

AN-2259 LM3556 1.5A Synchronous Boost LED Flash Driver w/ High-Side Current Source Evaluation Board

1 Typical Application Drawing

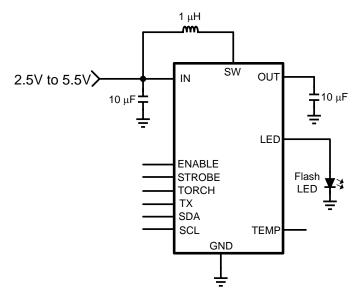
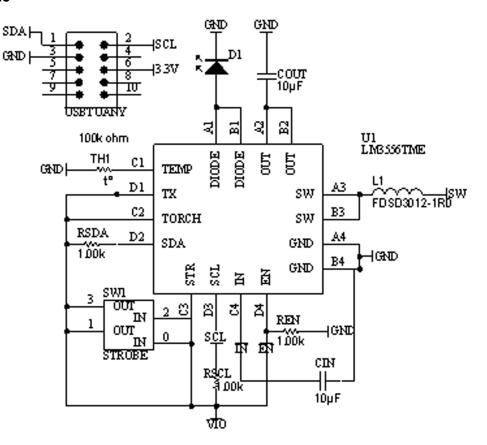


Table 1. Bill of Materials

Item	Designator	Description	RoHS	Manufacturer	Part Number
1	AA	Printed Circuit Board	Y	ТІ	551600772-001 REV A
2	CIN, COUT	CAP, CERM, 10µF, 6.3V, +/- 20%, X5R, 0603	Y	MuRata	GRM188R60J106ME47D
3	D1	White LED	Y	Philips Lumileds	LXCL-EYW4
4	J1, J5, J10, J14, J16, J17, J18	Header, TH, 100mil, 2x1, Gold plated, 230 mil above nsulator		Samtec, Inc.	TSW-102-07-G-S
5	J2, J4	Header, TH, 100mil, 4x1, Gold plated, 230 mil above insulator	Y	Samtec, Inc.	TSW-104-07-G-S
6	J3, J6, J7, J8, J9	Header, TH, 100mil, 3x1, Gold plated, 230 mil above insulator	Y	Samtec, Inc.	TSW-103-07-G-S
7	J11	Conn Jack Banana Insulated Nylon Black	Y	Emerson Johnson	108-0903-001
8	J12	Conn Jack Banana Insulated Nylon Red	Y	Emerson Johnson	108-0902-001
9	L1	TOKO Inductor	Y	ТОКО	FDSD3012-1R0
10	REN, RSCL, RSDA	RES, 1.00kΩ, 1%, 0.1W, 0603	Y	Vishay-Dale	CRCW06031K00FKEA
11	SW1	Four Terminal SPST Push Button	Y	Panasonic	EVQ-PD05M


AN-2259 LM3556 1.5A Synchronous Boost LED Flash Driver w/ High-Side Current Source Evaluation Board

ltem	Designator	Description	RoHS	Manufacturer	Part Number							
12	TH1	Thermistor NTC, 100k Ω , 5%, 0402	Y	MuRata	NCP15WL104J03RC							
13	U1	1.5A Flash LED Driver	Y	Texas Instruments	LM3556TME							
14	USBTOANY	Header, TH, 100mil, 5x2, Gold plated, 230 mil above insulator	Y	Samtec, Inc.	TSW-105-07-G-D							

Table 1. Bill of Materials (continued)

2 **Schematic**

3 LM3556 Evaluation Board Layout

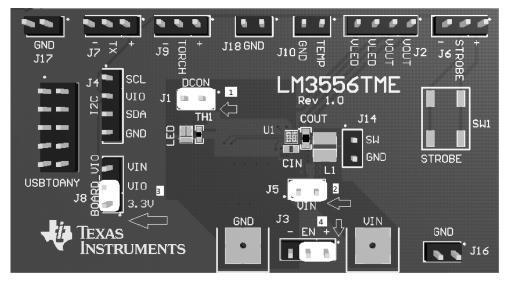


Figure 1. LM3556 Evaluation Board

To operate the LM3556 1.5A Single Flash LED Driver System with I2C Compatible Interface, the following jumpers will have to be connected.

Jumper 1: This in shown in Figure 1 as 1. This connects the LED to the part. If this jumper is not present, the part will run into an OVP fault.

Jumper 2: This is shown in Figure 1 as 2. This connects the inductor to the supply voltage to make sure the part is able to switch during the boost phase. This also hooks in the bypass capacitor at the input to the supply voltage. The part should never be allowed to turn on without this jumper.

Jumper 3: This is shown in Figure 1 as 3. This pulls up the SDA and SCL voltages to either be 3.3V or the supply voltage (Vin).

Jumper 4: This is shown in Figure 1 as 4. This pulls the Enable pin in the part to the supply voltage.

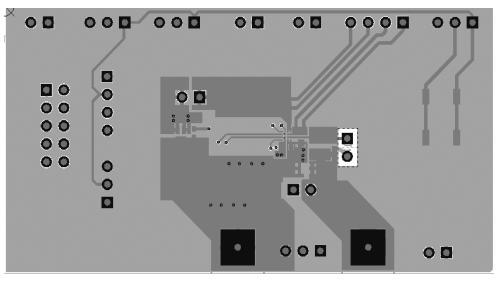


Figure 2. Top Layer

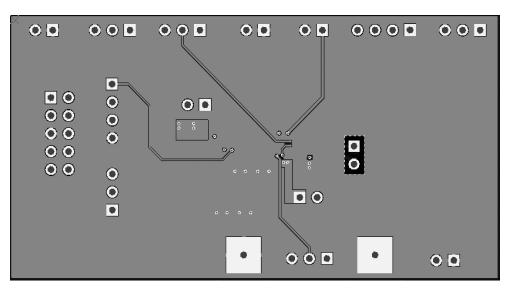


Figure 3. Mid-Layer 1

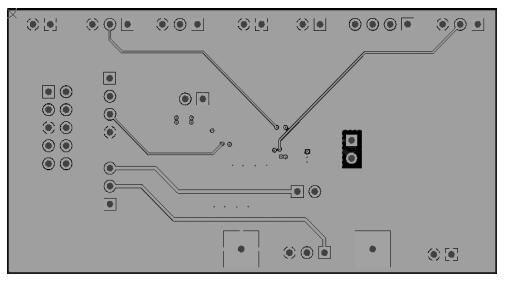


Figure 4. Mid-Layer 2

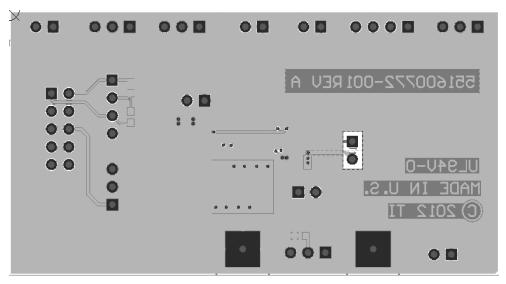


Figure 5. Bottom Layer (unmirrored)

4 Board Operation

4.1 GUI

Following is a screenshot image of the GUI that could be used to operate the LM3556 IC. The register description follows the GUI.

LM3556	
Enable Register (0x0A) NTC TX Ext Strobe Torch Pin PreCharge	Write Enable Register TX
Configuration Register (0x07) Edg/LVL Strobe Pol Torch Pol Tx Polarity TX L	evel IVFM En NTC Ind UVL0
Californ Bey and Filter Time Iuxuul	Control Register (0x09) ch Current Flash Current TSD
1 v 50mV v 2.9V v 00=Repo	Adjust Mode tt Mode TM Register
NTC Level NTC Trip Thr NTC Bias Curr	ator Ramp Time Register (0x03) nd Ramp Up Ind Ramp Down ims I 16ms V Write Ind Register
Torch Ramp Current (0x06) Ramp Up Ramp Down 16ms 16ms 31A Write Ramp Register	es Register (0x08) T Flash Ramp Time FTO 1024us V 300ms V Write FLash Feat Register

Figure 6. GUI Startup

5 Register Descriptions

Register Name	Internal Hex Address	Power On/RESET Value ⁽¹⁾	
Silicon Revision and Filter Time Register	0x00	0x04	
IVFM Mode Register	0x01	0x80	
NTC Settings Register	0x02	0x12	
Indicator Ramp Time Register	0x03	0x00	
Indicator Blinking Register	0x04	0x00	
Indicator Period Count Register	0x05	0x00	
Torch Ramp Time Register	0x06	0x00	
Configuration Register	0x07	0x78	
Flash Features Register	0x08	0xD2	
Current Control Register	0x09	0x0F	
Enable Register	0x0A	0x00	
Flags Register	0x0B	0x00	

⁽¹⁾ All unused bits are internally pulled HIGH.

6 AN-2259 LM3556 1.5A Synchronous Boost LED Flash Driver w/ High-Side Current Source Evaluation Board

5.1 Silicon Revision and Filter Time Register (0x00)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU	RFU	RFU	'00' = 1/2 o	M Filter Times f the Current Step Time '01' = 256 μs '10' =512 μs 11' = 1024 μs		ilable for Silicon urrent Value = '	

5.2 Input Voltage Flash Monitor (IVFM) Mode Register (0x01)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1 = UVLO EN (default)	00 = 50 m 01 = 1 10 = 1	sis Level V (default) 00 mV 50 mV esis Disabled		-D (Down) Thresh 000 = 2.9V (default 001 = 3.0V 010 = 3.1V 011 = 3.2V 100 = 3.3V 101 = 3.4V 110 = 3.5V 111 = 3.6V		00 = Report M 01 = Stop an 10 = Dov	

- **00 = Report Mode**—Sets IVFM Flag in Flags Register upon crossing IVM-D Line Only. Does not adjust current.
- 01 = Stop and Hold Mode— Stops Current Ramp and Holds the level for the remaining flash if V_{IN} crosses IVM-D Line. Sets IVFM Flag in Flags Register upon crossing IVM-D Line.
- 10 = Down Mode—Adjusts current down if V_{IN} crosses IVM-D Line and will stop decreasing once V_{IN} rises above the IVM-D line + the IVFM hysteresis setting. The LM3556 will decrease the current throughout the flash pulse anytime the input voltage falls below the IVM-D line, and not just once. The flash current will not increase again until the next flash. Sets IVFM Flag in Flags Register upon crossing IVM-D Line.
- **11 = Up and Down Mode**—Adjusts current down if V_{IN} crosses IVM-D Line and adjusts current up if V_{IN} rises above the IVM-D line + the IVFM hysteresis setting. In this mode, the current will continually adjust with the rising and falling of the input voltage throughout the entire flash pulse. Sets IVFM Flag in Flags Register upon crossing IVM-D Line.
- UVLO EN— If enabled and VIN drops below 2.8V, the LM3556 will enter standby and set the UVLO flag in the Flags Register. Enabled = '1', Disabled = '0' IVM-U = IVM-D + IVFM Hysteresis

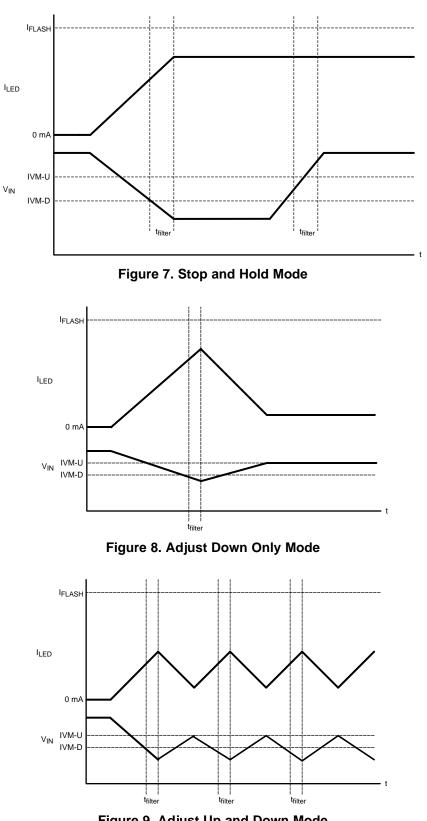
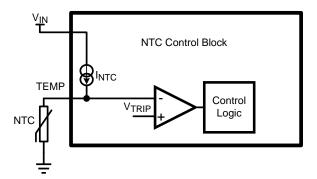



Figure 9. Adjust Up and Down Mode

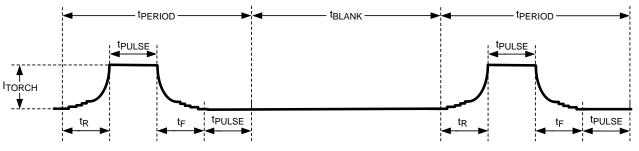
5.3 NTC Settings Register (0x02)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU	RFU	NTC Event Level 0 = Go to Standby (default) 1 = Reduce to Min Torch Current		TC Trip Thresholds 000 = 200 mV 001 = 300 mV 010 = 400 mV 011 = 50 mV 0 = 600 mV (default 101 = 700 mV 110 = 800 mV 111 = 900 mV		NTC Bias C 00 = 2 01 = 3 10 = 75 μ 11 = 1	25 μΑ 50 μΑ A (default)

Figure 10. NTC Control Block

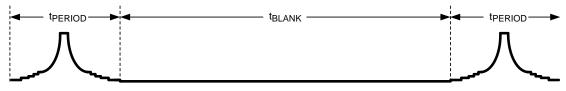
The TEMP node is connected to an NTC resistor as shown in above. A constant current source from the input is connected to this node. Any change in the voltage because of a change in the resistance of the NTC resistor is compared to a set V_{TRIP} . The trip thresholds are selected by Bits[4:2] of the NTC Register. The output of the Control Logic upon an NTC trip is selected through Bit[5].

5.4 Indicator Ramp Time Register (0x03)

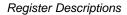

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU	RFU		ator Ramp-Up T 000 = 16 ms (defa 001 = 32 ms 010 = 64 ms 011 = 128 ms 100 = 256 ms 101 = 512 ms 110 = 1.024s 111 = 2.048s			tor Ramp-Down 100 = 16 ms (defar 001 = 32 ms 010 = 64 ms 011 = 128 ms 100 = 256 ms 101 = 512 ms 110 = 1.024s 111 = 2.048s	() /

5.5 Indicator Blinking Register (0x04)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	N _B	BLANK		Pulse Time (t _{PULSE})					
	0000 = 0	0 (default)			0000 = 0	(default)			
	000	1 = 1			0001 =	32 ms			
	001	0 = 2			0010 =	64 ms			
	001	1 = 3			0011 =	92 ms			
	010	0 = 4			0100 =	128 ms			
	010	1 = 5		0101 = 160 ms					
	011	0 = 6		0110 = 196 ms					
	011	1 = 7		0111 = 224 ms					
	100	0 = 8		1000 = 256 ms					
	100	1 = 9		1001 = 288 ms					
	1010	0 = 10		1010 = 320 ms					
	1011	1 = 11		1011 = 352 ms					
	1100	0 = 12		1100 = 384 ms					
	110	1 = 13		1101 = 416 ms					
	111(0 = 14		1110 = 448 ms					
	1111	1 = 15		1111 = 480 ms					


5.6 Indicator Period Count Register (0x05)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU	RFU	RFU	RFU	RFU			



- 1. Number of periods ($t_{PERIOD} = t_R + t_F + t_{PULSE} \times 2$)
- 2. Active Time ($t_{ACTIVE} = t_{PERIOD} \times N_{PERIOD}$)
- 3. Blank Time ($t_{\text{BLANK}} = t_{\text{ACTIVE}} \times N_{\text{BLANK}}$)

Figure 12. Single Pulse with Dead Time

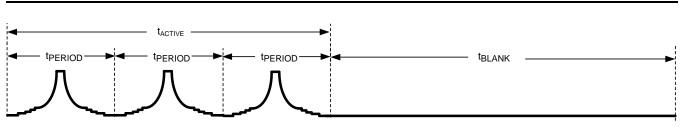


Figure 13. Multiple Pulse with Dead Time

5.7 Torch Ramp Time Register (0x06)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU	RFU		orch Ramp-Up Ti 000 = 16 ms (defau 001 = 32 ms 010 = 64 ms 011 = 128 ms 100 = 256 ms 101 = 512 ms 110 = 1.024s 111 = 2.048s			rch Ramp-Down T 000 = 16 ms (defau 001 = 32 ms 010 = 64 ms 011 = 128 ms 100 = 256 ms 101 = 512 ms 110 = 1.024s 111 = 2.048s	

5.8 Configuration Register (0x07)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Strobe Usage 0 = Edge (default) 1 = Level	Strobe Pin Polarity 0 = Active Low 1 = Active High (default)	Torch Pin Polarity 0 = Active Low 1 = Active High (default)	TX Pin Polarity 0 = Active Low 1 = Active High (default)	TX Event Level 0 = Off 1 = Torch Current (default)	IVFM Enable 0 = Disabled (default) 1 = Enabled	NTC Mode 0 = Normal (default) 1 = Monitor	Indicator Mode 0 = Internal (default) 1 = External

Strobe Usage—Level or Edge. Flash will follow Strobe timing if Level and internal timing if Edge.

Strobe Polarity—Active High or Active Low Select.

Torch Polarity—Active High or Active Low Select.

TX Polarity—Active High or Active Low Select.

- **TX Event Level**—Transition to Torch Current Level or Off if TX event occurs.
 - **NOTE:** The TX Event Level "Off" setting is designed to only force a shutdown during a flash event. When Torch or Indicator Mode is enabled, and a TX event occurs with the TX Event Level set to "Off", the LM3556 does not shut down. The TX flag bit (bit7 in the Section 5.12) will be set, and the mode bits (bit0 and bit1 in Section 5.11) get locked out until the fault register is cleared via an I²C read. Because a TX event is periodic and frequently occurring, clearing the fault register becomes more difficult. Depending on the I²C read/write speed and TX event frequency, it may be necessary to set the TX enable bit (bit6 in the Section 5.11) to a '0' before clearing the fault register to prevent future flag sets.

IVFM Enable—Enables Input Voltage Flash Monitoring.

NTC Mode—Monitor Mode (Report Only) or Normal Mode (Reduce Current or Shutdown).

Indicator Mode—Externally generated via TORCH Pin or internally generated PWM.

5.9 Flash Features Register (0x08)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Flash Ramp Time			Flash Time-Out Time		
000 = 256 µs				000 = 100 ms			
Inductor Current Limit		001 = 512 µs			001 = 200 ms		
00 =1.7A		010 = 1.024 ms (default)			010 = 300 ms (default)		
01 = 1.9A		011 = 2.048 ms			011 = 400 ms		
10 = 2.5A		100 = 4.096 ms			100 = 500 ms		
11 = 3.1A (default)		101 = 8.192 ms			101 = 600 ms		
		110 = 16.384 ms			110 = 700 ms		
		111 = 32.768 ms			111 = 800 ms		

5.10 Current Control Register (0x09)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RFU	000 = 00 01 07 10 10 10	orch Current 46.88 mA (defaul 01 =93.75 mA 0 =140.63 mA 11 = 187.5 mA 0 =234.38 mA 1 = 281.25 mA 0 = 328.13 mA 11 =375 mA	t)		$\begin{array}{r} 0000 = \\ 0001 = \\ 0010 = \\ 0011 = \\ 0100 = \\ 0101 = \\ 0110 = \\ 0110 = \\ 1000 = \\ 1000 = \\ 1010 = 1\\ 1011 = \\ 1100 = 1\\ 1101 = \\ 1110 = 1 \end{array}$	Current 93.75 mA 187.5 mA 281.25 mA = 375 mA 468.75 mA 562.5mA 656.25 mA = 750 mA 843.75 mA 937.5 mA 031.25 mA 1125 mA 218.75 mA 406.25 mA 0 mA (default)	

5.11 Enable Register (0x0A)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
NTC Enable 0 = Disabled (default) 1 = Enabled	TX Pin Enable 0 = Disabled (default) 1 = Enabled	STROBE Pin Enable 0 = Disabled (default) 1 = Enabled	TORCH Pin Enable 0 = Disabled (default) 1 = Enabled	PreCharge Mode Enable 0 = Normal (default) 1 = PreCharge	Pass-Mode Only Enable 0 = Normal (default) 1 = Pass Only	00 = Stand 01 = In 10 =	s: M1, M0 by (default) idicator Torch Flash

5.11.1 Enable Register (8 Bits)

NTC EN—Enables NTC Block.

TX EN—Allows TX events to change the current.

Strobe EN—Enables Strobe Pin to start a Flash Event.

Torch EN—Enables Torch Pin to start a Torch Event.

PreCharge Mode EN—Enables Pass Mode to pre-charge the output cap.

Pass-Only Mode EN—Only allows Pass Mode and disallows Boost Mode.

NOTE: If Pass-Only Mode is enabled during any LED mode (Indicator, Torch or Flash), it will remain enabled until the LM3556 enters the standby state regardless of whether the Pass-Only Mode bit is reset or not during the following command.

5.11.2 Two-Mode Bits

00-Standby- Off

01-Indicator— Sets Indicator Mode. Default Indicator Mode uses external pattern on TORCH Pin.

- **10–Torch** Sets Torch Mode with ramping. If Torch EN = 0, Torch will start after I²C-compatible command.
- **11–Flash** Sets Flash Mode with ramping. If Strobe EN = 0, Flash will start after I²C-compatible command.

5.12 Flags Register (0x0B)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TX Event 0 = Default	NTC Trip 0 = Default	IVFM 0 = Default	UVLO 0 = Default	OVP 0 = Default	LED or VOUT Short Fault 0 = Default	Thermal Shutdown 0 = Default	Flash Time- out 0 = Default

TX Event Flag—TX Event occurred.

NTC Trip Flag—NTC Threshold crossed.

IVFM Flag—IVFM block reported and/or adjusted LED current.

UVLO Fault—UVLO Threshold crossed.

OVP Flag—Over-voltage Protection tripped. Open Output cap or open LED.

LED Short Fault—LED Short detected.

Thermal Shutdown Fault—The LM3556 die temperature reached thermal shutdown value.

Time-Out Flag—Flash Timer tripped

NOTE: Faults require a read-back of the "Flags Register" to resume operation. Flags report an event occurred, but do not inhibit future functionality. A read-back of the Flags Register will only be updated again if the fault or flags is still present upon a restart.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated