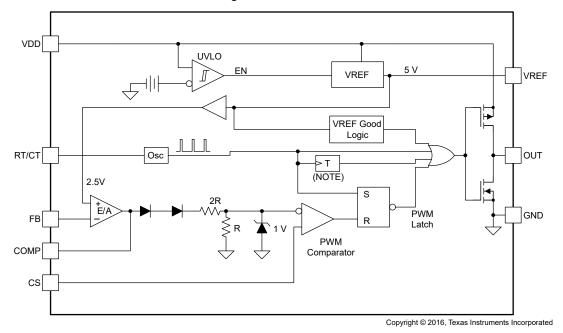
Functional Safety Information

UCCx8C4x Functional Safety FIT Rate, FMD and Pin FMA

Table of Contents

1 Overview	2
2 Functional Safety Failure In Time (FIT) Rates	
2.1 SOIC (8) Package	
2.2 PDIP (8) Package	
2.3 VSSOP (8) Package	
3 Failure Mode Distribution (FMD)	5
4 Pin Failure Mode Analysis (Pin FMA)	
4.1 SOIC (8), PDIP (8), and VSSOP (8) Packages	6
5 Revision History	


TRUMENTS Overview www.ti.com

1 Overview

This document contains information for the UCC28C40, UCC28C41, UCC28C42, UCC28C43, UCC28C44, and UCC28C45, UCC38C40, UCC38C41, UCC38C42, UCC38C43, UCC38C44, and UCC38C45 SOIC (8), PDIP (8), and VSSOP (8) packages, to aid in a functional safety system design. Information provided are:

- · Functional Safety Failure In Time (FIT) rates of the semiconductor component estimated by the application of industry reliability standards
- Component failure modes and their distribution (FMD) based on the primary function of the device
- Pin failure mode analysis (Pin FMA)

Figure 1-1shows the device functional block diagram for reference.

Note

Toggle flip-flop used only in UCCx8C41-Q1, UCCx8C44-Q1, and UCCx8C45-Q1

Figure 1-1. Functional Block Diagram

UCCx8C4x was developed using a quality-managed development process, but was not developed in accordance with the IEC 61508 or ISO 26262 standards.

Table 1-1. Device Comparison Table

	UVLO			
TURN ON AT 14.5 V TURN OFF AT 9 V SUITABLE FOR OFF-LINE APPLICATIONS	TURN ON AT 8.4 V TURN OFF AT 7.6 V SUITABLE FOR DC/DC APPLICATIONS	TURN ON AT 7 V TURN OFF AT 6.6 V SUITABLE FOR BATTERY APPLICATIONS	MAXIMUM DUTY CYCLE	TEMPERATURE (T _A)
UCC28C42	UCC28C43	UCC28C40	100%	–40°C to 105°C
UCC38C42	UCC38C43	UCC38C40	100 /6	0°C to 70°C
UCC28C44	UCC28C45	UCC28C41	50%	–40°C to 105°C
UCC38C44	UCC38C45	UCC38C41	JU 70	0°C to 70°C

2 Functional Safety Failure In Time (FIT) Rates

2.1 SOIC (8) Package

This section provides Functional Safety Failure In Time (FIT) rates for SOIC (8) package of UCCx8C4x based on two different industry-wide used reliability standards:

- Table 2-1 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-2 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-1. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total Component FIT Rate (71.6 mW, 150 mW, 300 mW)	10, 11, 15
Die FIT Rate (71.6 mW, 150 mW, 300 mW)	3, 4, 7
Package FIT Rate (71.6 mW, 150 mW, 300 mW)	7, 7, 8

The failure rate and mission profile information in Table 2-1 comes from the Reliability data handbook IEC TR 62380 / ISO 26262 part 11:

- Mission Profile: Motor Control from Table 11
- Power dissipation: 71.6 mW, 150mW, 300mW
- Climate type: World-wide Table 8
- Package factor (lambda 3): Table 17b
- · Substrate Material: FR4
- · EOS FIT rate assumed: 0 FIT

Table 2-2. Component Failure Rates per Siemens Norm SN 29500-2

Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS, BICMOS Digital, analog / mixed	25 FIT	55°C

The Reference FIT Rate and Reference Virtual T_J (junction temperature) in Table 2-2 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

2.2 PDIP (8) Package

This section provides Functional Safety Failure In Time (FIT) rates for PDIP (8) package of UCCx8C4x based on two different industry-wide used reliability standards:

- Table 2-1 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-2 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-3. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 10 ⁹ Hours)
Total Component FIT Rate (71.6 mW, 150 mW, 300 mW)	22, 22, 25
Die FIT Rate (71.6 mW, 150 mW, 300 mW)	3, 3, 5
Package FIT Rate (71.6 mW, 150 mW, 300 mW)	19, 19, 20

The failure rate and mission profile information in Table 2-1 comes from the Reliability data handbook IEC TR 62380 / ISO 26262 part 11:

- Mission Profile: Motor Control from Table 11
- Power dissipation: 71.6 mW, 150mW, 300mW
- Climate type: World-wide Table 8
- Package factor (lambda 3): Table 17b
- · Substrate Material: FR4
- EOS FIT rate assumed: 0 FIT

Table 2-4. Component Failure Rates per Siemens Norm SN 29500-2

Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS, BICMOS Digital, analog / mixed	20 FIT	55°C

The Reference FIT Rate and Reference Virtual T_J (junction temperature) in Table 2-2 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

2.3 VSSOP (8) Package

This section provides Functional Safety Failure In Time (FIT) rates for VSSOP (8) package of UCCx8C4x based on two different industry-wide used reliability standards:

- Table 2-1 provides FIT rates based on IEC TR 62380 / ISO 26262 part 11
- Table 2-2 provides FIT rates based on the Siemens Norm SN 29500-2

Table 2-5. Component Failure Rates per IEC TR 62380 / ISO 26262 Part 11

FIT IEC TR 62380 / ISO 26262	FIT (Failures Per 109 Hours)
Total Component FIT Rate (71.6 mW, 150 mW, 300 mW)	8, 9, 15
Die FIT Rate (71.6 mW, 150 mW, 300 mW)	4, 5, 11
Package FIT Rate (71.6 mW, 150 mW, 300 mW)	4, 4, 4

The failure rate and mission profile information in Table 2-1 comes from the Reliability data handbook IEC TR 62380 / ISO 26262 part 11:

Mission Profile: Motor Control from Table 11
Power dissipation: 71.6 mW, 150mW, 300mW

Climate type: World-wide Table 8Package factor (lambda 3): Table 17b

Substrate Material: FR4EOS FIT rate assumed: 0 FIT

Table 2-6. Component Failure Rates per Siemens Norm SN 29500-2

Table	Category	Reference FIT Rate	Reference Virtual T _J
5	CMOS, BICMOS Digital, analog / mixed	20 FIT	55°C

The Reference FIT Rate and Reference Virtual T_J (junction temperature) in Table 2-2 come from the Siemens Norm SN 29500-2 tables 1 through 5. Failure rates under operating conditions are calculated from the reference failure rate and virtual junction temperature using conversion information in SN 29500-2 section 4.

3 Failure Mode Distribution (FMD)

The failure mode distribution estimation for UCCx8C4x in Table 3-1 and Table 3-2 comes from the combination of common failure modes listed in standards such as IEC 61508 and ISO 26262, the ratio of sub-circuit function size and complexity and from best engineering judgment.

The failure modes listed in this section reflect random failure events and do not include failures due to misuse or overstress.

Table 3-1. Die Failure Modes and Distribution, SOIC (8)

	, , ,
Die Failure Modes	Failure Mode Distribution (%)
OUT stuck low	34
OUT pulse width not as expected	19
OUT stuck high	14
System is unstable	11
No effect	22

Table 3-2. Die Failure Modes and Distribution, PDIP (8) and VSSOP (8)

Die Failure Modes	Failure Mode Distribution (%)
OUT stuck low	34
OUT pulse width not as expected	18
OUT stuck high	15
System is unstable	8
No effect	25

4 Pin Failure Mode Analysis (Pin FMA)

This section provides a Failure Mode Analysis (FMA) for the pins of the UCCx8C4x (SOIC (8), PDIP (8), and VSSOP (8) packages). The failure modes covered in this document include the typical pin-by-pin failure scenarios:

- Pin short-circuited to Ground (see Table 4-2)
- Pin open-circuited (see Table 4-3)
- Pin short-circuited to an adjacent pin (see Table 4-4)
- Pin short-circuited to supply (see Table 4-5)

Table 4-2 through Table 4-5 also indicate how these pin conditions can affect the device as per the failure effects classification in Table 4-1.

Table 4-1. TI Classification of Failure Effects

Class	Failure Effects
Α	Potential device damage that affects functionality
В	No device damage, but loss of functionality
С	No device damage, but performance degradation
D	No device damage, no impact to functionality or performance

Following are the assumptions of use and the device configuration assumed for the pin FMA in this section:

IC is connected based on the typical application design schematic in UCCx8C4x datasheet Figure 30

4.1 SOIC (8), PDIP (8), and VSSOP (8) Packages

Figure 4-1 shows the UCCx8C4x pin diagram for the SOIC (8), PDIP (8), and VSSOP (8) packages. For a detailed description of the device pins please refer to the *Pin Configuration and Functions* section in the UCCx8C4x data sheet.

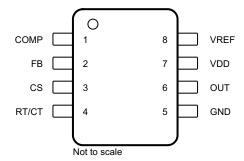


Figure 4-1. Pin Diagram SOIC (8) Package

Table 4-2. Pin FMA for Device Pins Short-Circuited to Ground

Pin Name	Pin No.	Description of Potential Failure Effect(s)	Failure Effect Class
COMP	1	OUT zero duty cycle, output loss of regulation. Possible IC damage	В
FB	2	COMP pin go high, OUT excessive duty-cycle, output loss of regulation.	В
CS	3	Maximum OUT duty-cycle, loss of regulation, likely damage to power switch	В
RT/CT	4	Oscillator stops, OUT zero duty cycle, output loss of regulation	В
GND	5	N/A	D
OUT	6	OUT remains low, zero duty cycle. Likely IC damage	A
VDD	7	IC not biased, OUT zero duty cycle, output loss of regulation	В
VREF	8	OUT zero duty cycle, output loss of regulation, possible IC damage	A

www.ti.com Revision History

Table 4-3. Pin FMA for Device Pins Open-Circuited

Pin Name	Pin No.	Description of Potential Failure Effect(s)	
COMP	1	Regulation loop becomes unstable, oscillation may result	
FB	2	COMP stays high, OUT excessive duty-cycle, output loss of regulation	
CS	3	CS pin stays high, OUT zero duty cycle, output loss of regulation	
RT/CT	4	Oscillator stops, OUT zero duty cycle, output loss of regulation	
GND	5	Internal GND pulled up to 0.65 V, IC behavior unpredictable	
OUT	6	OUT at maximum duty cycle, output loss of regulation	
VDD	7	IC not biased, OUT at zero duty cycle, output loss of regulation	
VREF	8	VREF reglator unstable and oscillates, output oscillates	

Table 4-4. Pin FMA for Device Pins Short-Circuited to Adjacent Pin

Pin Name	Pin No.	Shorted to	Description of Potential Failure Effect(s)	
COMP	1	FB	COMP at VREF level, OUT excessive duty cycle, output loss of regulation	
FB	2	CS	COMP stays at high, OUT excessive duty cycle, output loss of regulation	
CS	3	RT/CT	Oscillator stops, OUT zero duty cycle, output loss of regulation	
RT/CT	4	N/A		
GND	5	OUT	OUT stays low, OUT zero duty cycle, output loss of regulation, likely IC damage	
OUT	6	VDD	OUT stays high, 100% duty cycle, likely IC and power supply damage	
VDD	7	VREF	VREF excess Abs max rating, IC damage, output loss of regulation	Α
VREF	8	N/A		D

Table 4-5. Pin FMA for Device Pins Short-Circuited to supply

Pin Name	Pin No.	Description of Potential Failure Effect(s)	
COMP	1	Possible IC damange. OUT excessive duty cycle, output loss of regulation	Α
FB	2	Excess Abs. Max rating, IC damage. OUT excessive duty cycle, output loss of regulation	
CS	3	Excess Abs. Max rating, IC damage, OUT zero duty cycle, output loss of regulation	
RT/CT	4	Excess Abs. Max rating, IC damage, OUT zero duty cycle, output loss of regulation	Α
GND	5	IC is not biased. OUT zero duty cycle, output loss of regulation	
OUT	6	OUT stays high, 100% duty cycle, likely IC and power supply damage	
VDD	7	N/A	D
VREF	8	VREF excess Abs max rating, IC damage, output loss of regulation	

5 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
September 2022	*	Initial Release

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated