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OA-26 Designing Active High Speed Filters

ABSTRACT

This application report provides a recipe to realize active filters using low cost, high speed operational
amplifiers.
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1 Introduction

Filters built from resistors (R), inductors (L) and capacitors (C) are known as RLC or passive filters and
are the dominant type of filter for high frequency applications. The performance of these filters is typically
limited by the inductors which are large, expensive and far from ideal in an electrical sense. By using
amplifiers and feedback, the same filter characteristics can be achieved without the use of inductors,
these filters are known as “active filters”. An active filter will perform well only to the extent that the
amplifiers in it behave in an ideal sense, so traditionally active filters have been limited to applications at
frequencies below 1 MHz. With the advent of low cost, very high speed operational amplifiers, it is now
feasible to realize active filters with frequency ranges in the tens of MHz. With some of the newer high
speed amplifiers such as the CLC449 – a 1.2 GHz bandwidth amplifier, filters with corner frequencies
above 100 MHz have been built.

The filter topology that is used is the Sallen-Key Filter which uses the operational amplifier as a fixed gain
block. This filter topology can be used with current feed-back or voltage feedback amplifiers, and you will
be shown how to design low pass, high pass and band pass filters using this filter topology. This
application note discusses a printed circuit board which will allow you to prototype active filters of up to 8
pole complexity (As of 1/13/05, board is no longer available). This is not a complete treatment of the
subject of active filters, there are several good books published on that topic, some of which are listed in
the bibliography. This is a simple method of getting a circuit that will work for most applications. The topics
covered are:

• Filter Types

• Introduction to the second order, low pass Sallen-Key Filter

• RC:CR Transformations to realize second order, high pass Sallen-Key Filters

• Cascading filter sections to achieve higher order filters and Band Pass Filters

• Sensitivities to component values

• How to select an Op-amp for use in an active filter

• Compensation for finite Bandwidth Amplifiers

• The TI active filter evaluation boards (as of January 13, 2005, board is no longer available)

2 Filter Types

2.1 Butterworth Response

The Butterworth response maximizes the flatness in the pass band of the filter. The response is very flat
near DC then begins to slowly roll off so that it is at -3 dB at the cutoff frequency, and approaches an
ultimate rolloff rate of -20ndB/decade where n is the order of the filter. Butterworth filters are used it is very
important to maintain gain flatness, especially at low frequencies.

2.2 Bessel Response

In addition to altering the magnitude of the input signal depending upon its frequency, filters introduce a
delay into the signal which is dependent upon frequency. This introduces a frequency dependent phase
shift which distorts non-sinusoidal signals. Just as the Butterworth response maximizes the amplitude
flatness through the passband, a Bessel Response minimizes the phase non-linearity in the passband.

2.3 Chebyshev Response

In some applications, the most important factor is how fast the filter cuts off the unwanted signal. Faster
rolloff than what is seen by the Butterworth filter can be achieved if you are willing to accept some ripple in
the passband.

Appendix A contains tables with the parameters required to design filters up to order 8 with Butterworth,
Bessel, and Chebyshev responses. There are two tables for the Chebyshev response: one for 0.1dB
maximum ripple in the passband, and one for 1dB of ripple in the passband.
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3 Introduction to the Second Order, Low Pass Sallen-Key Filter

The circuit shown in Figure 1 is a two pole, Sallen-Key Low Pass Filter. This filter (and any two pole filter)
can be characterized by three parameters: K, ω0 and Q. K is the DC gain of the filter. ω0 is a measure of
the corner frequency of the filter, while Q is a measure of how closely spaced the two poles are in the S
plane. The values of K, Q and ω0 are given by:

(1)

Q, K are unitless

ω0 is in units of radians/sec. Divide ω0 by 2π to get it in Hz.

Figure 1. Sallen-Key Low Pass Filter with Equal CS

The methodology to design a particular filter is to select the desired values for K, Q and ω0 and then to
use the above equations to determine the component values required. Q can be obtained from the filter
table in appendix A. ω0 is your cutoff frequency and will be given to you from the design specification. In
most filters, the actual value of ω0 that you design for must be adjusted by the factor found in the filter
table to get the proper -3 dB frequency. K is another parameter that will be provided as part of the filter
specification.

Since these three parameters are not completely independent, it may not be possible to meet all three
points simultaneously. In this case, you should select another value of K, and then use an amplifier before
or after the filter to make the overall gain meet the system requirements.

The methodology to use in selecting component values is outlined:

1. Select RF and RG to obtain the desired K. If the amplifier that you are using is a current feedback
amplifier, follow the guidelines in the datasheet to select appropriate values of RFand RG

2. Determine the value of m required using the following equation and the value of Q found in the design
table:

3. If you cannot get a positive real solution for m, then select another value of K and go back to step 1.

4. Arbitrarily select a value for C.

5. Determine the value of ω0 to use by multiplying your desired cutoff frequency by the value of “ωP”
found in the Appendix A table (ωP is ω1 for a single 2nd order stage-additional cascaded stages would
be ω2, ω3, etc.) found in the filter design table. If your frequency specification is in Hz, remember to
multiply it by 2π to get it into radians/sec.
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6. Determine the value of R required using the equation:

7. If R turns out to be too large or too small for practical purposes, select another value for C (if R is too
big, select a larger value for C, if R is too small select a smaller value of C) then go back to step 6.

Example:

Design a Butterworth filter, with a cutoff frequency of 10 MHz, and a DC gain of 1.5. The CLC430 will be
used in this example.

1. Select RF = 700Ω, RG = 1.4 kΩ as per the CLC430 data sheet.

2. Find Q from table: 0.707, use this to determine m = 1.41

3. Arbitrarily select C = 0.1 μF

4. ω0 = 62.8E6 for a 10 MHz filter

5. Calculate R. R turns out to be 0.11Ω
6. R is too small, therefore try a smaller C, and return to step 6. Select C = 100 pF.

7. R = 112.5Ω, much better.

Figure 2 illustrates the final filter topology.

Figure 2. Example of Low Pass Filter

With slight modifications, the CLC430’s evaluation board, CLC730013, can be used to test this circuit.

In some cases, it may be difficult to realize the desired filter with the constraint of equal valued capacitors.
If this is the case, see appendix B to obtain expressions for Q and ω0 where the capacitors can take on
different values. This is most often necessary when trying to realize a filter with a high Q.

4 OA-26 Designing Active High Speed Filters SNOA387C–September 1997–Revised May 2013
Submit Documentation Feedback

Copyright © 1997–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNOA387C


R

+

-

VO

RF
RG

R

C n
2
C

VIN

Z0 =
1

nRC
Q = 

n
and

1 + n2 (2-K) 

www.ti.com Transform a Low Pass Filter into a High Pass Filter

4 Transform a Low Pass Filter into a High Pass Filter

By changing capacitors into resistors, and resistors into capacitors, a low pass filter can be changed into a
high pass filter. To make a high pass filter from a lowpass filter, replace each capacitor of value C with a
resistor of value 1/ω0 C, and each resistor with a capacitor of value 1/ω0 R. For example the 100 pF
capacitors in the example circuit from the previous section should be replaced with 159Ω resistors, the
225Ω resistor should be replaced with a 71 pF capacitor, and the 112Ω resistor should be replaced with a
142 pF cap.

Alternately you can calculate component values using a method similar to that shown in the previous
section. Figure 3 is a second order Sallen-Key High pass filter. Q and ω0 are given by

Figure 3. Sallen-Key High Pass Filter
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5 Cascading Filter Sections

Higher order filters can be realized by cascading lower order filters. A filter of order n can be realized by
cascading n/2 second order sections. Note that to obtain a fourth order Butterworth filter you do not
cascade two second order Butterworth filter sections. The pole locations for the fourth order filter are all
different and different values of Q and ω0 will need to be used for each section. For example, to get a 4th

order Bessel Low Pass filter with a 10 MHz cut-off frequency, here are the ω0 and Q of the two 2nd order
stages:

fO (MHz) Q

Stage 1 14.2 0.522

Stage 2 15.9 0.806

Cascading active filters of the Sallen-Key topology is easy. Since the output impedances of the filters are
very small, cascading them consists of just connecting one section to the next (each filter section is
designed assuming 0 source impedance.)

If a filter of odd order is desired, the last pole can be added with a simple passive filter at the output of the
active filter as shown in Figure 4.

Figure 4. 3rd Order Sallen-Key Filter

When cascading filters, one question that arises is what order the sections should be placed. The answer
to this is the same as the answer to all filter questions – “it depends”. Two factors that need to be
considered when cascading filter sections are “Am I liable to have intermediate signals that might clip or
distort?” and “How important is noise to me?”

In filters with sections where there are large Qs, the maximum amplitude of the signal in between stages
may be larger than the input or the output amplitude. This can lead to undue distortion of the signal. This
will most likely be an issue if there are filter sections with large Qs, and the input signals are large.
Strategies that can be used to combat this effect are to put the stages with the lowest Qs and gains first,
and cascade the higher gain sections later. Another way that the dynamic range could be increased would
be to use an op-amp with larger dynamic range. The CLC432 is a dual, current feedback op-amp that is
well suited to active filter applications and has an output voltage swing of 28 VPP when driving a light load.

In order to minimize the broadband noise that is present in an active filter, stages should be cascaded with
the highest Q, and highest gain sections first, then followed by lower gain sections. Other strategies that
should be considered when trying for low noise are using the lowest possible value resistors to reduce
thermal noise and to select low noise op amps such as the CLC428, dual, voltage feedback op amp.

As you can see from the previous two paragraphs, the order in which to place the filter stages is
dependent upon the requirements of your application. There is no best way to cascade your filter stages.
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6 Component Value Sensitivities

If the component values used in realizing the filter are not exactly what the calculations arrive at, and they
won’t be, then the filter characteristics will be different from what was desired. Even if time is spent
trimming components to the exact desired value, variations caused by temperature shifts, aging and other
external and internal sources will cause the filter characteristics to vary. A good design will result in
minimal variation in the filter characteristics as a result of the component value variations that might be
expected. To estimate the effect on the filter characteristics as component values vary, sensitivity figures
are used.

A sensitivity figure tells how much variation there will be in one characteristic when a parameter is

changed. Hence refers to the incremental change in ω for an incremental change in R. If is is 2 then
there will be a 2% variation in ω for a 1% variation in R. The two parameters with which we are most
concerned in our filter designs are Q and ω0, therefore it would be useful to look at what component
variations have an effect on these parameters, and to determine what these sensitivities are.

is defined as:

In the lowpass filter of Figure 1, the equation that describes Q, has m and K as its variables, hence Q is
only sensitive to the ratio of resistor values and to K which is determined by RF and RG . For this filter the
sensitivity that we have to worry the most about is the sensitivity to K, which is very large for high Q
sections.

7 Selecting an Op Amp for Use in an Active Filter

Although there are many factors that go into selecting an op amp for use in any application, most filter
applications can be satisfied by looking at a just four parameters: Bandwidth Recommended Gain range
Noise Dynamic Range

• Bandwidth

• Recommended Gain Range

• Noise

• Dynamic Range

8 Bandwidth

As a general rule, when selecting an op amp for a filter, make certain that it has a bandwidth of at least
10x the intended filter frequency, and preferably 20x. As an example to design a 10 MHz low pass filter,
use an op amp with at least 100 MHz of bandwidth. If designing a high pass filter, make certain that the
bandwidth of the op amps will be sufficient to pass all of your signal. Another point to watch is that your op
amp must have this band-width under the conditions that you intend to use it, for example, the same gain,
signal level and power supply voltage. An op amp that is specified as a 100 MHz op amp because it has
100 MHz bandwidth with ±15V supplies, 50 mV output level and a gain of 1 is not likely to be useful in a
10 MHz filter application. If in doubt, configure the amplifier that you are considering at the gain that you
are intending to use (K) and measure its bandwidth.

9 Recommended Gain Range

Your filter design will be dictating to you the gains at which you will be setting your op amps. If the chosen
op amp is a voltage feedback op amp, use at gains outside the recommended gain range is liable to lead
to lower than expected bandwidth at best and oscillation at worst. For a current feedback op amp,
operation at gains outside of the recommended range is liable to force you to use resistor values for RF

and RG which are way too small or large for practical realization.
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10 Noise

The input voltage and current noises of the op amp will contribute to the noise at the output of the filter. In
applications where noise is a major concern, you will need to calculate these contributions (as well as the
contributions of the thermal noise of the resistors in the circuit) to determine if the added noise
encountered with an active filter is acceptable. Noise can be reduced by selecting low noise, high speed
op amps such as the CLC425 or CLC428.

11 Dynamic Range

In filters which have high Q sections, it is possible that there will be intermediate signals that are larger
than either the input signal or the output signal. For the filter to operate properly, all of these signals must
be passed without clipping or excessive distortion.

12 Secondary Specifications

In addition to the four primary specifications above, there are several secondary parameters that you may
want to take into consideration. These would include phase linearity (this is generally better in current
feedback op amps), packaging (duals, quads available?), power dissipation, price and availability of
technical support.

13 Summary of High Speed Dual Op Amps

Bandwidth Recommended Gain Noise Voltage Noise Current Output Dynamic
(with 500 mV output, Range in Filter (nV√Hz) (pA√Hz) Range

AV = 2) (MHz) Applications (Inverting/Non- (100Ω Load (V)
Inverting Input)

CLC412 250 1-8 3 12/2 +3.1/−2.9

CLC416 80 1-5 2 2 +3.5/−3.5

CLC428 80 1-5 2 2 +3.5/−3.5

LM6172 50 1-5 12 1 +9/−8.5

LM6182 100 1-5 4 16/3 ±11

CLC5602 120 1-5 3 8.5/6.9 ±3.8

CLC5622 150 1-5 2.8 10/7.5 ±3.8

CLC432 62 1-20 3.3 13/2 +6/−6
(VO = 4V)

14 Compensation for Finite Bandwidth Amplifiers

In all of the analysis that we have done, we have assumed that the op amps are ideal op amps with
infinite bandwidth. Unfortunately, price and delivery of these op amps makes them a poor choice for actual
realizable filters. The effect of using a real op amp in place of an ideal one is to slightly lower the corner
frequency of the filter, and if we are somewhat clever, we can compensate for this by pre-distorting the
component values of the components so that the final filter is much closer to what we wanted. The
mathematical background for this is explained in the OA-21 Component Pre-distortion for Sallen Key
Filters Applicagtion Report (SNOA369). Since the goal of this application note is to make the design of
active filters easy, we are going to skip all of the development work, and go directly to the final result. To
make use of this method there is a parameter that you will need to know for the op amp that you intend to
use, and this is the time delay through the amplifier, called T. The value of T can be obtained in a few
different ways: one is to look at the frequency response plots for the op amp that you are considering
using. Find the frequency at which the phase delay is 180°, multiply this frequency by 2 and take the
reciprocal to obtain the time delay through the amplifier. In the case of the CLC412, the 180° frequency is
about 300 MHz, multiplying by two and taking the reciprocal yields a time delay, T, of 1.7 ns. Another way
that you can get a value for T with a Texas Instruments op amp is to use the spice model, and provide the
amplifier, configured as you want it, with a pulse, and measure the delay between the input edge and the
output edge.
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Figure 5. Low Pass Sallen-Key Filter

For the filter shown in Figure 5, you can calculate the values of R1 and R2 in the following way: Calculate
R2 by solving:

(2)
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15 The Active Filter Boards

To make prototyping active filters easier, Comlinear has designed two different active filter evaluation
boards. A schematic of the first board is shown in Figure 6. It consists of a CLC109 (or CLC111) input
buffer, followed by four cascaded Sallen Key filter sections, realized with two dual op amps. The board
was designed using surface mount components, so the resistors and capacitors are interchangeable. This
board is available from Texas Instruments as the CLC730061 board and is shipped as a bare PCB. The
top and bottom views of the evaluation board are shown in Figure 7. The other board also allows for up to
four cascaded biquad sections but restricts the user to designs using K = 1 since rather than op amps, this
board uses a quad, unity gain buffer. The board can be ordered as part number CLC730023 and is fully
documented in the CLC114EB/CLC115EB Evaluation Boards (SNOU039) or in the 1997 Comlinear
Databook.

16 Conclusion

Using the principles outlined in this application note, an active filter design need not be a daunting task.
You can feel free to impress your friends at a cocktail party by whipping out pencil and paper and doing a
design for a 5 MHz low pass filter. You don’t have to tell them how easy it really is, just wow them and
bask in their awed looks.

17 Schematic

Figure 6. Schematic for Active Filter Board (No longer available as of 1/13/05)
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18 Layout

Figure 7. Top and Bottom Views of Active Filter Evaluation Board (No longer available as of 1/13/05)
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Appendix A Filter Design Tables

Table 1. Butterworth Low Pass Filter

n ω1 Q 1 ω2 Q 2 ω3 Q 3 ω4 Q4 Attenuation
at 2f C(dB)

2 1 0.707 15

3 1 1.000 1 21

4 1 0.541 1 1.306 27

5 1 0.618 1 1.620 1 33

6 1 0.518 1 0.707 1 1.932 39

7 1 0.555 1 0.802 1 2.247 1 45

8 1 0.510 1 0.601 1 0.900 1 2.563 51

Table 2. Bessel Low Pass Filter

n ω1 Q 1 ω2 Q 2 ω3 Q 3 ω4 Q4

2 1.274 0.577

3 1.453 0.691 1.327

4 1.419 0.522 1.591 0.806

5 1.561 0.564 1.760 0.917 1.507

6 1.606 0.510 1.691 0.611 1.907 1.023

7 1.719 0.533 1.824 0.661 2.051 1.127 1.685

8 1.784 0.506 1.838 0.560 1.958 0.711 2.196 1.226

Table 3. 0.1 dB Ripple Chebyshev Filter

n ω1 Q 1 ω2 Q 2 ω3 Q 3 ω4 Q4 Attenuation
at 2f C(dB)

2 1.82 0.767 3.31

3 1.300 1.341 0.969 12.24

4 1.153 2.183 0.789 0.619 23.43

5 1.093 3.282 0.797 0.915 0.539 34.85

6 1.063 4.633 0.834 1.332 0.513 0.599 46.29

7 1.045 6.233 0.868 1.847 0.575 0.846 0.377 57.72

8 1.034 8.082 0.894 2.453 0.645 1.183 0.382 0.593 69.16

Table 4. 1.00 dB Ripple Chebyshev Filter

n ω1 Q 1 ω2 Q 2 ω3 Q 3 ω4 Q4 Attenuation
at 2f C(dB)

2 1.050 0.957 11.36

3 0.997 2.018 0.494 22.46

4 0.993 3.559 0.529 0.785 33.87

5 0.994 5.556 0.655 1.399 0.289 45.31

6 0.995 8.004 0.747 2.198 0.353 0.761 56.74

7 0.996 10.899 0.808 3.156 0.480 1.297 0.205 68.18

8 0.997 14.240 0.851 4.266 0.584 1.956 0.265 0.753 79.62
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Appendix B Non-Equal C Sallen-Key Filter Methodology

The circuit shown in Figure 8 is a two pole, Sallen-Key low pass filter similar to the one seen in the body
of this application note. The difference is that in this figure we have removed the constraint that the two
capacitors remain equal by adding the “n” as an additional degree of freedom. Like the filter from Figure 1,
this filter can be characterized three parameters: K, ω0 and Q. K is the DC gain of the filter. ω0 is a
measure of the corner frequency of the filter, while Q is a measure of how closely spaced the two poles
are in the S plane. The values of K, Q and ω0are given by:

(3)

Q,K are unitless

ω0 is in units of radians/sec. Divide ω0 by 2π to get it in Hz.

Figure 8. 2 Pole Sallen-Key Low Pass Filter with Unequal Capacitors

The methodology to design a particular filter is to select the desired values for K, Q and ω0 and then to
use the above equations to determine the component values required. Q can be obtained from the filter
table in appendix A. ω0 is your cutoff frequency and will be given to you from the design specification. In
most filters, the actual value of ω0 that you design for must be adjusted by the factor found in the filter
table to get the proper −3 dB frequency (see appendix A). K is another parameter that will be provided as
part of the filter specification.
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The methodology to use in selecting component values is:

1. Select RF and RG to obtain the desired K. If the amplifier that you are using is a current feedback
amplifier, follow the guidelines in the data sheet to select appropriate values of RF and RG

2. Arbitrarily select a value for n. This value should be small for low Q filters and should be larger for
higher Q filters. Remember that the standard values for capacitors are limited, and n should be chosen
with this in mind.

3. Determine the value of m required using the following equation and the value of Q found in the design
table:

4. If you cannot get a positive real solution for m, then select another value of K or n and go back to step
1.

5. Arbitrarily select a value for C.

6. Determine the value of ω0 to use by multiplying your desired cutoff frequency by the value of ω found
in the filter design table. If your frequency specification is in Hz, remember to multiply it by 2π to get it
into radians/sec.

7. Determine the value of R required using the equation below:

8. If R turns out to be too large or too small for practical purposes, select another value for C (if R is too
big, select a larger value for C, if R is too small select a smaller value of C) then go back to step 7.

Appendix C Transfer Functions for Some of the Filters

Transfer function for filter in Figure 5:
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Note: The circuits included in this application note have been tested with Texas Instruments parts
that may have been obsoleted and/or replaced with newer products. Please refer to the CLC to
LMH conversion table to find the appropriate replacement part for the obsolete device..
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