TEXAS INSTRUMENTS

ABSTRACT

The purpose of this study is to characterize the single-event effects (SEE) performance due to heavy-ion irradiation of the TPS7H1111-SP. Heavy-ions with LET_{EFF} of 48 to 75 MeV·cm² /mg were used to irradiate 6 production devices. Flux of 10^4 to 10^5 ions/cm² ·s and fluence of 10^6 to 10^7 ions/cm² per run were used for the characterization. The results demonstrated that the TPS7H1111-SP is SEL-free up to 75 MeV·cm²/mg at T = 125°C and SEB/SEGR free up to 75 MeV·cm²/mg at T = 25°C. SET transients performance for output voltage excursions \geq |3%| from the nominal voltage and PG < 0.5-V (Negative Edge) are presented and discussed. This report uses the QMLV TPS7H1111-SP device in a ceramic package. It is also applicable for the QMLP TPS7H1111-SP device in a plastic package which uses the same die as the QMLV device.

Table of Contents

1 Introduction	3
2 Single-Event Effects (SEE)	4
3 Device and Test Board Information	5
4 Irradiation Facility and Setup	7
5 Depth, Range, and LET _{EFF} Calculation	8
6 Test Setup and Procedures	9
7 Destructive Single-Event Effects (DSEE)	11
7.1 Single-Event Latch-up (SEL) Results.	11
7.2 Single-Event Burnout (SEB) and Single-Event Gate Rupture (SEGR) Results	13
8 Single-Event Transients (SET)	16
9 Event Rate Calculations	21
10 Summary	22
A Total Ionizing Dose from SEE Experiments	22
B References.	22

List of Figures

Figure 3-1. Photograph of Delidded TPS7H1111-SP [Left] and Pinout Diagram [Right]	5
Figure 3-2. TPS7H1111-SP EVM Top View	5
Figure 3-3. TPS7H1111-SP EVM Schematics	6
Figure 4-1. Photograph of the TPS7H1111-SP EVM in Front of the Heavy-Ion Beam Exit Port at the Texas A&M Cyclotron.	7
Figure 5-1. Generalized Cross-Section of the LBC7 Technology BEOL Stack on the TPS7H1111-SP [Left] and SEUSS	
2020 Application Used to Determine Key Ion Parameters [Right]	8
Figure 6-1. Block Diagram of the SEE Test Setup for the TPS7H1111-SP	10
Figure 7-1. Current vs Time for Run # 1 of the TPS7H1111-SP at T = 125°C (V _{OUT} = 5.5-V)	12
Figure 7-2. Current vs Time for Run #3 of the TPS7H1111-SP at T = 125°C (V _{OUT} = 0.4-V)	12
Figure 7-3. SEB On Run #5 (V _{OUT} = 0.4-V)	14
Figure 7-4. SEB Off Run #6 (V _{OUT} = 0-V)	14
Figure 7-5. SEB On Run #9 (V _{OUT} = 5.5-V)	15
Figure 7-6. SEB Off Run #10 (V _{OUT} = 0-V)	15
Figure 8-1. Worst-Case V _{OUT} Upset (Run # 13)	18
Figure 8-2. All V _{OUT} Upsets (Run # 13)	18
Figure 8-3. All PG Upsets (Run # 13)	19
Figure 8-4. Worst-Case V _{OUT} Upset (Run # 17)	20
Figure 8-5. All V _{OUT} Upsets (Run # 17)	. 20

List of Tables

Table 1-1. Overview Information	. 3
Table 5-1. Ion LET _{EFF} , Depth, and Range in Silicon	.8

Table 6-1. Equipment Settings and Parameters Used During the SEE Testing of the TPS7H1111-SP	9
Table 7-1. Summary of TPS7H1111-SP SEL Test Condition and Results	11
Table 7-2. Summary of TPS7H1111-SP SEB/SEGR Test Condition and Results	13
Table 8-1. Scope Settings	17
Table 8-2. Summary of TPS7H1111-SP SET Test Condition and Results VIN = 2.5-V and VBIAS = 5-V	17
Table 8-3. Summary of TPS7H1111-SP SET Test Condition and Results VIN = 2.5-V and V _{BIAS} = 12-V	19
Table 9-1. SEL Event Rate Calculations for Worst-Week LEO and GEO Orbits	21
Table 9-2. SEB/SEGR Event Rate Calculations for Worst-Week LEO and GEO Orbits	21
Table 9-3. SET (V _{IN} =2.5-V, V _{BIAS} = 5-V) Event Rate Calculations for Worst-Week LEO and GEO Orbits	21
Table 9-4. SET (VIN=2.5-V, VBIAS= 12-V) Event Rate Calculations for Worst-Week LEO and GEO Orbits	21

Trademarks

All trademarks are the property of their respective owners.

1 Introduction

The TPS7H1111-SP is an ultra-low noise, high PSRR, low dropout (LDO) linear regulator optimized for powering RF (radio frequency) devices in a space environment. It is capable of sourcing up to 1.5A over a 0.85-V to 7-V input range with a 2.2-V to 14-V bias supply.

The high performance of the device limits power-supply generated phase noise and clock jitter, making this device ideal for powering high-performance ADCs, DACs, VCOs, PLLs, SerDes, and other RF components in satellites. For digital loads (such as FPGAs and DSPs) requiring low voltage operation, the exceptional accuracy and excellent transient performance ensure optimal system performance.

The device is offered in a 14-pin Ceramic package and 28-pin plastic package. General device information and test conditions are listed in Table 1-1. For more detailed technical specifications, user-guides, and application notes please go to TPS7H111-SP product page.

DESCRIPTION ⁽¹⁾	DEVICE INFORMATION
TI Part Number	TPS7H1111-SP
Orderable Number	5962R2120301VXC
Device Function	Ultra-Low Noise Low Dropout (LDO) Linear Regulator
Technology	LBC7 (Linear BiCMOS 7)
Exposure Facility	Radiation Effects Facility, Cyclotron Institute, Texas A&M University (15 MeV/nucleon)
Heavy Ion Fluence per Run	$1.00 \times 10^6 - 1.00 \times 10^7$ ions/cm ²
Irradiation Temperature	25°C (for SEB/SEGR testing), 25°C (for SET testing), and 125°C (for SEL testing)

Table 1-1. Overview Information

(1) TI may provide technical, applications or design advice, quality characterization, and reliability data or service, providing these items shall not expand or otherwise affect TI's warranties as set forth in the Texas Instruments Incorporated Standard Terms and Conditions of Sale for Semiconductor Products and no obligation or liability shall arise from Semiconductor Products and no obligation or liability shall arise from TI's provision of such items.

2 Single-Event Effects (SEE)

The primary concern for the TPS7H1111-SP is the robustness against the destructive single-event effects (DSEE): single-event latch-up (SEL), single-event burnout (SEB), and single-event gate rupture (SEGR). In mixed technologies such as the BiCMOS process used on the TPS7H1111-SP, the CMOS circuitry introduces a potential for SEL susceptibility.

SEL can occur if excess current injection caused by the passage of an energetic ion is high enough to trigger the formation of a parasitic cross-coupled PNP and NPN bipolar structure (formed between the p-sub and n-well and n+ and p+ contacts) [1,2]. The parasitic bipolar structure initiated by a single-event creates a high-conductance path (inducing a steady-state current that is typically orders-of-magnitude higher than the normal operating current) between power and ground that persists (is "latched") until power is removed, the device is reset, or until the device is destroyed by the high-current state. The TPS7H1111-SP was tested for SEL at the maximum recommended input voltage (V_{IN}) of 7V and the maximum recommended bias voltage (V_{BIAS}) of 14V. Two different output voltage (V_{OUT}) conditions were tested to achieve minimum, 0.4V, and maximum, 5.5V, operating conditions. The output loads varied depending on V_{OUT} with a load of 0.38 ohms, 1.05A, for the 0.4V output condition and 3.8 ohms, 1.5A, for the 5.5 output condition. The difference in output loads was based on device temperature and ensuring the device reached, but did not exceed 125°C. During testing of the 4 devices, the TPS7H1111-SP did not exhibit any SEL with heavy-ions with LET_{EFF} = 75 MeV·cm² /mg at flux ≈10⁵ ions/cm² ·s, fluence of ≈10⁷ ions/cm², and a die temperature of 125°C.

The TPS7H1111-SP was evaluated for SEB/SEGR at a maximum voltage of 14-V in the enabled and disabled mode. Because it has been shown that the MOSFET susceptibility to burnout decrement with temperature [5], the device was evaluated while operating under room temperatures. The device was tested with no external thermal control device. Different output loads were used in order to achieve the highest possible load without exceeding a temperature too high for valid SEB testing. A load of 4 ohms, 100mA, was used for the 0.4 output condition and a load of 3.8 ohms, 1.5A, was used for the 5.5 output condition. During the SEB/SEGR testing, not a single current event was observed, demonstrating that the TPS7H1111-SP is SEB/SEGR-free up to LET_{EFF} = 75 MeV·cm²/mg at a flux of $\approx 10^5$ ions/cm²·s, fluences of $\approx 10^7$ ions/cm², and a die temperature of $\approx 25^\circ$ C.

The TPS7H1111-SP was characterized for SET at flux of 1.02×10^4 to 9.66×10^4 ions/cm²·s, fluences of 1.00×10^6 to 1.05×10^6 ions/cm², and room temperature. The device was characterized at V_{IN} of 2.5-V and V_{BIAS} of 5, 12, and 14-V. Different V_{BIAS} conditions were used to test the TPS7H1111-SP in "golden configuration" (5-V)and "silver configuration" (12-V). Heavy-ions with LET_{EFF} of 48 to 75-MeV·cm²/mg were used to characterize the transient performance. To see the SET results of the TPS7H1111-SP, please refer to Single-Event Transients (SET).

3 Device and Test Board Information

The TPS7H1111-SP is packaged in a 14-pin thermally-enhanced Ceramic package as shown in Figure 3-1. The TPS7H1111-SP evaluation module was used to evaluate the performance and characteristics of the TPS7H1111-SP under heavy ion radiation. The TPS7H1111-SP EVM (Evaluation Module) is shown in Figure 3-2. The EVM schematic is shown in Figure 3-3.

Figure 3-1. Photograph of Delidded TPS7H1111-SP [Left] and Pinout Diagram [Right]

0 EXAS INSTRUMENTS T11 C20 10-35L N5 2 C12 TP UDUT ø 0 TP2 **J6** COUT VOUT 0 **C**8 60 C16 C7 :22 Constant CL E10 Turn-off CL ഉ C13 TP15 TD TP1 SS_SET VIN = 0.85 to 7 V VOUT = 1.8 V GND OUT = 1.5 A BIAS = 2.2 to 14 0 Ô LBL1 LP-052A ot FCC at

Note: The package was delidded to reveal the die face for all heavy-ion testing.

Figure 3-2. TPS7H1111-SP EVM Top View

TPS7H1111-SP EVM - Schematic

Figure 3-3. TPS7H1111-SP EVM Schematics

4 Irradiation Facility and Setup

The heavy-ion species used for the SEE studies on this product were provided and delivered by the TAMU Cyclotron Radiation Effects Facility using a superconducting cyclotron and an advanced electron cyclotron resonance (ECR) ion source. At the fluxes used, ion beams had good flux stability and high irradiation uniformity over a 1-in diameter circular cross-sectional area for the in-air station. Uniformity is achieved by magnetic defocusing. The flux of the beam is regulated over a broad range spanning several orders of magnitude. For these studies, ion flux of 1.02×10^4 to 1.12×10^5 ions/cm²·s were used to provide heavy-ion fluences of 1.00×10^6 to 1.00×10^7 ions/cm².

For the experiments conducted on this report, there were 2 ions used, ¹⁰⁹Ag and ¹⁶⁵Ho. ¹⁰⁹Ag was used to obtain LET_{EFF} of 48 and 60 MeV·cm²/mg. ¹⁶⁵Ho was used to obtain LET_{EFF} of 75 MeV·cm²/mg. The total kinetic energys for each of the ions were:

- ¹⁰⁹Ag = 1.634 GeV (15 MeV/nucleon)
- Ion uniformity for these experiments was between 93 and 96%
- ¹⁶⁵Ho = 2.474 GeV (15 MeV/nucleon)
 - Ion uniformity for these experiments was between 95% and 96%

Figure 4-1 shows the TPS7H1111-SP EVM used for the data collection at the TAMU facility. Although not visible in this photo, the beam port has a 1-mil Aramica window to allow in-air testing while maintaining the vacuum within the accelerator with only minor ion energy loss. The in-air gap between the device and the ion beam port window was maintained at 40 mm for all runs.

Figure 4-1. Photograph of the TPS7H1111-SP EVM in Front of the Heavy-Ion Beam Exit Port at the Texas A&M Cyclotron

7

5 Depth, Range, and LET_{EFF} Calculation

Ox	V Seuss 2022					×
	Current settings	Cyclotron operator controls		User controls		
	Log file: CI-TAMU Feb 2020	🗖 Enable	Open S1 Close S1	Layers: Define	Load Edit	Reports (click to view):
Ti+Tin Barrier	Beam: 15.0 MeV/u 165Ho @ K500	Select Log File	Open S2 Close S2	Control Positioning	Set Run Parameters	User file contents Run summary
Metal 4	Al degrader (mil): 0.000	Upload User Files	Set Hardware Check Beam	Set Options		Layer details Log file
Ti+Tin Barrier	Layers: 4 (1111) Summary	Select Beam	Detector shield	Help	Run	Current settings Bange table
Ti+Tin Barrier	Beam energy (MeV/u): 9.50	Set Bias Update	AM COUTCIN	Comment		Beam history
Metal 3	Beam energy (MeV): 1567	Change Setup	Exit Program		To Log File To	Run File To Screen
Ti+Tin Barrier	Target substrate: silicon	CVCLOTR	ON INSTITUTE	, Calibration factor:		
ILD 2	Nominal LET (MeVcm²/mg): 75.4	Radiation Effe	ects Testing Facility	Measure	Set	Lock T T=0
Metal 2	Nominal range (µm): 95.8	Positioning coordinates	Beam characteristics			
Ti+Tin Barrier	Effective LET (MeVcm²/mg): 75.4	× -0.000 in	Flux (ions/(cm²s)):	2.35E+004 TL	2368	2302 TR
ILD 1	Effective range (µm): 95.8	Y -0.000 in	Uniformity (%):	98		
Notal 1	DUT location: In-air	Z 10.000 cm				
Ti+Tin Barrier	DUT position: Current	T -0.000 deg	Central sniπ (%):	I BL	2382	2379 BR
Oxide	Bias (V): 500 500 500 500 500	U 1.500 deg	Axial gain:	9.68E-001		
Cilicon	- Ream flux control (simulation onlu)	v 1.500 in	Calibration factor:	9.96E-001		
SIICON	Increase Decrease	S -0.000 steps	Status			Clear
	Show Transmission Factor	R 0.000 deg				
	User: a0488733 (LT5CG017D549)		J		1	/ladimir Horvat (C) 2006-2022

Figure 5-1. Generalized Cross-Section of the LBC7 Technology BEOL Stack on the TPS7H1111-SP [Left] and SEUSS 2020 Application Used to Determine Key Ion Parameters [Right]

The TPS7H1111-SP is fabricated in the TI Linear BiCMOS 250-nm process with a back-end-of-line (BEOL) stack consisting of 4 levels of standard thickness aluminum. The total stack height from the surface of the passivation to the silicon surface is 11.44 μ m based on nominal layer thickness as shown in Figure 5-1. Accounting for energy loss through the 1-mil thick Aramica beam port window, the 40-mm air gap, and the BEOL stack over the TPS7H1111-SP, the effective LET (LET_{EFF}) at the surface of the silicon substrate and the depth was determined with the SEUSS 2020 Software (provided by the Texas A&M Cyclotron Institute and based on the latest SRIM-2013 [7] models). The results are shown in Ion LET_{EFF}, Depth, and Range in Silicon.

ION TYPE	DN TYPE Beam Energy (MeV/nucleon)		ANGLE OF DEGRADER INCIDENCE STEPS (#)		DEGRADER ANGLE RANGE IN SILICON (µm)	
¹⁰⁹ Ag	15	0	0	0	95.1	48
	15	30	0	0	69.8	60
¹⁶⁵ Ho	15	0	0	0	97.2	75

Table 5-1. Ion LET_{EFF}, Depth, and Range in Silicon

6 Test Setup and Procedures

There were three input supplies used to power the TPS7H1111-SP which provided V_{IN}, V_{BIAS} and EN. The V_{IN} for the device was provided via Ch. 1 of an N6705C power module and ranged from 2.5V for SET to 7 V for SEL and SEB/SEGR. The V_{BIAS} for the device was provided by a National Instruments (NI) PXIe-4139 SMU and ranged from 5V to 14V depending on the type of test. The last input supply was Ch. 1 of an E36311A power supply and ranged from 0V for SEB Off to 2.5V for most SET testing and 5V for all DSEE testing.

The instrument used to load the TPS7H1111-SP was a Chroma E36300 E-Load that was used in Constant Resistance (CR) mode. The value of CR was adjusted depending on the type of test. For the SEB testing during the V_{OUT} = 0.4V case the CR value had to be set such that the load on the device would not heat the device too much in order to ensure the test would remain valid. For the SEL testing during the V_{OUT} = 0.4V case the CR value had to be set such that the load on the device would not heat the device too much in order to ensure the test would remain valid. For the SEL testing during the V_{OUT} = 0.4V case the CR value was set to achieve a load of 1A as this load provided the correct amount of device heating to achieve a die temperature of 125°C.

The primary signal monitored on the EVM was V_{OUT} and this was done using two instruments. The first was a NI PXIe-5172 Scope card which was set to trigger on a 3% window based on the nominal value of VOUT. The second was a TDS7404B with the same 3% window trigger based on its measured value of V_{OUT} . All SEB On, SEL, and SET testing used these conditions with only the SEB Off testing having different conditions. The conditions for SEB Off were a positive edge trigger at 0.5V which would check to see if the device ever incorrectly turned on while it was disabled.

All equipment other than the TDS7404B was controlled and monitored using a custom-developed LabVIEW[™] program (PXI-RadTest) running on a HP-Z4[™] desktop computer. The computer communicates with the PXI chassis via an MXI controller and NI PXIe-8381 remote control module. The TDS7404B was used using the manufacturer interface. The DPO was set to fast-frame for all SET's data collection.

Equipment Settings and Parameters Used During the SEE Testing of the TPS7H1111-SP shows the connections, limits, and compliance values used during the testing. Figure 6-1 shows a block diagram of the setup used for SEE testing of the TPS7H1111-SP.

PIN NAME	EQUIPMENT USED	CAPABILITY	COMPLIANCE	RANGE OF VALUES USED
V _{IN}	N6705C (CH # 1)	20.4-V, 50-A	5-A	2.5 to 7-V
V _{Bias}	NI-PXIe 4139 (CH # 1)	±60-V, 3-A	3-A	5 to 14-V
EN	E36311A (CH # 1)	5-V,5-A	0.1-A	0-V, 5-V
V _{OUT} , PG	TDS7404B	40 GS/s	_	2.5 and 5 GS/s
V _{OUT}	PXIe-5172 (1)	100 MS/s	_	100 MS/s
PG	PXIe-5172 (2)	100 MS/s	_	100 MS/s
V _{OUT}	Chroma E36300 Load	80A	Low	_

Table 6-1 Equipment Settin	as and Parameters Lise	ad During the SEE Testi	ng of the TPS7H1111_SP
Table 6-1. Equipment Settin	ys anu raiameters use	eu Durnig ine SEE resi	ny or the tro/mitti-or

All boards used for SEE testing were fully checked for functionality. Dry runs were also performed to ensure that the test system was stable under all bias and load conditions prior to being taken to the TAMU facility. During the heavy-ion testing, the LabVIEW control program powered up the TPS7H1111-SP device and set the external sourcing and monitoring functions of the external equipment. After functionality and stability was confirmed, the beam shutter was opened to expose the device to the heavy-ion beam. The shutter remained open until the target fluence was achieved (determined by external detectors and counters). During irradiation, the NI scope cards continuously monitored the signals. When the output exceeded the pre-defined 3% window trigger, a data capture was initiated. No sudden increases in current were observed (outside of normal fluctuations) on any of the test runs and indicated that no SEL or SEB/SEGR events occurred during any of the tests.

Figure 6-1. Block Diagram of the SEE Test Setup for the TPS7H1111-SP

7 Destructive Single-Event Effects (DSEE) 7.1 Single-Event Latch-up (SEL) Results

During the SEL tesing the device was heated to 125°C by using a Closed-Loop PID controlled heat gun (MISTRAL 6 System (120V, 2400W)). The temperature of the die was verified using thermal camera prior to exposure to heavy ions.

The species used for the SEL testing was Homium (165 Ho @ 15 MeV/nucleon). For the 165 Ho ion an angle of incedence of 0° was used to achieve an LET_{EFF} = 75 MeV·cm²/mg (for more details refer to lon LET_{EFF}, Depth, and Range in Silicon). The kinetic energy in the vacuum for this ions is 2.474 GeV. Flux of approximately 10^5 ions/cm²·s and a fluence of approximately 10^7 ions/cm² per run was used. Run duration to achieve this fluence was approximately 2 minutes. The four devices were powered up and exposed to the heavy-ions using the maximum recommended input voltage of 7-V, the maximum recommended bias voltage of 14-V. Two different output conditions were tested, the minimum recommended output voltage of 0.4-V and the maximum recommended output voltage of 5.5-V. No SEL events were observed during all four runs, indicating that the TPS7H1111-SP is SEL-free up to 75 MeV·cm²/mg. Table 7-1 shows the SEL test conditions and results. Figure 7-1 shows a plot of the current vs time for run # 1.

Table 7-1. Summar	v of TPS7H1111-SP	SEL Test	Condition a	nd Results

Run #	Unit #	lon	LET _{EFF} (MeV·cm ²/mg)	Flux (ions∙cm²/m g)	Fluence (# ions)	V _{IN}	V _{BIAS}	V _{OUT}	I _{OUT} (A)	SEL (# Events)
1	1	¹⁶⁵ Ho	75	9.60 x 10 ⁴	1 x 10 ⁷	7	14	5.5	1.5	0
2	2	¹⁶⁵ Ho	75	1.07 x 10 ⁵	1 x 10 ⁷	7	14	5.5	1.5	0
3	3	¹⁶⁵ Ho	75	9.64 x 10 ⁴	1 x 10 ⁷	7	14	0.4	1	0
4	4	¹⁶⁵ Ho	75	9.34 x 10 ⁴	1 x 10 ⁷	7	14	0.4	1	0

Using the MFTF method described in *Single-Event Effects (SEE) Confidence Interval Calculations* application report and combining (or summing) the fluences of the four runs @ 125° C (4 × 10^{7}), the upper-bound cross-section (using a 95% confidece level) is calculated as:

 $\sigma_{SEL} \le 9.22 \text{ x } 10^{-8} \text{ cm}^2/\text{device for } \text{LET}_{EFF} = 75 \text{ MeV} \cdot \text{cm}^2/\text{mg} \text{ and } \text{T} = 125^{\circ}\text{C}.$

Figure 7-1. Current vs Time for Run # 1 of the TPS7H1111-SP at T = 125°C (V_{OUT} = 5.5-V)

Figure 7-2. Current vs Time for Run #3 of the TPS7H1111-SP at T = 125°C (V_{OUT} = 0.4-V)

7.2 Single-Event Burnout (SEB) and Single-Event Gate Rupture (SEGR) Results

During the SEB/SEGR characterization, the device was tested at room temperature of approximately 25°C. The device was tested under both the enabled and disabled mode. For the SEB-OFF mode the device was disabled using the EN-pin by forcing 0-V (using CH # 1 of a E36311A Keysight PS). During the SEB/SEGR testing with the device enabled/disabled, not a single input current event was observed.

The species used for the SEB testing was Homium (165 Ho @ 15 MeV/nucleon). For the 165 Ho ion an angle of incedence of 0° was used to achieve an LET_{EFF} = 75 MeV·cm²/mg (for more details refer to lon LET_{EFF}, Depth, and Range in Silicon). The kinetic energy in the vacuum for this ion is 2.474 GeV (15-MeV/amu line). Flux of approximately 10⁵ ions/cm²·s and a fluence of approximately 10⁷ ions/cm² was used for the run. Run duration to achieve this fluence was approximately 2 minutes. The four devices (same as used in SEL testing) were powered up and exposed to the heavy-ions using the maximum recommended input voltage of 7-V, the maximum recommended bias voltage of 14-V. Two different output conditions were tested, the minimum recommended output voltage of 0.4-V and the maximum recommended output voltage of 5.5-V. No SEB/SEGR current events were observed during the 8 runs, indicating that the TPS7H1111-SP is SEB/SEGR-free up to LET_{EFF} = 75 MeV·cm²/mg and across the full electrical specifications. Summary of TPS7H1111-SP SEB/SEGR Test Condition and Results shows the SEB/SEGR test conditions and results.

RUN #	UNIT #	ION	LET _{EFF} (MeV·cm²/ mg)	FLUX (ions·cm²/ mg)	FLUENCE (# ions)	ENABLE D STATUS	V _{IN}	V _{BIAS}	V _{OUT}	I _{OUT} (mA)	SEB EVENT?
5	4	¹⁶⁵ Ho	75	1.00 x 10 ⁵	9.99 x 10 ⁶	EN	7	14	0.4	100	No
6	4	¹⁶⁵ Ho	75	1.03 x 10 ⁵	9.99 x 10 ⁶	DIS	7	14	0	0	No
7	3	¹⁶⁵ Ho	75	1.12 x 10 ⁵	1.00 x 10 ⁷	EN	7	14	0.4	100	No
8	3	¹⁶⁵ Ho	75	1.07 x 10 ⁵	1.00 x 10 ⁷	DIS	7	14	0	0	No
9	2	¹⁶⁵ Ho	75	9.87 x 10 ⁴	1.00 x 10 ⁷	EN	7	14	5.5	100	No
10	2	¹⁶⁵ Ho	75	1.00 x 10 ⁵	1.00 x 10 ⁷	DIS	7	14	0	0	No
11	1	¹⁶⁵ Ho	75	1.00 x 10 ⁵	1.00 x 10 ⁷	EN	7	14	5.5	100	No
12	1	¹⁶⁵ Ho	75	9.50 x 10 ⁴	1.00 x 10 ⁷	DIS	7	14	0	0	No

Table 7-2. Summary of TPS7H1111-SP SEB/SEGR Test Condition and Results

Using the MFTF method described in *Single-Event Effects (SEE) Confidence Interval Calculations* application report, the upper-bound cross-section (using a 95% confidence level) is calculated as:

 $\sigma_{SEB} \le 4.62 \text{ x } 10^{-8} \text{ cm}^2/\text{device for } \text{LET}_{EFF} = 75 \text{ MeV} \cdot \text{cm}^2/\text{mg} \text{ and } \text{T} = 25^{\circ}\text{C}.$

Figure 7-4. SEB Off Run #6 (V_{OUT} = 0-V)

8 Single-Event Transients (SET)

SET are defined as heavy-ion-induced transients upsets on the VOUT and PGof the TPS7H1111-SP.

Testing was performed at room temperature (no external temperature control applied). The heavy-ions species used for the SET testing were Silver (109 Ag),and Homium (165 Ho) for an LET_{EFF} = 48 to 75 MeV·cm²/mg, for more details refer to lon LET_{EFF}, Depth, and Range in Silicon. Flux of 1.02 x 10⁴ to 9.66 x 10⁴ ions/cm²·s and a fluence of 1.00 x 10⁶ to 1.00 x 10⁷ ions/cm², per run were used for the SET's characterization discussed on this chapter.

SET testing was catagorized as:

- 1. Golden Config: V_{IN}=2.5-V (Nominal), V_{BIAS}=5-V (Nominal)
- 2. Silver Config: VIN=2.5-V (Nominal), VBIAS=12-V

Waveform size, sample rate, trigger type, value, and signal for all scopes used is presented on Table 8-1.

Table 8-1. Scope Settings

Note: Only one Signal was used as a trigger source at a time, this table just present all posible sources for a given scope, the same is valid for the trigger type. All percentage specified on the trigger value are deviation from the nominal value.

Scope Model	Trigger Signal	Trigger Type	Trigger Value	Record Length	Sample Rate	
TDS7404B	V _{OUT}	Window	± 3 %	20us/div	250MS/s	
10374046	PG	Edge/Negative	0.5-V	20µ3/01		
PXIe-5172 (1)	V _{OUT}	Window	± 3 %	20k	100MS/s	
PXIe-5172 (2)	PG	Edge/Negative	0.5-V	20k	100MS/s	

V_{IN}=2.5-V (nominal) and V_{BIAS} = 5-V (nominal)

¹⁰⁹Ag

¹⁰⁹Aq

60

48

5

5

For the "golden configuration" of $V_{IN} = 2.5$ -V and $V_{BIAS} = 5$ -V with a V_{OUT} of 1.8-V two units were characterized from 75 MeV down to 48 MeV. ¹⁶⁵Ho was used to achieve LET_{EFF} = 75 MeV and ¹⁰⁹Ag was used to achieve LET_{EFF} = 60 and 48 MeV. A DPO and two PXIe-5172 scopes were used to monitor the V_{OUT} and PG signals of the TPS7H111-SP with V_{OUT} triggering off a 3% window and PG triggering off a negative edge. The following tables summarize the results for the two units as well as the upper bound cross sections for V_{OUT} . A typical V_{OUT} triansient is shown in the figure below, the figure shows that although the signal goes beyond the 3% window, the signal recovers back to nominal and the device continues to operate properly. As the summarization of results shows, the onset for the TPS7H1111-SP in "golden configuration" occurs at an LET_{EFF} of 60 MeV.

RUN #	UNIT #	ION	LET _{EFF} (MeV·cm²/ mg)	FLUX (ions∙cm²/mg)	FLUENCE (# ions)	V _{OUT} Capacitor	TDS7404B V _{OUT} # ≥ 3%	TDS7404B V _{OUT} # ≥ 5%	PXI 5172 PG #	
13	5	¹⁶⁵ Ho	75	8.91 × 10 ⁴	1.00 × 10 ⁷	2 x 100 µF	78	41	90	
14	6	¹⁶⁵ Ho	75	1.18 × 10 ⁴	1.05 × 10 ⁶	1 x 220 µF	21	4	0	

 1.00×10^{6}

 1.00×10^{6}

2 x 100 µF

2 x 100 µF

0

0

0

0

0

0

1.13 × 10⁴

 1.14×10^{4}

Table 8-2. Summary of TPS7H1111-SP SET Test Condition and Results VIN = 2.5-V and VBIAS = 5-V

15

16

Figure 8-2. All V_{OUT} Upsets (Run # 13)

$V_{\text{IN}}\text{=}2.5\text{-}V$ (nominal) and $V_{\text{BIAS}}\text{=}12\text{-}V$

Table 8-3. Summary of TPS7H1111-SP SET Test Condition and Results VIN = 2.5-V and V _{BIAS} = 12-V
--

RUN #	UNIT #	ION	LET _{EFF} (MeV·cm²/ mg)	FLUX (ions∙cm²/mg)	FLUENCE (# ions)	V _{OUT} Capacitor	TDS7404B V _{OUT} # ≥ 3%	TDS7404B V _{OUT} # ≥ 5%	PXI 5172 PG #
17	5	¹⁶⁵ Ho	75	9.96 × 10 ⁴	1.00 × 10 ⁷	2 x 100 µF	140	78	175
18	6	¹⁶⁵ Ho	75	1.17 × 10 ⁴	1.00 x 10 ⁶	1 x 220 µF	32	9	0
19	5	¹⁰⁹ Ag	60	1.15 × 10 ⁴	1.00 x 10 ⁶	2 x 100 µF	5	3	0
20	5	¹⁰⁹ Ag	48	1.12 × 10 ⁴	1.00 x 10 ⁶	2 x 100 µF	0	0	0
21	6	¹⁰⁹ Ag	48	1.02 x 10 ⁴	1.00 x 10 ⁶	1 x 220 µF	0	0	0

Figure 8-5. All V_{OUT} Upsets (Run # 17)

9 Event Rate Calculations

Event rates were calculated for LEO (ISS) and GEO environments by combining CREME96 orbital integral flux estimations and simplified SEE cross-sections according to methods described in *Heavy Ion Orbital Environment Single-Event Effects Estimations* application report. We assume a minimum shielding configuration of 100 mils (2.54 mm) of aluminum, and "worst-week" solar activity (this is similar to a 99% upper bound for the environment). Using the 95% upper-bounds for the SEL and the SEB/SEGR, the event rate calculation for the SEL and the SEB/SEGR is shown on Table 9-1 and Table 9-2, respectively. It is important to note that this number is for reference since no SEL or SEB/SEGR events were observed. SET orbit rate for V_{OUT} at V_{IN} =2.5-V and V_{BIAS} = 5 and 12-V is presented onSEB/SEGR Event Rate Calculations for Worst-Week LEO and GEO Orbits.

Orbit Type	Onset LET _{EFF} (MeV-cm ² /mg)	CREME96 Integral FLUX (/day/cm ²)	σSAT (cm²)	Event Rate (/day)	Event Rate (FIT)	MTBE (Years)
LEO (ISS)	- 75	6.26 × 10 ⁻⁵	0.22×10^{-8}	5.77 × 10 ⁻¹²	2.40 × 10 ⁻⁴	4.74 × 10 ⁸
GEO		1.77 × 10 ⁻⁴	9.22 × 10	1.63 × 10 ⁻¹¹	6.79 × 10 ⁻⁴	1.68 × 10 ⁸

Table 9-1. SEL Event Rate Calculations for Worst-Week LEO and GEO Orbits

Table 9-2. SEB/SEGR Event Rate Calculations for Worst-Week LEO and GEO Orbits

Orbit Type	Onset LET _{EFF} (MeV-cm ² /mg)	CREME96 Integral FLUX (/day/cm ²)	σSAT (cm²)	Event Rate (/day)	Event Rate (FIT)	MTBE (Years)
LEO (ISS)	- 75	6.26 × 10 ⁻⁵	4.62 × 10 ⁻⁸	2.89 × 10 ⁻¹²	1.20 × 10 ⁻⁴	9.47 × 10 ⁸
GEO		1.77 × 10 ⁻⁴	4.02 X 10 °	8.17 × 10 ⁻¹²	3.40 × 10 ⁻⁴	3.35 × 10 ⁸

Table 9-3. SET (V_{IN}=2.5-V , V_{BIAS}= 5-V) Event Rate Calculations for Worst-Week LEO and GEO Orbits

Orbit Type	Onset LET _{EFF} (MeV-cm ² /mg)	CREME96 Integral FLUX (/day/cm ²)	σSAT (cm²)	Event Rate (/day)	Event Rate (FIT)	MTBE (Years)
LEO (ISS)	60	1.66 x 10 ⁻⁴	1.09 × 10 ⁻⁵	1.82 × 10 ⁻⁹	7.58 × 10 ⁻²	1.51 × 10 ⁶
GEO		4.94 x 10 ⁻⁴		5.39 × 10 ⁻⁹	2.24 × 10 ^{−1}	5.09 × 10 ⁵

Table 9-4. SET (VIN=2.5-V, VBIAS= 12-V) Event Rate Calculations for Worst-Week LEO and GEO Orbits

Orbit Type	Onset LET _{EFF} (MeV-cm ² /mg)	CREME96 Integral FLUX (/day/cm ²)	σSAT (cm²)	Event Rate (/day)	Event Rate (FIT)	MTBE (Years)
LEO (ISS)	- 48	4.50 x 10- ⁴	1 81 × 10 ⁻⁵	8.17 × 10 ⁻⁹	3.41 × 10 ⁻¹	3.35 × 10 ⁵
GEO		1.48 x 10- ³	1.81 × 10 ⁻³	2.68 × 10 ⁻⁸	1.12 × 10 ⁰	1.02 × 10 ⁵

10 Summary

The purpose of this study was to characterize the effect of heavy-ion irradiation on the single-event effect (SEE) performance of the TPS7H1111-SP ultra-low noise, high PSRR, low dropout linear regulator (LDO). Heavy-ions with LET_{EFF} = 48 to 75 MeV·cm²/mg were used for the SEE characterization campaign. Flux of $\approx 10^4$ to 10^5 ions/cm² ·s and fluences of $\approx 10^6$ to 10^7 ions/cm² per run were used for the characterization. The SEE results demonstrated that the TPS7H1111-SP is free of destructive SEL and SEB LET_{EFF} = 75 MeV·cm²/mg and across the full electrical specifications. Transients at LET_{EFF} = 48 to 75 MeV·cm² /mg on V_{OUT} are presented and discussed. CREME96-based worstweek event-rate calculations for LEO(ISS) and GEO orbits for the DSEE and SET (at V_{IN}=2.5-V and V_{BIAS}=5 and 12-V) are presented for reference.

A Total Ionizing Dose from SEE Experiments

The production TPS7H1111-SP is rated to a total ionizing dose (TID) of 100 krad(Si). In the course of the SEE testing, the heavy-ion exposures delivered ≈ 10 krad(Si) per 10^7 ions/cm² run. The cumulative TID exposure was controlled below 100krad (Si) per unit. All six TPS7H1111-SP devices used in the studies described in this report stayed within specification and were fully-functional after the heavy-ion SEE testing was completed.

B References

- 1. M. Shoga and D. Binder, "Theory of Single Event Latchup in Complementary Metal-Oxide Semiconductor Integrated Circuits", *IEEE Trans. Nucl. Sci., Vol. 33(6)*, Dec. 1986, pp. 1714-1717.
- 2. G. Bruguier and J. M. Palau, "Single particle-induced latchup", *IEEE Trans. Nucl. Sci., Vol. 43(2)*, Mar. 1996, pp. 522-532.
- 3. G. H. Johnson, J. H. Hohl, R. D. Schrimpf and K. F. Galloway, "Simulating single-event burnout of n-channel power MOSFET's," in IEEE Transactions on Electron Devices, vol. 40, no. 5, pp. 1001-1008, May 1993.
- 4. J. R. Brews, M. Allenspach, R. D. Schrimpf, K. F. Galloway, J. L. Titus and C. F. Wheatley, "A conceptual model of a single-event gate-rupture in power MOSFETs," in IEEE Transactions on Nuclear Science, vol. 40, no. 6, pp. 1959-1966, Dec. 1993.
- 5. G. H. Johnson, R. D. Schrimpf, K. F. Galloway, and R. Koga, "Temperature dependence of single event burnout in n-channel power MOSFETs [for space application]," IEEE Trans. Nucl. Sci., 39(6), Dec. 1992, pp.1605-1612.
- 6. TAMU Radiation Effects Facility website. http://cyclotron.tamu.edu/ref/
- 7. "The Stopping and Range of Ions in Matter" (SRIM) software simulation tools website. www.srim.org/ index.htm#SRIMMENU
- 8. D. Kececioglu, "Reliability and Life Testing Handbook", Vol. 1, PTR Prentice Hall, New Jersey, 1993, pp. 186-193.
- 9. ISDE CRÈME-MC website.https://creme.isde.vanderbilt.edu/CREME-MC
- 10. A. J. Tylka, J. H. Adams, P. R. Boberg, et al., "CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code", *IEEE Trans. on Nucl. Sci., Vol. 44*(6), Dec. 1997, pp. 2150-2160.
- 11. A. J. Tylka, W. F. Dietrich, and P. R. Boberg, "Probability distributions of high-energy solar-heavy-ion fluxes from IMP-8: 1973-1996", *IEEE Trans. on Nucl. Sci., Vol. 44(6)*, Dec. 1997, pp. 2140-2149.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated