configuration parameters, systematic and parities data, and interleaver indexes data.
NOTE 5: Hard decisions and output parameters data.

3 Execute the TCP_Start function included in the Chip Support Library (SPRU401D). This
API will generate a TCP Transmit event® (TCPXEVT) that will trigger the EDMA and

execute step 2.

NOTE 6: TCPREVT (EDMA channel 30) and TCPXEVT (EDMA channel 31) are used as synchronization event for EDMA
transfer.

4 Check the decisions of the TCP. If the known values don’t match the TCP output
decisions, an error value is returned.

McBSP Module

The McBSP module enables the Digital Loop Back bit in the SPCR register to simplify the test.
Using the McBSP with the loopback enabled will not require an external input signal. This
module tests the three McBSPs.

Below is a description of the current module:
1. The data OxB16E5FFC is written into McBSPO.

2. The McBSPO reads the 8 LSB of the previous data and stores it in a variable called
mcbspdata.

3. The variable mcbspdata is written in McBSP1 and then it is read back through the same
serial port. The read value is stored again in the same variable mcbspdata.

4. Step 3 is repeated when testing McBSP2.
5. The C variable mcbspdata must be compared with 0x000000FC.

TMS320C6416 Power-On Self Test 9

Q‘ TEXAS

SPRAB838A INSTRUMENTS

2.6

10

Timer Module
This module tests the three timers.

The assembler routine start timer, starts running a timer and a counter. The timer is

configured to interrupt the routine every 100 times. As the TMS320C6416 internal timer input
clock runs at CPU rate/8 (check TMS320C6000 Peripherals Reference Guide, Table 13-1) two is
added to the counter variable count every 16 instructions.

When the timer counter register (CNT) register reaches 100, the interrupt is triggered and the
program counter (PC) jumps to the vector table and then to the interrupt service routine (ISR)
that closes the timer and sets a flag (t imer done =1) to exit the start timer routine.

If the counter is between 95 and 104 it is assumed that the timer is working correctly.

This process is repeated for Timer0, Timer1 and Timer2.

Changing the TMS320C6416 POST Endianess

The steps below are needed to change the POST endianess.

1 Change the compiler option to the correct endianess. Project —Build
Options...—»Compiler tab—Advanced category—Endianess—»>Little Endian OrBig
Endian (-me)

2 Change the included libraries in the linker option. Project —Build Options...—Linker

tab—Basic category—Include Libraries (-I) > “cs16416.1ib; rts6400.1ib” for Little
Endian or “cs16416e.1ib;rts6400e.1ib” for Big Endian.

3 Rebuild the POST.

Note that the test relies on the predefined symbolic constants: LITTLE_ENDIAN and BIG_EN-
DIAN.

Error Codes

Table 4 lists all possible error codes that the POST can return. It also gives the name of the
module that generates the error code. It is important to note that the code descriptions identify
only potential causes of the error. They should not be taken as absolute. Any number of actual
malfunctions could generate a particular error code. For example, a bad memory location would
cause every test using it to fail.

Table 4. Error Codes

Code Description Source File
11h LOAD instruction error [LD(B/BU)(H/HU)(W)] basic_64x
12h STORE instruction error [ST(B/BU)(H/HU)(W)] basic_64x
13h MV and MVC instructions error basic_64x
14h ZERO instruction error basic_64x
15h MVK, MVKH, MVKLH instructions error basic_64x
21h Shift and CMP instructions error alu_64x

{'f TeEXxAS
INSTRUMENTS SPRA838A

Table 4. Error Codes (Continued)

Code Description Source File
22h Logical instructions error (OR, XOR, AND etc.) alu_64x
23h Addition instructions error (ADDU, ADDK, ADD?2 etc.) alu_64x
24h Subtraction instructions error (SUB, SUBA etc.) alu_64x
25h SUBC instruction error alu_64x
26h SUB?2 instruction error alu_64x
9F001h ABS2 FAIL CODE alu_64x
9F002h ADD4 FAIL CODE alu_64x
9F003h ANDN FAIL CODE alu_64x
9F004h MAX2 FAIL CODE alu_64x
9F005h MAX4 FAIL CODE alu_64x
9F006h MIN2 FAIL CODE alu_64x
9F007h MINU4 FAIL CODE alu_64x
9F008h PACKH4 FAIL CODE alu_64x
9F009h PACKL4 FAIL CODE alu_64x
9F00Ah PACKL4 FAIL CODE alu_64x
9F00Bh PACKH2 FAIL CODE alu_64x
9F00Ch PACK2 FAIL CODE alu_64x
9F00Dh PACKL4 FAIL CODE alu_64x
9F00Eh PACKHL2 FAIL CODE alu_64x
9F00Fh PACKLH2 FAIL CODE alu_64x
9F010h SHLMB FAIL CODE alu_64x
9F011h SHRMB FAIL CODE alu_64x
9F012h SUB2 FAIL CODE alu_64x
9F013h SUB4 FAIL CODE alu_64x
9F014h SUBABS4 FAIL CODE alu_64x
9F015h SWAP2 FAIL CODE alu_64x
9F016h SWAP4 FAIL CODE alu_64x
9F017h UNPKHU4 FAIL CODE alu_64x
9F018h UNPKLU4 FAIL CODE alu_64x

9F047h ADD2 .S2 FAIL CODE alu_64x

1"

Q‘ TEXAS

SPRAB838A INSTRUMENTS
Table 4. Error Codes (Continued)
Code Description Source File
9F048h ADD2 .D2 FAIL CODE alu_64x
9F049h SUB2 .S2 FAIL CODE alu_64x
9F04Ah SUB2 .D2 FAIL CODE alu_64x
9F04Bh PACK2 .S2 FAIL CODE alu_64x
9F04Ch PACKH2 .S2 FAIL CODE alu_64x
9F04Dh PACKHL2 .S2 FAIL CODE alu_64x
9F04Eh PACKLH2 .S2 FAIL CODE alu_64x
9F053h SHLMB .S2 FAIL CODE alu_64x
9F054h SHRMB .S2 FAIL CODE alu_64x
9F055h SHR2 .S2 FAIL CODE alu_64x
9F056h SHRU2 .S2 FAIL CODE alu_64x
9F057h SWAP2 .S2 FAIL CODE alu_64x
9F058h UNPKHU4 .S2 FAIL CODE alu_64x
9F059h UNPKLU4 .S2 FAIL CODE alu_64x
9F05Ah SPACK2 .S2 FAIL CODE alu_64x
9F05Bh SPACKU4 .S2 FAIL CODE alu_64x
9F05Ch OR .L2 FAIL CODE alu_64x
9F05Dh OR .S2 FAIL CODE alu_64x
9F05Eh OR .D2 FAIL CODE alu_64x
9F05Fh XOR .S2 FAIL CODE alu_64x
9F060h XOR .D2 FAIL CODE alu_64x
9F061h MVK .L2 FAIL CODE alu_64x
9F062h MVK .S2 FAIL CODE alu_64x
9F063h MVK .D2 FAIL CODE alu_64x
9F064h AND .L2 FAIL CODE alu_64x
9F065h AND .S2 FAIL CODE alu_64x
9F066h AND .D2 FAIL CODE alu_64x
9F067h ANDN .S2 FAIL CODE alu_64x
9F068h ANDN .D2 FAIL CODE alu_64x
9F069h ADDAD .D2 FAIL CODE alu_64x

12

{'? TEXAS

INSTRUMENTS SPRA838A
Table 4. Error Codes (Continued)

Code Description Source File
9F06Fh LDDW & STDW .D2 FAIL CODE alu_64x
9F070h LDDW & STDW .D2 FAIL CODE alu_64x
9F071h LDNDW & STNDW .D2 FAIL CODE alu_64x
9F072h LDNDW & STNDW .D2 FAIL CODE alu_64x
9F073h LDNW & STNW .D2 FAIL CODE alu_64x
9F074h CMPEQ2 .S2 FAIL CODE alu_64x
9F075h CMPGT2 & STNW .D2 FAIL CODE alu_64x
9F076h CMPGTU4 .S2 FAIL CODE alu_64x
9F077h ADKPC .S2 FAIL CODE alu_64x
9F078h BDEC .S2 FAIL CODE alu_64x
9F079h BPOS if branch not taken to Test4 .S2 FAIL CODE alu_64x
9F07Ah BPOS if branch taken to Test4 .S2 FAIL CODE alu_64x
31h MPY instruction error mult_64x
32h MPYH, MPYHUS instructions error mult_64x
33h MPYHU and MPYHSU instructions error mult_64x
34h MPYHL instruction error mult_64x
35h MPYLH instruction error mult_64x
9F019h AVG2 Fail code mult_64x
9F01Ah AVGU4 Fail code mult_64x
9F01Bh BITC4 Fail code mult_64x
9F01Ch BITR Fail code mult_64x
9F01Dh DEAL Fail code mult_64x
9F01Eh DOTP2 Fail code mult_64x
9F01Fh DOTPN2 Fail code mult_64x
9F020h DOTPNRSU2 Fail code mult_64x
9F021h DOTPNRUS?2 Fail code mult_64x
9F022h DOTPRUS?2 Fail code mult_64x
9F023h DOTPRUS?2 Fail code mult_64x
9F024h DOTPSU4 Fail code mult_64x
9F025h DOTPUS4 Fail code mult_64x

13

Q‘ TEXAS

SPRAB38A INSTRUMENTS
Table 4. Error Codes (Continued)
Code Description Source File
9F026h DOTPU4 Fail code mult_64x
9F027h GMPY4 Fail code mult_64x
9F028h GMPY4 Fail code mult_64x
9F029h MPY2 Fail code mult_64x
9F02Ah MPY2 Fail code mult_64x
9F02Bh MPYHI Fail code mult_64x
9F02Ch MPYHI Fail code mult_64x
9F02Dh MPYIH Fail code mult_64x
9F02Eh MPYIH Fail code mult_64x
9F02Fh MPYHIR Fail code mult_64x
9F030h MPYIHR Fail code mult_64x
9F031h MPYLI Fail code mult_64x
9F032h MPYLI Fail code mult_64x
9F033h MPYIH Fail code mult_64x
9F034h MPYIH Fail code mult_64x
9F035h MPYLIR Fail code mult_64x
9F036h MPYILR Fail code mult_64x
9F037h MPYSU4 Fail code mult_64x
9F038h MPYSU4 Fail code mult_64x
9F039h MPYUS4 Fail code mult_64x
9F03Ah MPYUS4 Fail code mult_64x
9F03Bh MPYU4 Fail code mult_64x
9F03Ch MPYU4 Fail code mult_64x
9F03Dh MVD Fail code mult_64x
9F03Eh ROTL Fail code mult_64x
9F03Fh SHFL Fail code mult_64x
9F040h SMPY2 Fail code mult_64x
9F041h SMPY?2 Fail code mult_64x
9F042h SSHVL Fail code mult_64x
9F043h SSHVR Fail code mult_64x

14

{'? TEXAS

INSTRUMENTS SPRA838A
Table 4. Error Codes (Continued)

Code Description Source File
9F044h XPND2 Fail code mult_64x
9F045h XPND4 Fail code mult_64x
41h CLR instruction error BIT bit
42h EXT instruction error [EXT(U)] bit
43h LMBD instruction error bit
44h NORM instruction error bit
45h SET instruction error bit
51h SSHL instruction error sat_64x
52h SADD instruction error sat_64x
53h SAT instruction error sat_64x
54h SSUB instruction error sat_64x
55h SMPY (L)(H) instructions error sat_64x
56h SMPYHL instruction error sat_64x
9F04Fh SADD?2 error sat_64x
9F050h SADDU4 error sat_64x
9F051h SADDUS?2 error sat_64x
9F052h SADDSU2 error sat_64x
61h B instruction [Conditional/Unconditional] error cond
62h Conditional Instructions error cond
71h ADDAB instruction error circular_64x
72h ADDAH instruction error circular_64x
73h ADDAW instruction error circular_64x
74h CIRCULAR BUFFER AUTHENTICITY error (LDW) circular_64x
81h ADDU instruction (for 40 bit) error alu40
82h CMPEQ instruction (for 40 bit) error alu40
83h SUBU instruction (for 40 bit) error alu40
01h Memory Test failed memory_edma
02h Edma Channel Allocation failed memory_edma
04h VCP Edma Channel Allocation failed vepTep
05h TCP Edma Channel Allocation failed vepTep

15

Q‘ TEXAS

SPRAB838A INSTRUMENTS

16

Table 4. Error Codes (Continued)

Code Description Source File
08h VCP decoding failed vepTep
0%h TCP decoding failed vepTep
10h McBsp operation failed mcbsptest
20h Timer0 operation failed timer
40h Timer1 operation failed timer
80h Timer2 operation failed timer
References
1. TMS320C62x Self-Check Program Application Brief (Literature number SPRA635)
2. TMS320C6000 CPU and Instruction Set (Rev. F) (Literature number SPRU189F)
3. TMS320C6000 Peripherals Reference Guide (Rev. D) (Literature number SPRU190D)
4. TMS320C6000 Chip Support Library API Reference Guide (Rev. D) (Literature number
SPRU401D)
5. Viterbi Decoder Coprocessor User’s Guide (Literature number SPRU533)
6. Turbo Decoder Coprocessor User’s Guide (Literature number SPRU534)
7. Using TMS320C6416 Coprocessors: Viterbi Coprocessor (VCP) (Literature number SPRA750)
8. Using TMS320C6416 Coprocessors: Turbo Coprocessor (TCP) (Literature number SPRA749)

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Tl grants you
permission to use these resources only for development of an application that uses the Tl products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third
party intellectual property right. Tl disclaims responsibility for, and you will fully indemnify Tl and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such Tl products. TI's provision of these resources does not expand or otherwise alter TI's applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	1 Introduction
	3 Changing the TMS320C6416 POST Endianess 10
	4 Error Codes 10
	5 References 16
	List of Figures
	List of Tables
	1 Introduction
	1.1 System Requirements
	1.2 Test Structure
	Figure 1. Main() Routine Flowchart

	2 Modules Description
	2.1 TMS320C64x Core Module
	Table 1. C64x Specific Instructions by Functional Unit

	2.2 Internal Memory and EDMA Module
	Figure 2. MemoryEdmaTest() Module Flowchart
	Figure 3. Buffer Test

	2.3 VCP Module
	Table 2. The VCP_BaseParams†

	2.4 TCP Module
	Table 3. The TCP_BaseParams†

	2.5 McBSP Module
	2.6 Timer Module

	3 Changing the TMS320C6416 POST Endianess
	4 Error Codes
	Table 4. Error Codes

