Functional Safety Information

TPS25833-Q1 Functional Safety FIT Rate, FMD and Pin FMA

Table of Contents

1 Overview	2
2 Functional Safety Failure In Time (FIT) Rates	
3 Failure Mode Distribution (FMD)	
4 Pin Failure Mode Analysis (Pin FMA)	
5 Revision History	
/ INGVISION FINSION /	! \

Trademarks

All trademarks are the property of their respective owners.

Overview www.ti.com

1 Overview

This document contains information for TPS25833-Q1 (VQFN package) to aid in a functional safety system design. Information provided are:

- Functional Safety Failure In Time (FIT) rates of the semiconductor component estimated by the application of industry reliability standards
- Component failure modes and their distribution (FMD) based on the primary function of the device

Figure 1-1 shows the device functional block diagram for reference.

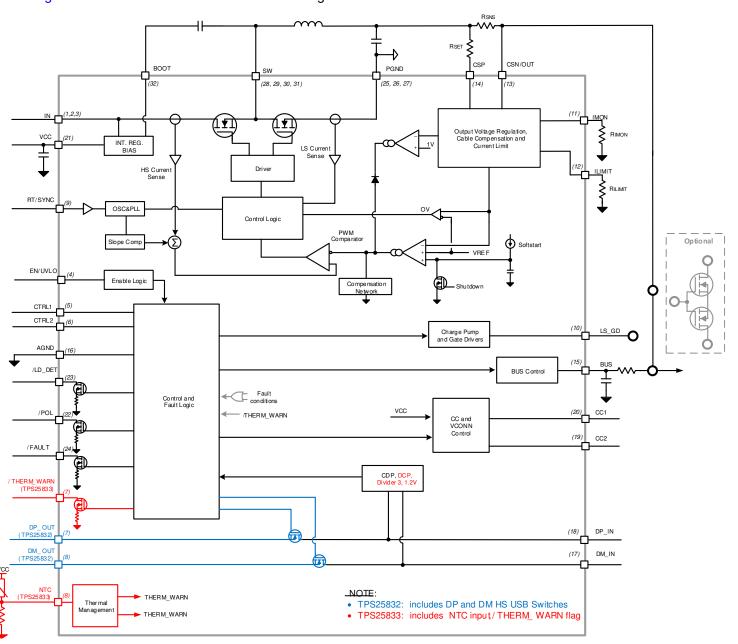


Figure 1-1. Functional Block Diagram

TPS25833-Q1 was developed using a quality-managed development process, but was not developed in accordance with the IEC 61508 or ISO 26262 standards.

2 Functional Safety Failure In Time (FIT) Rates

This section provides Functional Safety Failure In Time (FIT) rates for TPS25833-Q1 based on two different industry-wide used reliability standards:

- Table 2-1 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-2 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-1. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total FIT Rate	27
Die FIT Rate	8
Package FIT Rate	19

The failure rate and mission profile information in Table 2-1 comes from the Reliability data handbook IEC TR 62380 / ISO 26262 part 11:

· Mission Profile: Motor Control from Table 11

Power dissipation: 1300 mW
Climate type: World-wide Table 8
Package factor (lambda 3): Table 17b

Substrate Material: FR4EOS FIT rate assumed: 0 FIT

Table 2-2. Component Failure Rates per Siemens Norm SN 29500-2

Table	Table Category		Reference Virtual T _J
5	Digital, Analog, Mixed	25 FIT	55°C

The Reference FIT Rate and Reference Virtual T_J (junction temperature) in Table 2-2 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

3 Failure Mode Distribution (FMD)

The failure mode distribution estimation for TPS25833-Q1 in Table 3-1 comes from the combination of common failure modes listed in standards such as IEC 61508 and ISO 26262, the ratio of sub-circuit function size and complexity and from best engineering judgment.

The failure modes listed in this section reflect random failure events and do not include failures due to misuse or overstress.

Table 3-1. Die Failure Modes and Distribution

Die Failure Modes	Failure Mode Distribution (%)
SW no output	25%
CSP and CSN/OUT not in specification – voltage or timing	20%
LS_GD no output	5%
LS_GD not in specification – voltage or timing	5%
DP_IN, DM_IN – no output	10%
DP_IN, DM_IN – not in specification – voltage or timing	10%
CC1, CC2 no output	5%
CC1, CC2 not in specification – voltage or timing	10%
FAULT, POL, LD_DET, THERM_WARN false trip or fails to trip	5%
Short circuit any two pins	5%

The FMD in Table 3-1 excludes short circuit faults across the isolation barrier. Faults for short circuit across the isolation barrier can be excluded according to ISO 61800-5-2:2016 if the following requirements are fulfilled:

- 1. The signal isolation component is OVC III according to IEC 61800-5-1. If a SELV/PELV power supply is used, pollution degree 2/OVC II applies. All requirements of IEC 61800-5-1:2007, 4.3.6 apply.
- 2. Measures are taken to ensure that an internal failure of the signal isolation component cannot result in excessive temperature of its insulating material.

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance.

4 Pin Failure Mode Analysis (Pin FMA)

This section provides a failure mode analysis (FMA) for the pins of the TPS25833-Q1. The failure modes covered in this document include the typical pin-by-pin failure scenarios:

- Pin short-circuited to ground (see Table 4-2)
- Pin open-circuited (see Table 4-3)
- Pin short-circuited to an adjacent pin (see Table 4-4)
- Pin short-circuited to supply (see Table 4-5)

Table 4-2 through Table 4-5 also indicate how these pin conditions can affect the device as per the failure effects classification in Table 4-1.

Table 4-1. TI Classification of Failure Effects

Class	Failure Effects
Α	Potential device damage that affects functionality.
В	No device damage, but loss of functionality.
С	No device damage, but performance degradation.
D	No device damage, no impact to functionality or performance.

Figure 4-1 and Figure 4-2 show the TPS25833-Q1 pin diagram. For a detailed description of the device pins, see the *Pin Configuration and Functions* section in the TPS25833-Q1 data sheet.

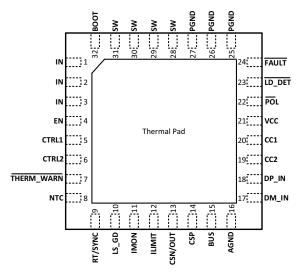


Figure 4-1. TPS25833QCWRHBRQ1 Pin Diagram

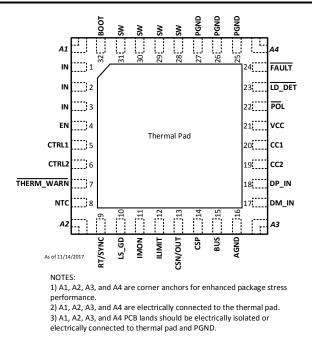


Figure 4-2. TPS25833QWRHBRQ1 Pin Diagram

Following are the assumptions of use and the device configuration assumed for the pin FMA in this section:

- Device used within the 'Recommended Operating Conditions' and the 'Absolute Maximum Ratings' found in the appropriate device data sheet.
- Configuration as shown in the 'Example Application Circuit' found in the appropriate device data sheet.

Table 4-2. Pin FMA for Device Pins Short-Circuited to Ground

Pin Name	Pin No.	Description of Potential Failure Effect(s)	
VIN	1	Device does not operate. No output voltage is generated.	В
VIN	2	Device does not operate. No output voltage is generated.	В
VIN	3	Device does not operate. No output voltage is generated.	В
EN	4	Loss of ENABLE functionality. Device remains in shutdown mode.	В
CTRL1	5	Device stays at reserved mode or DCP auto mode. When in the reserved mode, the output charging is abnormal.	В
CTRL2	6	Device stay at reserved mode or SDP mode. When in the reserved mode, the output charging is abnormal.	В
/THERM_WARN	7	Loss of THERM_WARN functionality. Device always appears to be in the thermal warning condition.	С
NTC	8	Loss of Temperature Sense functionality. Device cannot sense the external PCB temperature.	С
RT/SYNC	9	Device internal buck switching frequency goes up to 4.6 MHz, and the CSN pin voltage up to 7 V. It makes the output charging.	В
LS_GD	10	Device cannot drive external FET for current limit.	В
IMON	11	Loss of Cable Compensation functionality. Device cannot make a cable compensation.	С
ILIMT	12	Loss of Current Limit functionality. Device uses the maximum current limit value of 3.5 A.	С
CSN/OUT	13	Device internal buck output short circuits. Device enters hiccup mode.	В
CSP	14	Device internal buck output short circuits. Device enters hiccup mode.	В
BUS	15	Device hiccups and output current limit does work.	В
AGND	16	No effect	D
DM_IN	17	Device cannot support SDP/CDP/DCP auto charging mode.	В
DP_IN	18	Device cannot support SDP/CDP/DCP auto charging mode.	В
CC2	19	Device hiccups and output voltage is abnormal.	В

Table 4-2. Pin FMA for Device Pins Short-Circuited to Ground (continued)

Pin Name	Pin No.	Description of Potential Failure Effect(s)	Failure Effect Class
CC1	20	Device hiccups and output voltage is abnormal.	В
VCC	21	Device hiccups and cannot be powered on.	В
/POL	22	Loss of /POL functionality. Device always appears to the CC2 pin is connected to the CC line in the cable.	С
/LD_DET	23	Loss of /LD_DET functionality. Device always appears to a Type-C UFP is identified on the CC lines.	С
/FAULT	24	Loss of /FAULT functionality. Device always appears to be in the fault condition.	С
PGND	25	No effect	D
PGND	26	No effect	
PGND	27	No effect	
SW	28	Device internal buck hiccup. Long-term reliability can impact.	Α
SW	29	Device internal buck hiccup. Long-term reliability can impact.	Α
SW	30	Device internal buck hiccup. Long-term reliability can impact.	Α
SW	31	Device internal buck hiccup. Long-term reliability can impact.	
BOOT	32	Device internal buck stop switching. No output voltage in VSN/OUT.	
Thermal Pad	_	No effect	

Table 4-3. Pin FMA for Device Pins Open-Circuited

Pin Name	Pin No.	Description of Potential Failure Effect(s)	Failure Effect Class	
VIN	1	Long-term reliability can impact due to lower bonding-wire count.	С	
VIN	2	Long-term reliability can impact due to lower bonding-wire count.	С	
VIN	3	Long-term reliability can impact due to lower bonding-wire count.	С	
EN	4	Device off and on cannot be controlled and is off and on depending on how EN floats.	В	
CTRL1	5	Device DCP auto/SDP/CDP/RESERVED mode cannot be controlled, and is DCP auto/SDP/CDP/RESERVED mode depending on how CTRL1 floats.	В	
CTRL2	6	Device DCP auto/SDP/CDP/RESERVED mode cannot be controlled, and is DCP auto/SDP/CDP/RESERVED mode depending on how CTRL2 floats.	В	
/THERM_WARN	7	Loss of THERM_WARN functionality. Device cannot be determined whether it is in the overtemperature condition.	С	
NTC	8	Device overtemperature or not cannot be controlled, and is depending on how NTC floats.	С	
RT/SYNC	9	Device internal buck switching frequency drop and loading current are limited to about a small value. This fact causes abnormal charging.	В	
LS_GD	10	Device cannot drive external FET for current limit.	В	
IMON	11	VOUT/CSN goes up to 6.9 V. This action can cause VBUS voltage over compensation and fail at the BC1.2 certification test.	В	
ILIMT	12	Device internal buck hiccups.	В	
CSN/OUT	13	Device internal buck output voltage is abnormal.	В	
CSP	14	Device cannot sense the output current signal. The output current limit and VBUS cable compensation don not work.	С	
BUS	15	Loss of VBUS OVP functionality. IEC ESD test is impacted.	В	
AGND	16	The device tries to power up by forward-biasing the ESD diode from the GND to another pin. Strange results are observed.		
DM_IN	17	Device cannot support SDP/CDP/DCP auto charging mode.		
DP_IN	18	Device cannot support SDP/CDP/DCP auto charging mode.	В	
CC2	19	Device Nothing attached/UFP connected/No UFP connected cannot be controlled. It depends on the state of CC1.		
CC1	20	Device Nothing attached/UFP connected/No UFP connected cannot be controlled. It depends on the state of CC2.	В	

Table 4-3. Pin FMA for Device Pins Open-Circuited (continued)

Pin Name	Pin No.	in No. Description of Potential Failure Effect(s)		
VCC	21	Device cannot start up. Internal buck stops switching.	В	
/POL	22	Loss of /POL functionality, cannot give cable orientation information.	С	
/LD_DET	23	Loss of /LD_DET functionality. Cannot identify the Type-C UFP.	С	
/FAULT	24	Loss of /FAULT functionality, cannot check whether the device is in the fault condition.	С	
PGND	25	ng-term reliability can impact due to lower bonding-wire count.		
PGND	26	ong-term reliability can impact due to lower bonding-wire count.		
PGND	27	ong-term reliability can impact due to lower bonding-wire count.		
SW	28	ong-term reliability can impact due to lower bonding-wire count.		
SW	29	Long-term reliability can impact due to lower bonding-wire count.	С	
SW	30	Long-term reliability can impact due to lower bonding-wire count.	С	
SW	31	Long-term reliability can impact due to lower bonding-wire count.	С	
воот	32	Device internal buck HS FET cannot be turned on. VSN/OUT cannot get up to target voltage.	В	
Thermal Pad	_	Long-term reliability can impact if the device operates beyond the rate junction temperature for extended time because a heat path is interrupted.	С	

Table 4-4. Pin FMA for Device Pins Short-Circuited to Adjacent Pin

Pin Name	Pin No.	Shorted to	Description of Potential Failure Effect(s)	Failure Effect Class
VIN	1	VIN	No effect	D
VIN	2	VIN	No effect	D
VIN	3	EN	Device is enabled and cannot be disabled.	D
EN	4	CTRL1	Device DCP auto/SDP/CDP/reserve mode and enable/disable cannot be controlled. It is DCP auto/SDP/CDP/ reserve mode and enable/disable depending on how EN and CTRL1 circuits interact.	В
CTRL1	5	CTRL2	Device DCP auto/SDP/CDP/Reserve mode cannot be controlled. It is DCP auto/SDP/CDP/Reserve mode depending on how CTRL1 and CTRL2 circuits interact.	В
CTRL2	6	/THERM_WARN	Device DCP auto/SDP/CDP/Reserve mode cannot be controlled. It is DCP auto/SDP/CDP/Reserve mode depending on how CTRL2 and / THERM_WARN circuits interact.	В
/THERM_WARN	7	NTC	The NTC thermal sensing does not work, THERM_WARN flag and charging state do not report correctly.	
NTC	8	RT/SYNC	Device internal buck switching is interrupted by NTC.	В
RT/SYNC	9	LS_GD	The LS_GD goes down from 11.3 V to 0.5 V, and the internal buck switching frequency is abnormal. Device cannot drive the external FET for current limit	В
LS_GD	10	IMON	LS_GD voltage set low, device cannot drive the external FET for current limit.	В
IMON	11	ILIMT	Current limit threshold and cable compensation value are impacted.	С
ILIMT	12	CSN/OUT	llimit is pulled up over 1 V, device behaves as average current limit and keeps hiccup.	В
CSN/OUT	Average current limit, external FET current limit and cable compensation function are bypassed.		Average current limit, external FET current limit and cable compensation function are bypassed.	С
CSP	14	Average current limit, external FET current limit and cable compensation function are bypassed.		С
BUS	15	AGND	Device goes into hiccup mode.	В
AGND	16	DM_IN	Device cannot support SDP/CDP/DCP auto charging mode.	
DM_IN	17	DP_IN	Device only supports BC1.2 DCP mode.	С
DP_IN	18	CC2	If shorted before charging, the device cannot charge. If shorted after charge, no effect.	
CC2	19	CC1	Pin short before power up, device internal buck is not switching. Pin short during normal condition, no impact.	В

Table 4-4. Pin FMA for Device Pins Short-Circuited to Adjacent Pin (continued)

Pin Name	Pin No.	Shorted to	Description of Potential Failure Effect(s)	Failure Effect Class
CC1	20	VCC	Device stops working, CSN/OUT does not output voltage.	В
VCC	21	/POL	Loss of /POL functionality, the /POL always goes into high, device always appears to have the CC1 pin connected to the CC line.	С
/POL	22	/LD_DET	Loss of /POL and /LD_LET functionality.	С
/LD_DET	23	/FAULT	Loss of /FAULT and /LD_LET functionality.	С
/FAULT	24	PGND	Loss of /FAULT functionality, device always appears to be in the fault condition.	С
PGND	25	PGND	No effect	D
PGND	26	PGND	No effect	D
PGND	27	SW	Device internal buck hiccup, long-term reliability can be impacted.	Α
SW	28	SW	No effect	D
SW	29	SW	No effect	D
SW	30	SW	No effect	D
SW	31	BOOT	Device internal buck HS FET stops working, no output voltage in CSN/OUT.	
Thermal Pad	_	Any of the numbered pins in the above rows.	The thermal pad is connected to the board ground. Treat shorts to the thermal pad as shorts to ground.	Α

Table 4-5. Pin FMA for Device Pins Short-Circuited to Supply

Pin Name	Pin Name Pin No. Description of Potential Failure Effect(s)		
VIN	1	No effect	D
VIN	2	No effect	D
VIN	3	No effect	D
EN	4	Device is enabled and cannot be disabled.	D
CTRL1	5	Above ABS voltage, device can be damaged.	А
CTRL2	6	Above ABS voltage, device can be damaged.	А
/THERM_WARN	7	Above ABS voltage, device can be damaged.	А
NTC	8	Above ABS voltage, device can be damaged.	А
RT/SYNC	9	Above ABS voltage, device can be damaged.	A
LS_GD	10	External FET cannot do current limit.	С
IMON	11	Above ABS voltage, device can be damaged.	А
ILIMT	12	Above ABS voltage, device can be damaged.	A
CSN/OUT	13	VBUS OVP protection. FAULT pin asserts.	В
CSP	14	VBUS OVP protection. FAULT pin asserts.	В
BUS	15	VBUS OVP protection. FAULT pin asserts.	В
AGND	16	Former power supply can be pulled down. Device is not powered up.	В
DM_IN	17	Above ABS voltage, device can be damaged.	А
DP_IN	18	Above ABS voltage, device can be damaged.	A
CC2	19	Above ABS voltage, device can be damaged.	A
CC1	20	Above ABS voltage, device can be damaged.	А
VCC	21	Device broken, VCC pin voltage exceeds the ABS maximum value.	А
/POL	22	Above ABS voltage, device can be damaged.	А
/LD_DET	23	Above ABS voltage, device can be damaged.	А
/FAULT	24	Above ABS voltage, device can be damaged.	А
PGND	25	Former power supply can be pulled down. Device is not powered up.	В
PGND	26	Former power supply can be pulled down. Device is not powered up.	В

Revision History www.ti.com

Table 4-5. Pin FMA for Device Pins Short-Circuited to Supply (continued)

Pin Name	Pin No.	Description of Potential Failure Effect(s)	Failure Effect Class
PGND	27	Former power supply can be pulled down. Device is not powered up.	В
SW	28	Device internal buck stops working.	В
SW	29	Device internal buck stops working.	В
SW	30	Device internal buck stops working.	В
SW	31	Device internal buck stops working.	В
BOOT	32	Above ABS voltage, device can be damaged.	Α
Thermal Pad	_	Thermal pad is connected to PGND on the PCB board. Former power supply can be pulled down. Device is not powered up.	В

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

CI	hanges from Revision * (July 2020) to Revision A (July 2022)	Page
•	Added Pin FMA information	5

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated