

TPS22967EVM-023 Single 4A Load Switch

The TPS22967EVM-023 evaluation module contains a single channel, ultra low ON resistance, 4-A load switch with controlled turn-on and adjustable rise time

	Contents							
1	Description							
	1.1 Typical Applications	2						
	1.2 Features	2						
2	Electrical Performance Specifications							
3	Schematic	4						
4	List of Test Points 4							
5	Layout	5						
	5.1 Typical Test Setups	8						
	5.2 Test Setup Equipment List							
	5.3 Test Procedure (Standalone Setup)	10						
	5.4 R _{ON} Test Procedure							
	5.5 Trise/Ton Tfall/Toff Test Procedure	10						
6	Performance Data and Typical Characteristic Curves							
	6.1 Trise/Tfall Curves	11						
7	Bill of Materials	13						

List of Figures

1	TPS22967EVM-023 Schematic	4
2	TPS22967EVM-023 Top Assembly	5
3	TPS22967EVM-023 Topside	6
4	TPS22967EVM-023 Bottomside	7
5	TPS22967EVM-023 Recommended Ron Test Set Up	8
6	TPS22967EVM-023 Recommended Rise Time Test Set Up	9
7	TPS22967EVM-023 Trise/Ton VIN=5V VBIAS=5V ct=1nF Load =10Ω	11
8	TPS22967EVM-023 Tfall/Toff VIN=5V VBIAS=5V ct=1nF Load =10Ω	12

List of Tables

1	The Functions of Each Test Points	4
2	EVM Components List	13

1 Description

The TPS22967 is a small, ultra-low ON-resistance (R_{ON}) single channel load switch with controlled turn on. The device contains a low $Rds_{(ON)}$ N-channel MOSFET that can operate over an input voltage range of 0.8 V to 5.5 V and can support a maximum continuous current of up to 4-A. The switch is controlled by an active high on/off input (ON), which is capable of interfacing directly with low-voltage GPIO control signals.

In the TPS22967, a 225- Ω on-chip load resistor is added for quick output discharge (QOD). When the switch is turned off, the output of the switch is discharged to ground through the 225- Ω load resistor. The rise time of the device is internally controlled in order to avoid in-rush current and can be adjusted using an external ceramic capacitor on the CT pin.

The TPS22967 is available in a small, space-saving 2mm x 2mm 8-pin SON package with integrated thermal pad allowing for high power dissipation.

1.1 Typical Applications

- Ultrabooks[™]
- Notebooks/Netbooks
- Tablet PC
- Consumer Electronics
- Set-top Boxes/Residential Gateways
- Industrial Systems
- Telecom Systems
- Solid State Drivers (SSD)

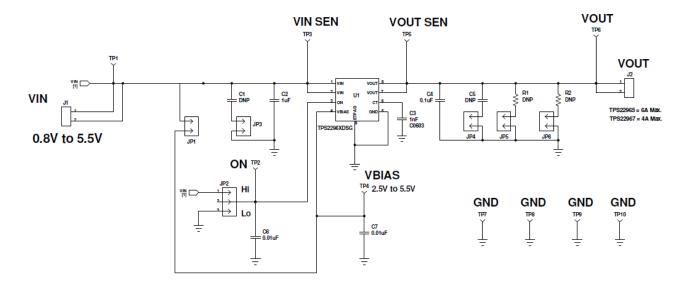
1.2 Features

- Integrated single channel load switch
- Input voltage range: 0.8V to 5.5V
- Ultra-low on-resistance (22 mΩ typical)
- 4A maximum continuous switch current
- Low threshold control input
- Adjustable slew-rate control
- Quick Output Discharge transistor
- SON 8-pin package with thermal pad

2 Electrical Performance Specifications ELECTRICAL CHARACTERISTICS

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature –40°C \leq T_A \leq 85°C (Full) and V_{BIAS} = 5.0 V. Typical values are for T_A = 25°C.

	PARAMETER	TEST CONDIT	IONS	T _A	MIN TYP	MAX	UNIT
POWER SU	PPLIES AND CURRENTS					•	
IIN(VBIAS-ON)	V _{BIAS} quiescent current	$I_{OUT} = 0, V_{IN} = V_{ON} = V_{BIAS} = 5.0 V$		Full	50	75	μA
IIN(VBIAS-OFF)	V _{BIAS} shutdown current	V _{ON} = GND, V _{OUT} = 0 V		Full		2	μA
			$V_{IN} = 5.0 V$		0.2		
			$V_{IN} = 3.3 V$	Full	0.02		
I _{IN(VIN-OFF)}	V _{IN} off-state supply current	$V_{ON} = GND, V_{OUT} = 0 V$	V _{IN} =1.8 V	Full	0.01		μA
			V _{IN} = 0.8 V		0.005		
I _{ON}	ON pin input leakage current	V _{ON} = 5.5 V		Full		0.5	μA
RESISTANC	E CHARACTERISTICS						
	ON-state resistance	$V_{IN} = -200 \text{ mA},$ $V_{BIAS} = 5.0 \text{ V}$ $V_{IN} = -200 \text{ mA},$	V _{IN} = 5.0 V	25°C	22	33	mΩ
				Full		35	
			V _{IN} = 3.3 V	25°C	22	33	mΩ
				Full		35	11122
			V _{IN} = 1.8 V	25°C	22	33	mΩ
D				Full		35	11122
R _{on}			V _{IN} = 1.5 V	25°C	22	33	mΩ
				Full		35	
			V _{IN} = 1.2 V	25°C	22	33	mΩ
				Full		35	
			V = 0.8 V	25°C	22	33	mΩ
		V _{IN} = 0.8 V		Full		35	11122
R _{PD}	Output pulldown resistance	$V_{IN} = 5.0 \text{ V}, V_{ON} = 0 \text{ V}, I_{OU}$	_τ = 15 mA	Full	225	300	Ω



Schematic

www.ti.com

Users may refer to Datasheet Document <u>SLVSC42</u> for additional Electrical Specifications.

3 Schematic

4 List of Test Points

Test Points	Name	Description
J1	VIN	DC Input to VIN
J2	VOUT	VOUT Connection
JP1	VBIAS	Connects VBIAS to VIN
JP2 ON		Connects ON to VIN or GND
JP3	C1	Connects C1 to VIN
JP4	C5	Connects C5 to VOUT
JP5	R1	Connects R1 to VOUT
JP6	R2	Connects R2 to VOUT
TP1	VIN	VIN of TPS22967
TP2	ON	ON of TPS22967
TP3	VIN SEN	Sense connect to VIN of TPS22967
TP4	VBIAS	VBIAS of TPS22967
TP5	VOUT SEN	Sense connect to VOUT of TPS22967
TP6	VOUT	VOUT of TPS22967
TP7	GND	Ground Connection
TP8	GND	Ground Connection
TP9	GND	Ground Connection
TP10	GND	Ground Connection

Table 1. The Functions of Each Test Points

5 Layout

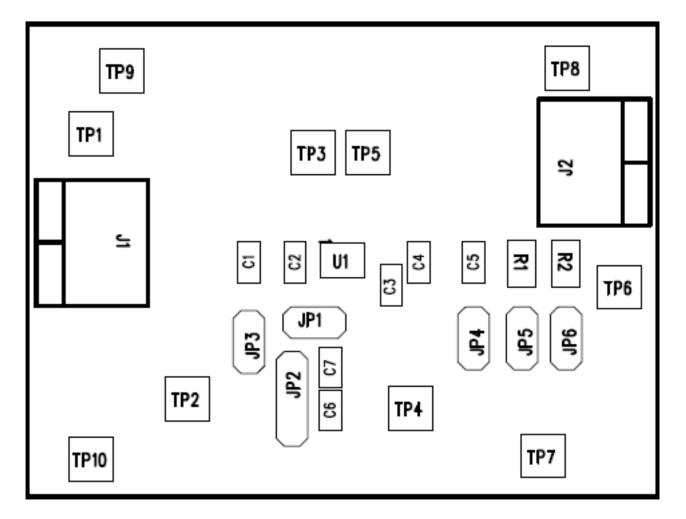


Figure 2. TPS22967EVM-023 Top Assembly

Copyright © 2013, Texas Instruments Incorporated

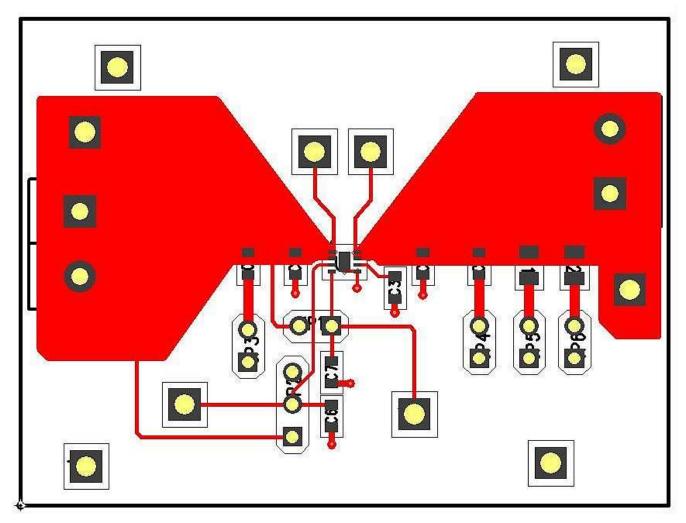


Figure 3. TPS22967EVM-023 Topside

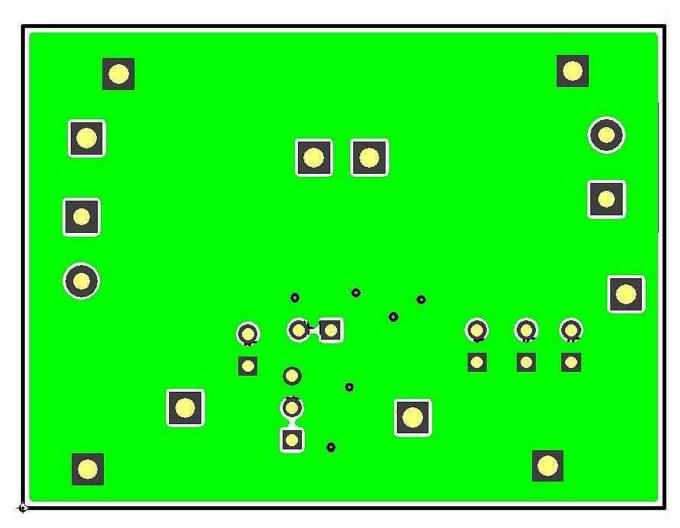


Figure 4. TPS22967EVM-023 Bottomside

5.1 Typical Test Setups

Layout

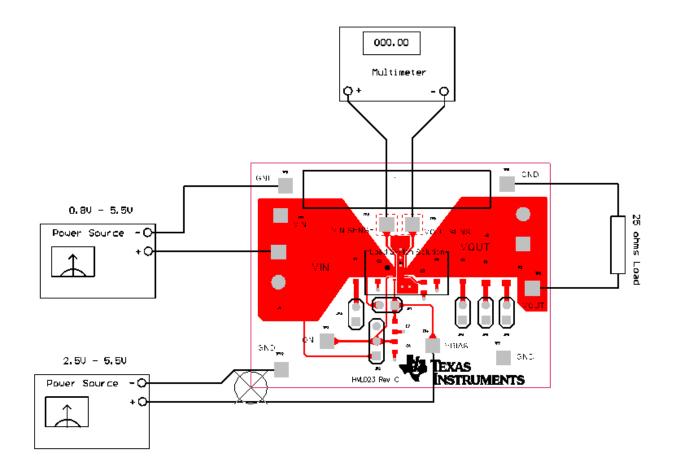


Figure 5. TPS22967EVM-023 Recommended Ron Test Set Up

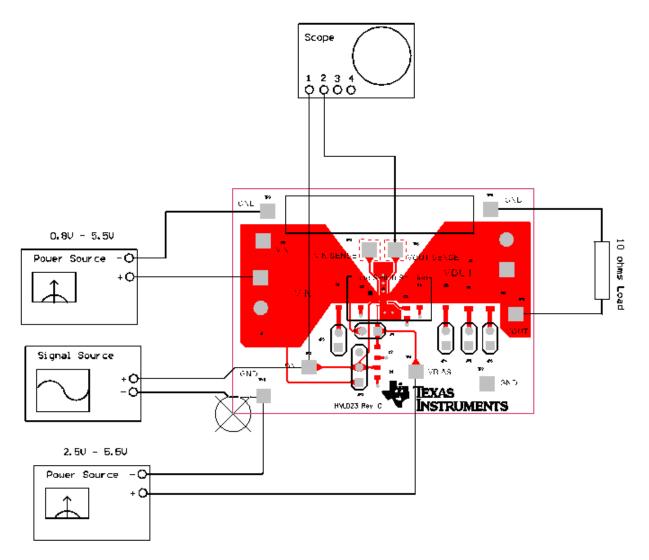


Figure 6. TPS22967EVM-023 Recommended Rise Time Test Set Up

5.2 Test Setup Equipment List

- Voltage Source:
 - 1 Power Source capable of 10V 10A.
- Multimeters:
 - 2 voltmeters
- Output Loads:
 - Electronic Load or Resistor(If testing 4A operation of the switch at 5.5V a 22W power rated resistor is needed)
- Oscilloscope:
 - 2 channel 100MHz
- Signal Generator:
 - Dual Channel Preferred
- Recommended Wire Gauge: 18 AWG

5.3 Test Procedure (Standalone Setup)

Figure 5 shows a typical setup for R_{ON} testing of the EVM. VBIAS voltage must be present for the device to function. Place a shunt across JP1 to connect VBIAS to VIN voltage source, if VIN supply is used below 2.5V remove the shunt and connect VBIAS voltage to a voltage source greater or equal to 2.5V.

5.4 R_{ON} Test Procedure

- 1. Setup the EVM per Figure 5.
- 2. Set SOURCE1 level to 5.0V.
- Place a shunt on JP2 shorting pins 1 to 2. This connects ON to VIN voltage, ON voltage must be between 1.2V and 5.5V for a valid ON state. (When testing R_{ON} it is desired to have the switch operating in the always ON condition.)
- 4. Place a load on VOUT.
- 5. Turn on SOURCE1.
- Record the voltage reading from Meter1, record the input current reading from Source1. Calculate R_{ON} by dividing Meter1 voltage level by the current reading from Source1. The results will be the R_{ON} value for the Switch.
- 7. Turn off Source1.

5.5 Trise/Ton Tfall/Toff Test Procedure

- 1. Set up the EVM per Figure 6.
- Set SOURCE1 level to 5.0V VBIAS is operational between 2.5V and 5.25V, Datasheet limits are specified with VBIAS set at 5.0V.
- 3. Remove shunt from JP2.
- 4. Place a load on VOUT1 (a 10Ω 3.25W resistor is recommended for this test).
- 5. Set signal generator outputs to 0-2Vpp levels, 10–100Hz, and 25% duty cycle. Connect signal generator output to TP2.
- 6. Turn on SOURCE1.
- 7. Turn ON the signal generator output.
- 8. Trise and Ton can be observed from the oscilloscope channel2. A detailed description of t_R , t_{ON} , t_F , and t_{OFF} are listed in the TPS22967 Datasheet under the Switching Characteristics Section.
- 9. Turn off Source1, and the signal generator output.

6 Performance Data and Typical Characteristic Curves

Figure 7 through Figure 8 present typical performance curves for TPS22967EVM-023.

Performance Data and Typical Characteristic Curves

6.1 Trise/Tfall Curves

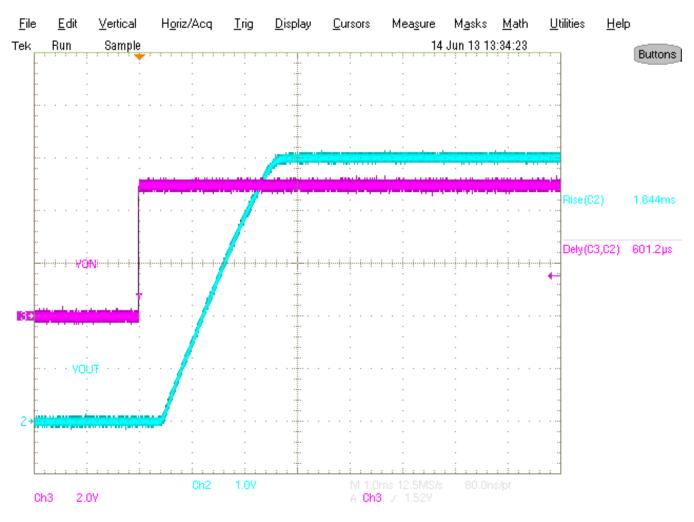


Figure 7. TPS22967EVM-023 Trise/Ton VIN=5V VBIAS=5V ct=1nF Load =10Ω.

Performance Data and Typical Characteristic Curves

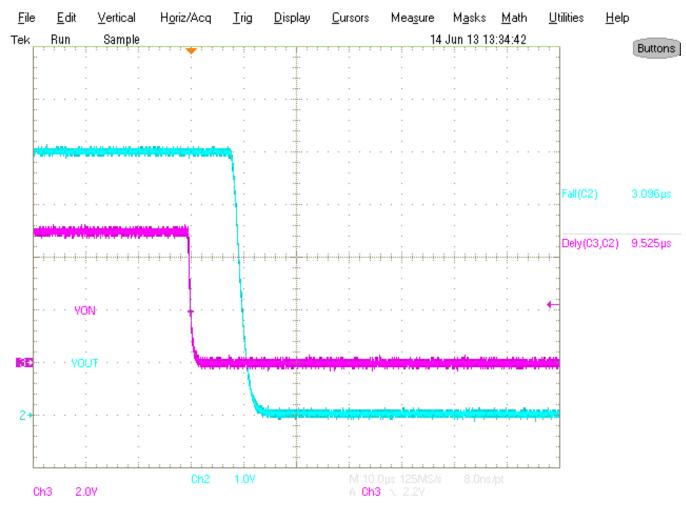


Figure 8. TPS22967EVM-023 Tfall/Toff VIN=5V VBIAS=5V ct=1nF Load =10Ω.

7 Bill of Materials

Table 2 shows the EVM components list according to the schematic shown in Figure 1.

-002	RefDes	Value	Description				
Count	RefDes	value	Description	Size	Part Number	MFR	
0	C1, C5	DNP	Capacitor, Ceramic, 25V, X7R, 20%	0603	Std	Std	
1	C2	1 µF	Capacitor, Ceramic, 25V, Y5R, 20%	0603	GRM188F51E105ZA12D	Murata	
1	C3	1 nf	Capacitor, Ceramic, 50V, X7R, 10%	0603	ECJ-1VB1H102K	Panasonic	
1	C4	0.1 µF	Capacitor, Ceramic, 50V, Y5R, 20%	0603	GRM188F51H104ZA01D	Murata	
2	C6, C7	0.01 µF	Capacitor, Ceramic, 50V, X7R, 10%	0603	0603B103K500BT	Vishay	
2	J1, J2	ED120/2DS	Terminal Block 2-pin, 15-A, 5.1mm	0.40 x 0.35 inch	ED120/2DS	OST	
5	JP1, JP3, JP4, JP5, JP6	PEC02SAAN	Header, Male 2-pin, 100mil spacing	0.100 inch x 2	PEC02SAAN	Sullins	
1	JP2	PEC03SAAN	Header, Male3-pin, 100mil spacing	0.100 inch x 3	PEC03SAAN	Sullins	
0	R1, R2	DNP	Resistor, Chip, 1.16W, x%	0805	Std	Std	
6	TP1, TP2, TP3, TP4, TP5, TP6	5010	Test Point, Red, Thru Hole Compact Style	0.125 x 0.125 inch	5005	Keystone	
4	TP7, TP8, TP9, TP10	5011	Test Point, Black, Thru Hole Compact Style	0.125 x 0.125 inch	5006	Keystone	
0	U1	TPS22965DSG	IC, 6-A Load Switch with Controlled Turn-on	SON-8	TPS22965DSG	TI	
1	U1	TPS22967DSG	IC, 4-A Load Switch with Controlled Turn-on	SON-8	TPS22967DSG	ТΙ	
2			Shunt, Black	100-mil	929950-00	3M	
1	-		PCB, 2 ln x 1.5 ln x 0.062 ln		HVL023	Any	
1	NA		Label (see Note 5)	1.25 x 0.25 inch	THT-13-457-10	Brady	

Table 2. EVM Components List

Bill of Materials

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated