
Application Report
SLAA200 – May 2004

1

TSC2101 Touch Screen, Battery, and Audio WinCE
Drivers

Dan Fahrion, HandEra Inc Wendy X. Fang, DAP
ABSTRACT

This application report describes the TSC2101 touch screen, battery, and audio drivers for
the WinCE operating system to help customers to implement designs using the TSC2101
audio CODEC with integrated headphone/speaker amplifier, and touch-screen controller.
The drivers and associated code are discussed. The WinCE driver code can be integrated
into the customer’s software system under different host processors and have been tested
and used on Intel’s Lubbock and MainStone platforms.

Contents
Description ..2

SPI Interface ...3
Hardware Interface..3
TSC2101 Control Registers ..3
SPI Driver ..4

TSC2101 Touch-Screen Driver...5
Touch-Screen Driver Initialization ...5
Reading Touch Data ...6

TSC2101 Battery Driver ..6
TSC2101 Audio Driver ..6

Audio Initialization ...7
Audio Data Transformation ...8
Audio Messages..8

Driver Summary ..8
Installation ...9

1. $(BASE)\Kernel\HAL\cfwxsc1.c ..10
2. $(BASE)\Kernel\HAL\ARM\intxsc1.c...10
3. $(BASE)\dirs ...10
4. $(BASE)\DRIVERS\WAVEDEV\wavemain.cpp ..11
5. $(BASE)\DRIVERS\WAVEDEV\sources...11

References...11

Figures
Figure 1. Layered TSC2101 WinCE Driver ...2
Figure 2. TSC2101 Touch-Screen Driver Initialization - InitTSC2101Touch()5

Tables
Table 1. PXA250 (Also Called Cotulla) and TSC2101 SPI HW Interface3
Table 2. SPI Driver Routines..4
Table 3. TSC2101 WinCE Drivers and Processor Requirements ...8

SLVA200

2 TSC2101 Touch Screen, Battery, and Audio WinCE Drivers

Description
WinCE drivers were developed for the touch screen, the battery monitor, and the audio functions
of the TSC2101 device. In the Windows CE device driver model, these are:

• TouchP: a standard touch panel/screen driver for the TSC2101 touch screen feature; and

• WaveDev or WaveDev2: a standard audio driver for the TSC2101 audio feature.

The touch-screen driver is a typical built-in or native device driver; and the audio driver can be
classified as a hybrid (both native and stream) driver. The touch screen and audio drivers have
layered architectures, as shown in 0.

DDI or Stream
Functions

To GWES or DEVICE

MDD

DDSI Functions

PDD
PDL

To Processor

To Other HW TSC2101

 Layered TSC2101 WinCE Driver

Generally, layered-driver development requires changes only to the platform-dependent device
(PDD) layer. For more information on WinCE driver architecture and classification, see the
application report TSC2301 WinCE Generic Drivers, (SLAA187) or related Microsoft
documentation.

As shown in 0, the TSC2101 has an additional layer below the standard PDD layer called the
processor-dependent layer (PDL). The PDL layer facilitates adaptation of the drivers to various
platforms. Adapting the TSC2101 drivers to a new platform typically requires modifications only
to the PDL layer.

Developing the WinCE drivers for the TSC2101 involves the following tasks:

• Developing a common library that implements SPI data communications with the TSC2101

• Developing the PDD (and the PDL) layer of the TSC2101 touch-screen driver (native driver
mounted by the Graphics, Windowing, and Events Subsystem (GWES) module)

• Developing the TSC2101 battery-monitor driver to report the battery status to GWES

• Developing the PDD (and the PDL) layer of the TSC2101 audio driver (hybrid driver
mounted by device).

SLVA200

 TSC2101 Touch Screen, Battery, and Audio WinCE Drivers 3

SPI Interface

The SPI bus on the TSC2101 is the primary hardware interface to the host processor. The host
processor accesses the TSC2101 registers through the SPI interface. The SPI driver is the most
important software interface between the host processor and the TSC2101.

Hardware Interface

A standard SPI hardware interface consists of four signals, normally named SCK (clock), SS
(slave select), MOSI (master-out, slave-in data), and MISO (master-in, slave-out data). As an
example, Table 1 lists the SPI connection between the Lubbock (Cotulla) platform and the
TSC2101.

Table 1. PXA250 (Also Called Cotulla) and TSC2101 SPI HW Interface

 Host Processor Pin Name TSC2101 Pin Name
SPI Clock GPIO 23 (Pin-F9) SCLK (QFN Pin 4 or TSSOP Pin 8)
SPI Slave Select GPIO 24 (Pin-E9) /SS (QFN Pin 7 or TQFP Pin 11)
SPI MOSI Data GPIO 25 (Pin-D9) MOSI (QFN Pin 6 or TQFP Pin 10)
SPI MISO Data GPIO 26 (Pin-A9) MISO (QFN Pin 5 or TQFP Pin 9)

In the SPI interface, the TSC2101 is always the slave device, and the host processor is the
master.

TSC2101 Control Registers

The TSC2101 registers are organized as three memory pages that contain data, status, all
programmable controls, variables, and parameters. These TSC2101 registers are accessed and
controlled by the host processor through the SPI interface. For a full description of the registers,
see the TSC2101 data sheet.

The TSC2101 register definitions have been coded in a header file, TSC2101Regs.H, available
for download from the TI website.

SLVA200

4 TSC2101 Touch Screen, Battery, and Audio WinCE Drivers

SPI Driver

The TSC2101 SPI driver establishes the software interface between the processor and
TSC2101. It contains 4 files, TSC2101SPI.C, TSC2101SPI.H, XXXXXSPIComm.C, and
XXXXXSPIComm.H, where the XXXXX stands for the name of the processor. The latter two files
are processor dependent and part of the PDL. For example, for the PXA25x XScale processor,
the two processor-dependent files may be named XScaleSSPComm.C and
XscaleSSPComm.H; for the Bulverde processor, they are named BulverdeSSPComm.C and
BulverdeSSPComm.H.

The fundamental routines for the SPI driver are summarized in Table 2. The processor-related
PDL routines in Table 2 have HW as the first two letters of the names.

Table 2. SPI Driver Routines

Item Routine Name Involved Processor-
Dependent Routines

Function

1 SetupSPIController() HWInitializeSPIDriver()
HWSetupSPIController()

Configure the host-processor SPI port

2 StopSPIController() HWDeinitializeSPIDriver()
HWStopSPIController()

Stop the host-processor SPI port and interface

 Write/read one or more TSC2101 registers
HWStartFrame() Assert /SS (goes low)
HWStopFrame() De-assert /SS (goes high)
HWSPIWriteWord() Write a word to MOSI
HWSPIReadWord() Read a word from MISO
HWSPITxBusy() To check if an SPI transmit has completed
HWSPIRxBusy() To check if an SPI receive has completed

3 SPITransaction()

HWSPIFIFONotEmpty() To ensure the SPI FIFO has been properly read
so that the read data are the latest

4 TSC2101ReadReg() To read the content from a TSC2101 register
5 TSC2101WriteReg() To write a 16-bit value to a TSC2101 register

In Table 2, the routines in items 1 to 3 closely relate to the processor and its SPI configuration.
Items 4 and 5 allow the host processor to access the TSC2101 control registers.

SLVA200

 TSC2101 Touch Screen, Battery, and Audio WinCE Drivers 5

TSC2101 Touch-Screen Driver

The TSC2101 touch-screen driver normally resides in the standard WinCE TouchP directory.
The driver includes the file: TSC2101Touch.CPP, together with the PDL files XXXXXTouch.CPP
and XXXXXTouch.H, where the XXXXX represents the specific processor being used.

The TSC2101 touch-screen driver architecture conforms to that of the WinCE OS, with
modifications to the standard DDSI functions. See the application report TSC2301 WinCE
Generic Drivers (SLAA187) or Microsoft WinCE driver documentation for more details on the
standard touch-screen DDSI functions and routines.

Touch-Screen Driver Initialization

The touch-screen driver initializes when the subroutine InitTSC2101Touch() is called in the
WinCE touch-screen DDSI routine DdsiTouchPanelEnable(). Even though the TSC2101 does
not require a strict initialization sequence, the order shown in Figure 1 is recommended.

Stop ADC Conversion

Start Touch Init

Program All Other Related Registers on
Page #1 as Desired, Such as
{STATUS}, {BUFFER}, {REF},

{CFG}, . . . {MCFG}, and {DELAY}

Set {ADC} as Desired

Done Touch Init

Figure 1. TSC2101 Touch-Screen Driver Initialization - InitTSC2101Touch()

In Figure 1, a TSC2101 register is denoted by {register name}. For example, the ADC register
(at page 1 and address 0x00) is denoted by {ADC}; the configuration register (at page 1 and
address 0x05) is by {CFG}.

The following code segment is an example of TSC2101 touch-screen function initialization.
 TSC2101WriteReg({ADC}, 0xC4FF); // Stop ADC
 TSC2101WriteReg({STATUS}, 0x4000); // Set /DAV interrupt
 TSC2101WriteReg({REF}, 0x001C); // Set Internal Reference
 TSC2101WriteReg({ADC}, 0x8477); // Set to TSC & XY mode

Other registers on page 1 remain at their power up defaults, and therefore do not need
initialization.

SLVA200

6 TSC2101 Touch Screen, Battery, and Audio WinCE Drivers

Reading Touch Data

In the preceding initialization example, the TSC2101 is set to the touch-screen controlled mode
(not the host-controlled mode); the /PINTDAC pin is set as the /DAV hardware interrupt (not the
PENIRQ). In this condition, the /DAV interrupt asserts when the screen has been touched and
the touch data has been sampled, converted, and ready to be read. At this point, the driver
reads all the touch data, resetting the /DAV interrupt and readying the system for the next data
acquisition.

To read data from the TSC2101 touch-data registers, the routine
ReadTouchScreenTSC2101(*X, *Y) is called in the DDSI function DdsiTouchPanelGetPoint().

The touch initialization and XY data-reading code is found in the file TSC2101Touch.CPP in the
DdsiTouchPanelEnable() and DdsiTouchPanelGetPoint() routines, respectively.

TSC2101 Battery Driver

The battery driver reads the battery level and reports this information to the OS. If this driver is
used, it must share the analog-to-digital converter (ADC) with the touch-screen interface; so,
care is taken so that battery readings do not occur while processing touch-screen inputs. This is
done with an additional mutex object1 that controls access to the ADC function of the TSC2101.
The touch-screen driver owns this mutex as long as the pen is down. When the pen is not
down, the battery driver can own the mutex, sample the battery, and release the mutex back to
the touch-screen driver in case it needs the ADC.

The BatteryDrvrGetStatus() routine in the battery driver returns the battery status. The example
TSC2101 driver only monitors the backup battery, but it can be easily modified to monitor the
main battery by changing the parts of the status structure that are updated.

TSC2101 Audio Driver

Several standard WinCE audio-driver templates are available. This application report considers
two of them, WaveDev and WaveDev2.

Functionally, the main difference between the WaveDev and WaveDev2 audio drivers is that
WaveDev2 allows playback of multiple streams of sound simultaneously. The WaveDev driver
only allows one sound to be played at a time.

While the WaveDev driver is a formal layered driver model, the WaveDev2 driver follows the
new Unified Audio Model (UAM). This model moves all the code into the driver, and adds
DirectSound and better streaming support.

The WaveDev driver consists of the file TSC2101Audio.C, together with the header file
TSC2101Audio.H and the PDL files XXXXXAudio.C and XXXXXAudio.H.

1 “A mutex object is a synchronization object whose state is set to signaled when it is not owned by any thread,
and nonsignaled when it is owned. Only one thread at a time can own a mutex object, whose name comes from
the fact that it is useful in coordinating mutually exclusive access to a shared resource. For example, to prevent
two threads from writing to shared memory at the same time, each thread waits for ownership of a mutex object
before executing the code that accesses the memory. After writing to the shared memory, the thread releases the
mutex object.” – From http://msdn.microsoft.com/

SLVA200

 TSC2101 Touch Screen, Battery, and Audio WinCE Drivers 7

The WaveDev2 driver consists of the file hwctxt.cpp together with the header files hwctxt.h and
Vhwctxt.h and the PDL files XXXXXctxt.C and XXXXXctxt.H.

The TSC2101 WaveDev audio driver was developed within the PDD layer of the OS, with no
changes to the upper layers of the audio architecture. See the application report TSC2301
WinCE Generic Drivers (SLAA187) or Microsoft WinCE audio driver documentation for more
details on standard audio PDD functions.

The PDD layer, via the SPI interface, controls the TSC2101 audio functions by writing to the
page 2 control registers of the TSC2101. Data flow between the PDD layer and the I2S bus is
handled via direct memory access (DMA).

The TSC2101 WaveDev2 audio driver was developed within the new UAM with no changes to
the upper layers of the audio architecture. In this model, the upper layers are compiled with the
hardware-dependent layers; so it is not a formal layered driver. However, the hardware-
dependent code is contained in separate cpp files for ease of porting between platforms. See
the Microsoft WinCE audio-driver documentation for more details on the UAM and differences
between the UAM and layered audio drivers.

Audio Initialization

Audio initialization has three main tasks: (1) set up SPI interface; (2) set up TSC2101 audio
control registers; and (3) set up the DMAC structure for audio data (I2S) transformations. The
three tasks are done at the audio DDSI routine PDD_AudioInitialize() under the WaveDev
template and at VHardwareContext::Init() under the WaveDev2 template.

The TSC2101 audio control registers are initialized in the InitTSC2101Audio() subroutine. The
following code fragment is an example initialization of the TSC2101 audio function.
 TSC2101WriteReg({ AUDCTL1 }, 0x0000);
 TSC2101WriteReg({ HEDVOL }, 0x8000);
 TSC2101WriteReg({ DACVOL }, 0x8080);
 TSC2101WriteReg({ MIXER }, 0xC530);
 TSC2101WriteReg({ AUDCTL2}, 0x44F0);
 TSC2101WriteReg({ AUDCTL3}, 0x2000);
 TSC2101WriteReg({ PLL1}, 0x1120);
 TSC2101WriteReg({ PLL2}, 0x0000);
 TSC2101WriteReg({ AUDCTL4}, 0x1800);
 TSC2101WriteReg({ HNDVOL }, 0x8000);
 TSC2101WriteReg({ CELLVOL }, 0xC57C);
 TSC2101WriteReg({ AUDCTL5}, 0x2100);
 TSC2101WriteReg({ AUDCTL6}, 0x00C0);
 TSC2101WriteReg({ AUDCTL7}, 0x0000);
 TSC2101WriteReg({ GPIO}, 0x0000);
 TSC2101WriteReg({ CELLAGC}, 0x0000);
 TSC2101WriteReg({ DRVPD}, 0x0200);
 TSC2101WriteReg({ MICAGC}, 0xFE00);
 TSC2101WriteReg({ CELLAGC2}, 0xFE00);
 TSC2101WriteReg({ AUDPD}, 0xFFFC);

SLVA200

8 TSC2101 Touch Screen, Battery, and Audio WinCE Drivers

Audio Data Transformation
In the audio driver, the DMAC function of the processor is used to move audio data over the I2S
bus between the processor and the TSC2101. The processor DMA function is initialized, as
previously stated, in the audio initialization PDD routine PDD_AudioInitialize().
Also, another PDD routine PDD_AudioGetInterruptType() determines the source of an audio
interrupt and then tells the MDD layer the current audio status: input or output play, input or
output record, stopped, or other status.

Audio Messages
The two audio message-sending PDD routines in the WaveDev architecture are:—
PDD_WavProc() sends standard audio control messages from the MDD layer to the PDD layer
and PDD_AudioMessage() sends custom messages from user applications to the PDD layer.
The later can be used to modify or update the TSC2101 control registers and can be accessed
by a user application.
In the WaveDev2 architecture, custom messages are passed by the wavemain.cpp function
WAV_IOControl() through HandleWaveMessage() to VHardwareContext::AudioMessage() in
hwctxt.cpp. These custom messages can be generated with the waveOutMessage() API
function by a user application.

Driver Summary

Table 3 summarizes the TSC2101 driver files and the processor hardware requirements to
support the corresponding TSC2101 drivers.

Table 3. TSC2101 WinCE Drivers and Processor Requirements

Function Touch Screen Audio Battery
Audio Driver
(WAVEDEV)
 TSC2101Audio.C
 TSC2101Audio.H
 XXXXXAudio.C
 XXXXXAudio.H
Or (WAVEDEV2)
 hwctxt.CPP
 hwctxt.H
 Vhwctxt.H
 XXXXXctxt.CPP
 XXXXXctxt.H

SW Driver
Required

Touch Driver
 TSC2101Touch.CPP
 XXXXXTouch.CPP
 XXXXXTouch.H

SPI Driver
 TSC2101SPI.C
 TSC2101SPI.H
 XXXXXSPIComm.C
 XXXXXSPIComm.H
 TSC2101REG.H

SPI Driver
 TSC2101SPI.C
 TSC2101SPI.H
XXXXXSPIComm.C
XXXXXSPIComm.H
 TSC2101REG.H

Battery Driver
 Battery.c

SPI Driver
 TSC2101SPI.C
 TSC2101SPI.H
XXXXXSPIComm.C
XXXXXSPIComm.H
 TSC2101REG.H

Processor HW
Required

External HW Interrupt for /DAV
SPI Port

DMA
I2S Port
SPI Port

SPI Port
Analog connection to battery
voltage

SLVA200

 TSC2101 Touch Screen, Battery, and Audio WinCE Drivers 9

Installation
These instructions are for WinCE, where $(BASE) is the BSP base directory. For example, the
Intel DBPXA250 BSP base directory is Platform\XSC1BD\ under the WinCE410 or the
WINCE420 directory.

The instructions for installing the WAVEDEV2 driver assume that a wavedev2 driver is already in
the platform in use. If not, copy a generic wavedev2 driver into the build before adding the
TSC2101 driver. A typical wavedev2 driver has the following additional files.
$(BASE)\DRIVERS\devctxt.cpp
$(BASE)\DRIVERS\devctxt.h
$(BASE)\DRIVERS\input.cpp
$(BASE)\DRIVERS\midinotecpp
$(BASE)\DRIVERS\midistrm.cpp
$(BASE)\DRIVERS\midistrm.h
$(BASE)\DRIVERS\output.cpp
$(BASE)\DRIVERS\strmctxt.cpp
$(BASE)\DRIVERS\strmctxt.h
$(BASE)\DRIVERS\wavemain.cpp
$(BASE)\DRIVERS\wavemain.h
$(BASE)\DRIVERS\wavepdd.h

Copy the following files into the Intel BSP.
$(BASE)\TSC2101\INC\TSC2101Regs.h
$(BASE)\TSC2101\INC\TSC2101SPI.h
$(BASE)\TSC2101\INC\XscaleSSPComm.h (or BulverdeSSPComm.h)
$(BASE)\TSC2101\TSCLib\makefile
$(BASE)\TSC2101\TSCLib\sources (or sources-bulverde rename to sources)
$(BASE)\TSC2101\TSCLib\TSC2101SPI.c
$(BASE)\TSC2101\TSCLib\XscaleSSPComm.c (or BulverdeSSPComm.c)
$(BASE)\TSC2101\TSCTouch\makefile
$(BASE)\TSC2101\TSCTouch\sources (or sources-bulverde renamed sources)
$(BASE)\TSC2101\TSCTouch\TSC2101Touch.cpp
$(BASE)\TSC2101\TSCTouch\XscaleTouch.cpp (or BulverdeXscaleTouch.cpp)
$(BASE)\TSC2101\TSCTouch\XscaleTouch.h (or BulverdeXscaleTouch.h)
$(BASE)\TSC2101\dirs
$(BASE)\GWE\Battery\battery.c (replace existing file)

Copy the following files to use the WaveDev2 Template.
$(BASE)\DRIVERS\WAVEDEV\hwctxt.cpp (replace existing file)
$(BASE)\DRIVERS\WAVEDEV\hwctxt.h (replace existing file)
$(BASE)\DRIVERS\WAVEDEV\Vhwctxt.h
$(BASE)\DRIVERS\WAVEDEV\ XScalectxt.cpp (or BVDctxt.cpp)
$(BASE)\DRIVERS\WAVEDEV\ XScalectxt.h (or BVDctxt.h)

Copy the following files to use the WaveDev Template.
$(BASE)\TSC2101\TSCWAVEDEV\makefile (replace existing file)
$(BASE)\TSC2101\TSCWAVEDEV\sources
$(BASE)\TSC2101\TSCWAVEDEV\TSC2101Audio.c
$(BASE)\TSC2101\TSCWAVEDEV\TSC2101Audio.h
$(BASE)\TSC2101\TSCWAVEDEV\XScaleAudio.c
$(BASE)\TSC2101\TSCWAVEDEV\XscaleAudio.h

Modify the following Intel BSP files according to the instructions given in subsequent sections.
$(BASE)\Kernel\HAL\cfwxsc1.c
$(BASE)\Kernel\HAL\ARM\intxsc1.c
$(BASE)\dirs
$(BASE)\DRIVERS\WAVEDEV\wavemain.cpp
$(BASE)\DRIVERS\WAVEDEV\sources

SLVA200

10 TSC2101 Touch Screen, Battery, and Audio WinCE Drivers

1. $(BASE)\Kernel\HAL\cfwxsc1.c

In the function OEMInterruptEnable() under the SYSINTR_TOUCH case, replace the exising
code with the following:
v_pBLReg->int_set_clr &=~BB_TS_PEN;
v_pBLReg->int_msk_en |= BB_TS_PEN_EN;

In the function OEMInterruptEnable() under the SYSINTR_TOUCH_CHANGED case, replace
the exising code with the following:
v_pBLReg->int_set_clr &=~BB_TS_PEN;
v_pBLReg->int_msk_en |= BB_TS_PEN_EN;

In the function OEMInterruptDisable () under the SYSINTR_TOUCH case, replace the exising
code with the following:
v_pBLReg->int_msk_en &= ~BB_TS_PEN_EN;

In the function OEMInterruptDone () under the SYSINTR_TOUCH case, replace the exising
code with the following:
v_pBLReg->int_set_clr &= ~BB_TS_PEN;
v_pBLReg->int_msk_en |= BB_TS_PEN_EN;

In the function OEMInterruptDone () under the SYSINTR_TOUCH_CHANGED case, replace the
exising code with the following:
v_pBLReg->int_set_clr &= ~BB_TS_PEN;
v_pBLReg->int_msk_en |= BB_TS_PEN_EN;

2. $(BASE)\Kernel\HAL\ARM\intxsc1.c

In the function OEMInterruptHandler(), add the following lines designated by the “>” just before
return SYSINTR_TOUCH_CHANGED;
INTC_M1_INT_DIS(v_pICReg->icmr);
TIMER_M1_INT_CLR(v_pOSTReg->ossr);
v_pDrvGlob->tch.timerIrq=1;
> v_pDrvGlob->tch.touchIrq = 0;

In the function FPGAInterruptHandler(), add the following else section to the return
SYSINTR_TOUCH;
// this is critical - otherwise we'll never get the
// PEN interrupt
else if (InterestingInterrupts & BB_TS_PEN) // PENIRQ WENT LOW
{
 v_pBLReg->int_msk_en &= ~BB_TS_PEN;
 //Disable interrupt
 v_pDrvGlob->tch.touchIrq=1;
 v_pDrvGlob->tch.timerIrq=0;
 return SYSINTR_TOUCH;
}

3. $(BASE)\dirs

In the DIRS= section add a tsc2101 entry above the gwe entry.

SLVA200

 TSC2101 Touch Screen, Battery, and Audio WinCE Drivers 11

4. $(BASE)\DRIVERS\WAVEDEV\wavemain.cpp

In the function HandleWaveMessage, change the default case in the switch statement from:
case WIDM_UNPREPARE:
 default:
 dwRet = MMSYSERR_NOTSUPPORTED;

To:
case WIDM_UNPREPARE:
 dwRet = MMSYSERR_NOTSUPPORTED;
 break;

default:
 dwRet = g_pHWContext->AudioMessage(uMsg, dwParam1, dwParam2);
 break;

5. $(BASE)\DRIVERS\WAVEDEV\sources

Add $(_TARGETPLATROOT)\lib\$(_CPUINDPATH)\tsclib.lib to the TARGETLIBS line.

Add ;..\..\TSC2101\INC to the INCLUDES line.

If using XScale (Lubbock), use the XScalectxt.* files, make sure hwctxt.h includes XScalectxt.h
instead of BVDctxt.h, and add XScalectxt.cpp to the SOURCES section of sources.

If using Bulverde (MainStone II), use the BVDctxt.* files, make sure hwctxt.h includes BVDctxt.h
instead of XScalectxt.h, and add BVDctxt.cpp to the SOURCES section of sources.

References
TSC2101 Audio CODEC with Integrated Headphone, Speaker Amplifier and Touch Screen
Controller, (SLAS392A)

TSC2301 WinCE Generic Drivers (SLAA187)

Windows CE .Net Touch Screen, Keypad, and Audio Device Driver for the TSC2301, (SLAA169)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http:\\amplifier.ti.com
http:\\dataconverter.ti.com
http:\\dsp.ti.com
http:\\interface.ti.com
http:\\logic.ti.com
http:\\power.ti.com
http:\\microcontroller.ti.com
http:\\www.ti.com\audio
http:\\www.ti.com\automotive
http:\\www.ti.com\broadband
http:\\www.ti.com\digitalcontrol
http:\\www.ti.com\military
http:\\www.ti.com\opticalnetwork
http:\\www.ti.com\security
http:\\www.ti.com\telephony
http:\\www.ti.com\video
http:\\www.ti.com\wireless

