

TPS389006

ZHCSOQ5 - JUNE 2023

TPS389006 多通道过压和欠压 I²C 可编程电压监控器和监测器

1 特性

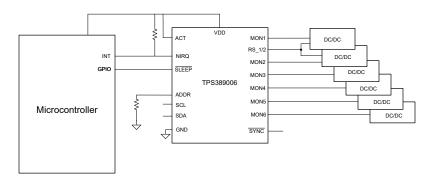
- 功能安全合规型
 - 适用于功能安全应用的开发
 - 可提供用于 IEC 61508 系统设计的文档
 - 系统可满足 SIL 3 等级要求
 - 硬件可满足 SIL 3 等级要求
- 监控先进的 SOC
 - ±6mV 阈值精度(-40°C 至 +125°C)
 - 输入电压范围: 2.5V 至 5.5V
 - 欠压锁定 (UVLO): 2.48V
 - 低待机静态电流: 200 μA
 - 6 通道, 具有 2 个遥感引脚
 - 固定窗口阈值电平
 - 5mV 阶跃 (0.2V 至 1.475V)
 - 20mV 阶跃 (0.8V 至 5.5V)
- 微型解决方案和最低元件成本
 - 3mm x 3mm QFN 封装
 - 通过 I²C 可调的毛刺抑制
 - 用户可通过 I²C 调节电压阈值电平
- 专为安全应用设计
 - 低电平有效开漏 NIRQ 输出
 - 内置 8 位 ADC,可提供实时电压读数
 - 循环冗余校验 (CRC)
 - 数据包错误检查 (PEC)
 - 时序和故障记录
- 用于电源轨标记的同步功能
 - 连接多通道序列发生器以实现时序控制功能

3 说明

TPS389006 器件是一款符合 SIL-3 标准的六通道窗口 监控器 IC,具有两个遥感引脚,采用 16 引脚 3mm x 3mm QFN 封装。这款高精度多通道电压监控器非常适 合采用低电压电源轨的系统,具有非常小的电源容差裕

遥感引脚通过考虑 PCB 布线上的压降,在大电流内核 电压轨上实现高精度电压测量。I²C 功能可方便用户灵 活选择阈值、复位延迟、毛刺干扰滤波器以及引脚功 能。内部毛刺抑制功能和噪声滤波器消除了对外部 RC 元件的需求,从而减少由电源瞬变引起的错误复位。此 外,该器件不需要使用任何外部电阻器来设置过压和欠 压复位阈值,因此进一步优化了整体精度、成本、解决 方案尺寸并提高了安全系统的可靠性。

该器件可在导通或关断期间提供 CRC 错误校验、序列 记录功能,并具有内置 ADC 来提供电压读数,进而提 供冗余错误校验功能。此外, TPS389006 还提供同步 功能来标记启动的电源轨。TPS389006 器件还可与 TI 的电源序列发生器 TPS38700 搭配使用,确保除了电 压监控外,还具有正确的加电序列,从而符合 SIL-3 级 标准。


器件信息

器件型号	封装 ⁽¹⁾	封装尺寸 (标称值)
TPS389006	WQFN (16)	3mm x 3mm

如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

2 应用

- 医用机器人
- 工业机器人
- 服务器开关
- 电机驱动器

TPS389006 典型电路

内容

1 特性 1	8.5 寄存器映射	28
2 应用	9 应用和实施	88
3 说明1	9.1 应用信息	88
4 修订历史记录2	9.2 典型应用	89
5 器件比较3	10 电源相关建议	102
6 引脚配置和功能4	10.1 电源指南	102
7 规格5	11 布局	103
7.1 绝对最大额定值5	11.1 布局指南	103
7.2 ESD 等级5	11.2 布局示例	103
7.3 建议工作条件5	12 器件和文档支持	104
7.4 热性能信息6	12.1 器件命名规则	104
7.5 电气特性6	12.2 文档支持	105
7.6 时序要求8	12.3 接收文档更新通知	105
7.7 典型特性10	12.4 支持资源	105
8 详细说明11	12.5 商标	105
8.1 概述11	12.6 静电放电警告	105
8.2 功能方框图11	12.7 术语表	105
8.3 特性说明12	13 机械、封装和可订购信息	105
8.4 器件功能模式 17		

4 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

日期	修订版本	说明
June 2023	*	初始发行版

Product Folder Links: TPS389006

5 器件比较

图 5-1 显示了 TPS389006 的器件命名规则。如需了解其他选项的详细信息和供货情况,请联系 TI 销售代表或访问 TI 的在线 E2E 论坛;最低订购量适用。

更多有关器件订购代码的信息,请参阅节 12.1。表 12-1 和表 12-2 显示了如何根据器件型号来解码器件的功能。

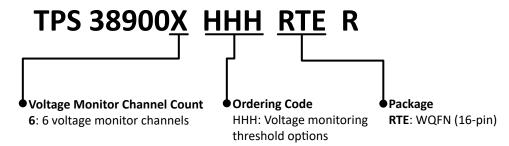


图 5-1. TPS389006 器件命名规则

6 引脚配置和功能

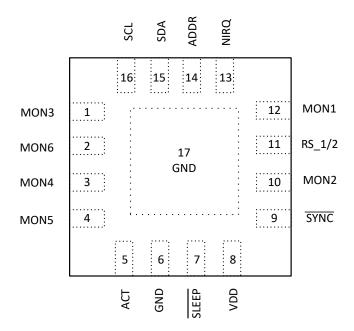


图 6-1. RTE 封装 16 引脚 WQFN TPS389006(顶视图)

表 6-1. 引脚功能

	引脚		
编号	TPS389006	I/O	说明
細写	名称		
1	MON3	I	电压监控通道 3
2	MON6	- 1	电压监控通道 6
3	MON4	1	电压监控通道 4
4	MON5	- 1	电压监控通道 5
5	ACT	- 1	高电平有效器件使能
6	GND	-	电源接地
7	SLEEP	I	低电平有效睡眠使能
8	VDD	-	电源轨
9	SYNC	I/O	跨多个器件的序列记录同步
10	MON2	I	电压监控通道 2
11	RS_1/2	I	电压监控通道 1/2 遥感
12	MON1	- 1	电压监控通道 1
13	NIRQ	0	低电平有效开漏中断输出
14	ADDR	1	I ² C 地址选择引脚
15	SDA	I/O	I ² C 数据引脚
16	SCL	- 1	I ² C 时钟引脚
17	GND	-	裸露的电源地焊盘

7 规格

7.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

		最小值	最大值	单位
电压	VDD	- 0.3	6	V
电压	NIRQ	- 0.3	6	V
电压	ACT、SLEEP、SYNC、SCL、SDA	- 0.3	VDD+0.3	V
电压	ADDR	-0.3	2	V
电压	MONx	- 0.3	6	V
电流	NIRQ		±10	mA
	持续总功率耗散	请参阅"热性能信息"		
温度 ⁽²⁾	运行结温,T」	-40	150	°C
価/支 (-)	自然通风工作温度范围,T _A	-40	125	°C
	贮存温度,T _{stg}	-65	150	°C

⁽¹⁾ 应力超出"绝对最大额定值"下所列的值可能会对器件造成永久损坏。这些仅仅是应力等级,并不表示器件在这些条件下以及在"建议运行条件"以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。

7.2 ESD 等级

				值	单位
	静电放电	人体放电模型 (HBM),符合 ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		±2000	
V _(ESD)		充电器件模型 (CDM),符合 AEC	所有引脚	±500	V
		Q100-011	转角引脚	±750	

⁽¹⁾ AEC Q100-002 指示应当按照 ANSI/ESDA/JEDEC JS-001 规范执行 HBM 应力测试。

7.3 建议工作条件

		最小值	标称值 最大值	单位
VDD	电源引脚电压	2.5	5.5	V
NIRQ	引脚电压	0	5.5	V
I _{NIRQ}	引脚电流	0	±1	mA
ADDR	地址引脚电压	0	1.8	V
MONx	监测引脚	0	5.5	V
ACT、 SLEEP、 SYNC、SCL、 SDA	引脚电压	0	VDD	V
R _{UP} (1)	上拉电阻(开漏配置)	10	100	kΩ

⁽²⁾ 由于该器件的耗散功率较低,因此假设 $T_J = T_A$ 。

7.4 热性能信息

		TPS389006	
	<u>热指标⁽¹⁾</u>	RTE (WQFN)	单位
		引脚	
R ₀ JA	结至环境热阻	53.4	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻	51.4	°C/W
R ₀ JB	结至电路板热阻	17.2	°C/W
Ψ_{JT}	结至顶部特征参数	0.3	°C/W
ΨЈВ	结至电路板特性参数	20.7	°C/W
R _{θ JC(bot)}	结至外壳(底部)热阻	3.9	°C/W

⁽¹⁾ 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用报告。

7.5 电气特性

2.6V <= VDD <= 5.5V ,NIRQ 电压 = $10k\Omega$ 至 V_{DD} ,NIRQ 负载 = 10pF ,并且在自然通风条件下的工作温度范围($-40^{\circ}C$ 至 $125^{\circ}C$)内测得,除非另有说明。典型值为 T_J = $25^{\circ}C$ 下的值,在典型条件 VDD = 3.3V 下。

	参数	测试条件	最小值	典型值	最大值	单位
常用参数						
VDD	输入电源电压		2.6		5.5	V
VDD	上升阈值		2.67		2.81	V
VDD _{UVLO}	下降阈值		2.48		2.60	V
V _{POR}	上电复位电压(2)				1.65	V
I _{DD_Active}	输入到 VDD 引脚的电源电流(MON = LF/HF 有效) ACT = 高电平,SLEEP = 高电平	VDD <= 5.5V		1.55	2	mA
I _{DD_Sleep}	输入到 VDD 引脚的电源电流(MON = LF/HF 有效) ACT = 高电平,Sleep =低电平,I2C = 睡眠功率位被设定为 1	VDD <= 5.5V		1.55	2	mA
I _{DD_Idle}	输入到 VDD 引脚的电源电流 (MON = OVLF 有效) ACT = 低电平,空闲状态 I2C 工作和 OVLF 监测	VDD <= 5.5V >10ms BIST		200	280	μΑ
I _{DD_Deep} Sleep	输入到 VDD 引脚的电源电流 (MON = HF 有效) ACT = 高电平, Sleep = 低电平, I2C = 睡眠功率位被设定为 0	VDD <= 5.5V		275	380	μΑ
V _{MONX}	MON 电压范围		0.2		5.5	V
I _{MONX}	输入电流 MONx 引脚	V _{MON} = 5V			20	μA
I _{MONX_ADJ}	ADJ 版本的输入电流 (1x)	V _{MON} = 5V			0.1	μΑ
VMON LF	1x 模式 (无调节)		0.2		1.475	V
VIVION_LF	4x 调节		0.8		5.5	V
VMON LIE	1x 模式 (无调节)		0.2		1.475	V
VMON_HF	4x 调节		0.8		5.5	V
阈值	1x 模式(无调节)LSB			5		5 V mV
granularity_H F	4x 模式 (带调节) LSB			20		mV
LPF 截止频率 LF	可编程值范围(I ² C 可选)	低频通道	250		4000	Hz

7.5 电气特性 (continued)

2.6V <= VDD <= 5.5V ,NIRQ 电压 = $10k\Omega$ 至 V_{DD} ,NIRQ 负载 = 10pF ,并且在自然通风条件下的工作温度范围($-40^{\circ}C$ 至 $125^{\circ}C$)内测得,除非另有说明。典型值为 T_{IJ} = $25^{\circ}C$ 下的值,在典型条件 VDD = 3.3V 下。

	参数	测试条件	最小值	典型值	最大值	単位
LPF 截止频率 HF		高频通道		4		Mhz
		0.2V≤V _{MONX} ≤1.0V	-6		6	mV
A a a ura a v . L I C	VANCAL	1.0V <v<sub>MONX≤1.475V</v<sub>	A	7.5	mV	
Accuracy_HF	VIVION	1.475V <v<sub>MONX≤2.95V</v<sub>	-0.6		0.6	%
		VMONX>2.95V	-0.7		0.7	%
		0.2V≤V _{MONX} ≤1.475V		5	11	Mhz mV mV
V _{HYS_HF}	UV、OV 引脚上的迟滞(迟滞与跳闸点((UV),(OV)) 相关) ⁽¹⁾	1.475V <v<sub>MONX≤2.95V</v<sub>		9	16	IIIV
		VMONX>2.95V		17	28	mV
MON_OFF	关闭电压阈值	受监控的 V _{MON} 下降沿	140		215	mV
I _{LKG}	输出漏电流 -NIRQ	VDD=V _{NIRQ} =5.5V			300	nA
ACT_L	逻辑低电平输入	DEV_CONFIG.SOC_IF1=1			0.36	V
ACT_H	逻辑高电平输入	DEV_CONFIG.SOC_IF1=1	0.84			V
SLEEP_L	逻辑低电平输入	DEV_CONFIG.SOC_IF1=1			0.36	V
SLEEP_H	逻辑高电平输入	DEV_CONFIG.SOC_IF1=1	0.84			V
SYNC_L	输入高电平	DEV_CONFIG.SOC_IF1=1			0.36	V
SYNC_H	输入低电平	DEV_CONFIG.SOC_IF1=1	0.84			V
SYNC_PU	内部上拉		25		100	kΩ
SYNC_OL	使用 10k Ω 的外部上拉电阻				0.1	V
ACT	内部下拉电阻			100		kΩ
SLEEP	内部下拉电阻			100		kΩ
	16 17 17 AB ->-	0.2V <v<sub>MONX≤1.475V</v<sub>		5		V kΩ kΩ mV
UV,UV	步长/分辨率	0.8V <v<sub>MONX<5.5V</v<sub>		20		
V _{OL}	低电平输出电压-NIRQ	NIRQ、5.5V/5mA			100	mV
I _{lkg(OD)}	开漏输出漏电流-NIRQ	NIRQ 引脚处于高阻抗状态,V _{NIRQ} = 5.5,非有效状态			90	nA
I _{ADDR}	ADDR 引脚电流			20		μA
		R=5.36k		0x30		
		R=16.2k		0x31		
		R=26.7k		0x32		
	 (十六进制格式)	R=37.4k		0x33		
I C ADDK	(1/)近柳竹八	R=47.5k		0x34	6 7.5 0.6 0.7 11 16 28 215 300 0.36 0.36 0.36	
		R=59.0k		0x35		
SLEEP UV,OV V _{OL}		R=69.8k				
		R=80.6k		0x37		
	热关断					$^{\circ}$
TSD Hys	热关断迟滞			20		$^{\circ}\mathbb{C}$
RS	遥感范围		-100		100	mV
ADC 规格					r	
Vin	输入范围		0.2		5.5	V
Res_LF	分辨率	1x 模式 (无调节)				mV
55_£1		4x 模式		20		mV

7.5 电气特性 (continued)

2.6V <= VDD <= 5.5V ,NIRQ 电压 = $10k\Omega$ 至 V_{DD} ,NIRQ 负载 = 10pF ,并且在自然通风条件下的工作温度范围($-40^{\circ}C$ 至 $125^{\circ}C$)内测得,除非另有说明。典型值为 T_{LI} = $25^{\circ}C$ 下的值,在典型条件 VDD = 3.3V 下。

	参数	测试条件	最小值	典型值	最大值	单位
f_S	采样率			125		ksps
V _{HYS_LF}	迟滞 LF 故障	1x 模式 (无调节)	·	10	15	mV
V _{HYS_LF}	迟滞 LF 故障	4x 模式		40	55	mV
Accuracy LF	VMON	1x 模式 (无调节)	-12		+12	mV
Accuracy_Li	LF VINON	4x 模式	-40		+40	mV
I2C 电气规格						
Св	SDA 和 SCL 的容性负载				400	pF
SDA、SCL	低电平阈值	DEV_CONFIG.SOC_IF1=0			0.8	V
SDA、SCL	高电平阈值	DEV_CONFIG.SOC_IF1=0	2.0			V

⁽¹⁾ 迟滞与跳闸点 (V_{IT-(UV)}、 V_{IT+(OV)}) 相关。

7.6 时序要求

2.6V ≤ VDD ≤ 5.5V ,NIRQ 电压 = 10kΩ 至 VDD ,NIRQ 负载 = 10pF ,并且在自然通风条件下的工作温度范围(- 40°C 至 125°C)内测得,除非另有说明。典型值为 T_J = 25°C 下的值,在典型条件 VDD = 3.3V 下。

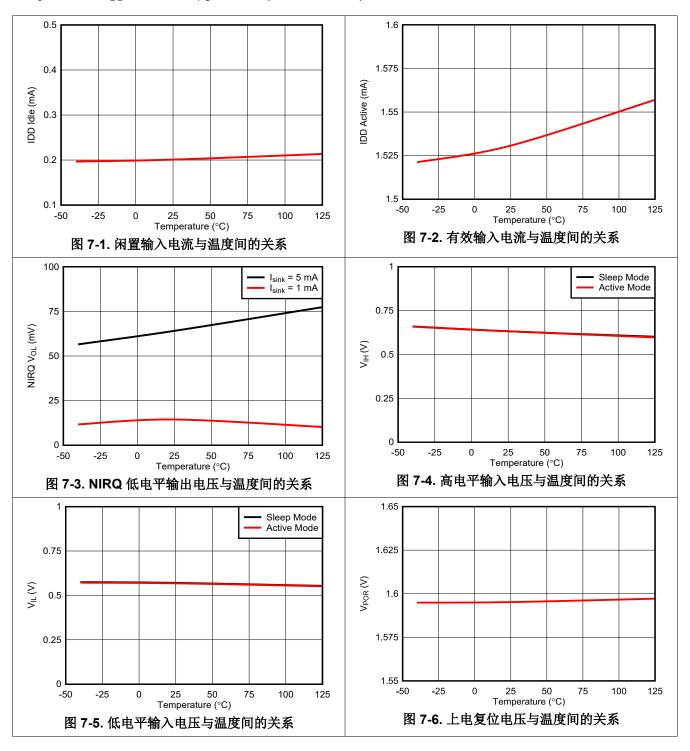
			最小值	标称值	最大值	单位
常用参数						
t _{BIST}	具有 BIST 时的 POR 就绪时间,TEST_CFG.AT_POR=1	包括 OTP 负载			12	ms
t _{NBIST}	不具有 BIST 时的 POR 就绪时间,TEST_CFG.AT_POR=0	包括 OTP 负载			2	ms
BIST	BIST 时间,TEST_CFG.AT_POR=1 或 TEST_CFG.AT_SHDN=1				10	ms
t _{I2C_ACT}	从 BIST 完成开始激活 I ² C				0	μs
t _{SEQ_Range}	序列时间戳范围,ACT 或 SLEEP 边沿到计数器最大值				4	s
t _{SEQ_LSB}	序列时间戳分辨率			50		μs
t _{MON_ACT}	从 ACT 上升沿激活监控				10	μs
t _{SEQ_ACT}	从 ACT 或 SLEEP 边沿激活序列标记				12	μs
t _{NIRQ}	故障检测到 NIRQ 置为有效的延迟 (OV/UV 故障除外)				25	μs
t _{PD_NIRQ_1X}	HF 故障传播检测延迟(默认抗尖峰脉冲滤波器)包括数字延迟	VIT_OV/UV +/- 100mV			650	ns
t _{PD_NIRQ_4X}	HF 故障传播检测延迟(默认抗尖峰脉冲滤波器)包括数字延迟	VIT_OV/UV +/- 400mV			750	ns
t _{SEQ_ACC}	序列时间戳的精度		-5		5	%
t _{GI_R}	通过 I2C 实现 UV 和 OV 去抖范围	FLT_HF(N)	0.1		102.4	μs

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

⁽²⁾ V_{POR} 是受控输出状态下的最小 V_{DDX} 电压电平。

7.6 时序要求 (continued)


 $2.6V \le VDD \le 5.5V$,NIRQ 电压 = $10k\Omega$ 至 VDD,NIRQ 负载 = 10pF,并且在自然通风条件下的工作温度范围($-40^{\circ}C$ 至 $125^{\circ}C$)内测得,除非另有说明。典型值为 T_J = $25^{\circ}C$ 下的值,在典型条件 VDD = 3.3V 下。

			最小值	标称值	最大值	单位
I2C 时序特						
f _{SCL}	串行时钟频率	标准模式			100	kHz
SCL	串行时钟频率	快速模式			400	kHz
SCL	串行时钟频率	超快速模式			1	MHz
t _{LOW}	SCL 低电平时间	标准模式	4.7			μs
t_{LOW}	SCL 低电平时间	快速模式	1.3			μs
t _{LOW}	SCL 低电平时间	超快速模式	0.5			μs
t _{HIGH}	SCL 高电平时间	标准模式	4			μs
t _{HIGH}	SCL 高电平时间	超快速模式	0.26			μs
t _{SU;DAT}	数据设置时间	标准模式	250	',		ns
SU;DAT	数据设置时间	快速模式	100			ns
t _{SU;DAT}	数据设置时间	超快速模式	50			ns
t _{HD;DAT}	数据保持时间	标准模式	10		3450	ns
t _{HD;DAT}	数据保持时间	快速模式	10		900	ns
HD;DAT	数据保持时间	超快速模式	10			ns
SU;STA	启动或重复启动条件的建立时间	标准模式	4.7			μs
t _{SU;STA}	启动或重复启动条件的建立时间	快速模式	0.6			μs
SU;STA	启动或重复启动条件的建立时间	超快速模式	0.26			μs
HD:STA	启动或重复启动条件的保持时间	标准模式	4			μs
HD:STA	启动或重复启动条件的保持时间	快速模式	0.6			μs
t _{HD:STA}	启动或重复启动条件的保持时间	超快速模式	0.26			μs
t _{BUF}	STOP 与 START 状态之间的总线空闲时间	标准模式	4.7			μs
t _{BUF}	STOP 与 START 状态之间的总线空闲时间	快速模式	1.3			μs
t _{BUF}	STOP 与 START 状态之间的总线空闲时间	超快速模式	0.5			μs
t _{su;sto}	停止条件的建立时间	标准模式	4			μs
t _{su;sto}	停止条件的建立时间	快速模式	0.6			μs
t _{su;sto}	停止条件的建立时间	超快速模式	0.26			μs
trDA	SDA 信号的上升时间	标准模式			1000	
trDA	SDA 信号的上升时间	快速模式	20		300	ns
trDA	SDA 信号的上升时间	超快速模式			120	ns
tfDA	SDA 信号的下降时间	标准模式			300	ns
tfDA	SDA 信号的下降时间	快速模式	1.4		300	ns
tfDA	SDA 信号的下降时间	超快速模式	6.5		120	ns
trCL	SCL 信号的上升时间	标准模式			1000	ns
trCL	SCL 信号的上升时间	快速模式	20		300	ns
rCL	SCL 信号的上升时间	超快速模式			120	ns
fCL	SCL 信号的下降时间	标准模式			300	ns
fCL	SCL 信号的下降时间	快速模式	6.5		300	ns
fCL	SCL 信号的下降时间	超快速模式	6.5		120	ns
tSP	被抑制的 SCL 和 SDA 尖峰的脉冲宽度	标准模式、快速模式和超快速模式			50	ns

7.7 典型特性

在 T_J = 25°C , V_{DD} = 3.3V 且 R_{PU} = 10k Ω (除非另有说明)。

8 详细说明

8.1 概述

TPS389006 系列器件具有六个通道,可在窗口配置中针对过压和/或欠压进行配置。TPS389006 具有非常准确的窗口阈值电压

(高达 ±6mV)和多种电压阈值,这些阈值可在出厂时配置或在启动时由 I²C 命令设置。

TPS389006 包括用于设置器件内部过压和欠压阈值的电阻器。要确保外部电阻器精度无需额外的裕度,因此这些内部电阻器可减少元件数量并极大地简化设计。

TPS389006 还具有序列记录功能,用于监视和分配电源轨开启和关闭的时间戳/日志。它可以在单个器件上或电路板的多个器件上执行序列记录,使用 SYNC 引脚在多个器件之间进行通信。当 ACT 或 SLEEP 引脚从低电平转换为高电平或从高电平转换为低电平时,序列记录功能将一直有效,直到序列超时 (SEQ_TOUT) 结束为止。在序列超时期间,可以屏蔽 UV 故障(自动屏蔽 - AMSK)。

当受监测的电压超出安全窗口时,TPS389006 可将低电平有效输出信号 (NIRQ) 置为有效。根据 OTP 的不同,出厂配置可能包括:针对过压和欠压故障禁用中断、序列超时、在 POR 时启用 BIST、禁用序列故障中断以及过压和欠压抗尖峰脉冲设置。

8.2 功能方框图

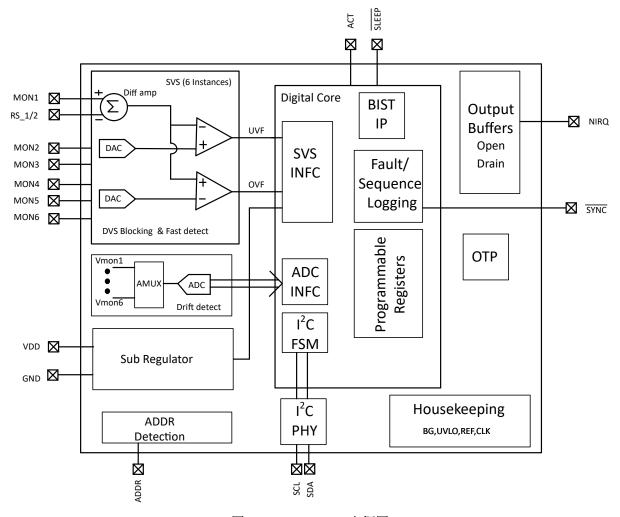


图 8-1. TPS389006 方框图

8.3 特性说明

8.3.1 I²C

TPS389006 器件遵循 I^2 C 协议(高达 1MHz)来管理与 MCU 或片上系统(SoC)等主机器件的通信。 I^2 C 是使用时钟(SCL)和数据(SDA)两个信号实现的两线通信协议。主机器件是通信的主控制器。TPS389006 器件在 I^2 C 协议定义的读取或写入操作期间通过数据线做出响应。SCL 和 SDA 信号均为开漏拓扑,可与其他器件一起用在线或配置中,以共享通信总线。SCL 和 SDA 引脚都需要使用外部上拉电阻上拉到电源电压(建议使用 I^2 C 电阻)。

图 8-2 显示了用以传输 1 字节数据的 SCL 和 SDA 线之间的时序关系。SCL 线路始终由主机控制。要传输 1 个字节的数据,主机需要在 SCL 上发送 9 个时钟。8 个时钟用于数据,1 个时钟用于 ACK 或 NACK。SDA 线由主机或 TPS389006 器件根据读取或写入操作进行控制。图 8-2 和图 8-3 突出显示了通信协议流程以及哪个器件在实际通信期间的不同实例中控制 SDA 线。

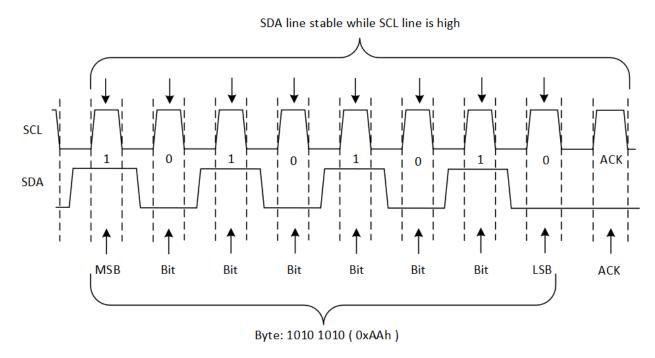


图 8-2. 1 字节数据传输的 SCL 至 SDA 时序

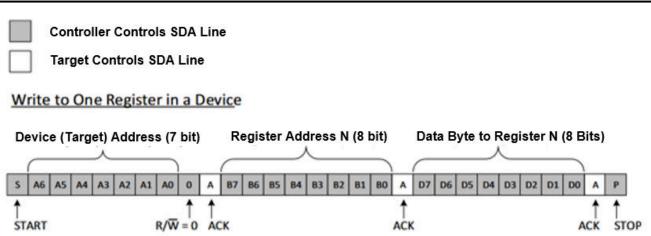


图 8-3. I2C 写入协议

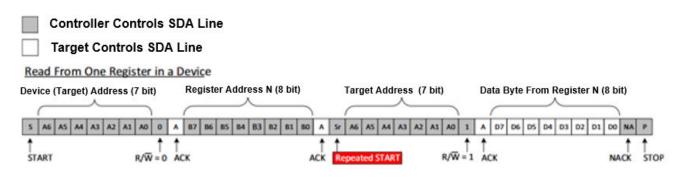


图 8-4. I2C 读取协议

在通过 I²C 协议发起通信之前,主机需要确认 I²C 总线可用于通信。监视 SCL 和 SDA 线,如果任何线路被拉至低电平,则 I²C 总线被占用。主机需要等待总线可用于通信。一旦总线可用于通信,主机即可通过发出一个 START 条件来启动读取或写入操作。I²C 通信完成后,通过发出 STOP 命令释放总线。图 8-5 显示了如何实现 START 和 STOP 条件。

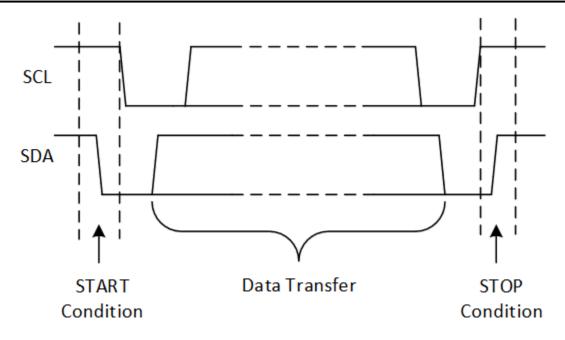


图 8-5. I²C START 和 STOP 条件

表 8-1 显示了使用 I²C 进行编程时可用的不同功能。

表 8-1. 用户可编程的 I2C 功能

表 8-1. 用户可编柱的 FC 切能					
功能	说明				
OV/UV 的阈值 - 快速环路	可在 0.2V 至 1.475V 范围内以 5mV 为步长进行调节,在 0.8V 至 5.5V 范围内以 20mV 为步长进行调节				
漂移阈值 - 正和负	可在 0.2V 至 1.475V 范围内以 5mV 为步长进行调节,在 0.8V 至 5.5V 范围内以 20mV 为步长进行调节				
电压监控调节	1或4				
OV/UV 快速环路的毛刺脉冲(去抖动)抗扰 度	0.1 μ s 至 102.4 μ s				
启用序列超时	1ms 至 4s				
睡眠序列超时	1ms 至 4s				
SYNC 脉冲宽度	50 μs 至 2600 μs				
ACT 上的预期开/关序列	用于序列记录				
睡眠时的预期开/关序列	用于序列记录				
通过 ACT 自动屏蔽关-开-关	可为每个 MON 通道进行选择				
通过 SLEEP 自动屏蔽关-开-关	可为每个 MON 通道进行选择				
I ² C 的数据包错误检查	启用与禁用				
强制 NIRQ 置为有效	由 I ² C 寄存器控制				
独立通道 MON	启用或禁用				
中断禁用功能	BIST、PEC、TSD、CRC				

8.3.2 自动屏蔽 (AMSK)

在上电的情况下,应用 AMSK_ON 和 AMSK_EXS 寄存器。它会屏蔽中断,直到 MON 电压超过 UVLF 阈值或序列超时到期,以更早的时间为准。在断电的情况下,应用 AMSK_OFF 和 AMSK_ENS 寄存器。它会屏蔽中断,直到 MON 电压低于 OFF 阈值,然后 OVLF 中断被激活。

表 8-2 总结了 ACT 和 SLEEP 转换的自动屏蔽操作。

表 8-2. 转换表

转换	已应用自动屏蔽	自动屏蔽应用于		对于不在自动屏蔽中的 MON 通道,中断被激活
ACT (低 -> 高)	AMSK_ON	IEN_UVLF、IEN_UVHF、 IEN_OVHF	SEQ_TOUT 到期或电源轨 超过 UVLF	在 ACT=高电平时
ACT (高 -> 低)	AMSK_OFF	IEN_UVLF、IEN_UVHF、 IEN_OVHF	在 SEQ_TOUT 到期前, 自动屏蔽在转换中被激活	直到 SEQ_TOUT 到期
SLEEP(低 -> 高)ACT = 高电平	AMSK_EXS	IEN_UVLF、IEN_UVHF、 IEN_OVHF	SEQ_TOUT 到期或电源轨 超过 UVLF	始终激活
SLEEP(高 -> 低)ACT = 高电平	AMSK_ENS	IEN_UVLF、IEN_UVHF、 IEN_OVHF	自动屏蔽激活	始终激活

8.3.3 PEC

TPS389006 支持数据包错误检查 (PEC)。它使用由多项式 $C(x)=x^8+x^2+x+1$ 表示的 CRC-8,CRC 初始值设置为 0x00。PEC 计算包括传输中的所有字节,包括地址、命令和数据。PEC 计算不包括 ACK 或 NACK 位,或者 START、STOP 或 REPEATED START 条件。用作外设并支持 PEC 的器件必须准备好在有或没有 PEC 的情况下执行传输,验证 PEC 是否正确(如果存在)并且仅在 PEC 正确时处理消息。

- 如果 PEC 由 EN_PEC 启用,且写入事务中存在 PEC 字节,则当 PEC 字节不正确时,器件将 NACK 并将 NIRQ 置为有效。
- 如果 PEC 由 EN PEC 启用,且写入事务中不存在 PEC 字节
- -如果 REQ PEC =0、缺失的 PEC 被视为正常 PEC 且寄存器写入成功。NIRQ 未置为有效。
- -如果 REQ_PEC =1、缺失的 PEC 被视为错误的 PEC 且寄存器写入失败。NIRQ 置为有效。

8.3.4 VDD

TPS389006 可在 2.5V 至 5.5V 的输入电源电压范围内工作。该器件不需要输入电源电容器;如果输入电源存在噪声,良好的模拟做法是在 VDD 引脚和 GND 引脚之间放置一个 1μF 电容器。

为了使器件能够正常工作, V_{DD} 需要至少在启动延迟 (t_{SD} + t_{D}) 时间内恰好为或高于 $V_{DD(MIN)}$ 。

8.3.5 MON

TPS389006 将两个具有精密基准电压的比较器和每个监控器 (MON) 通道的修整电阻分压器组合在一起。该配置可优化器件精度,因为精度和性能规格中考虑了所有电阻器容差。这两个比较器还包含内置迟滞,可提供抗噪性并确保稳定运行。

尽管在大多数情况下不是必需的,但对于噪声应用,良好的模拟设计实践是在 MON 输入端放置一个 1nF 至 10nF 的旁路电容器,以便降低对受监控信号上瞬态电压的敏感度。也可以通过 I²C 寄存器分别为每个 MON 设置特定的抗尖峰脉冲时间

监测 VDD 电源电压时, MON 引脚可直接连接至 VDD。当 MON 引脚上的电压介于阈值的上限和下限之间时,输出 (NIRQ) 为高阻抗。

8.3.6 NIRQ

在典型的 TPS389006 应用中,NIRQ 输出连接到处理器的复位或使能输入[例如数字信号处理器 (DSP)、应用特定集成电路 (ASIC) 或其他处理器类型]或稳压器 (例如直流/直流转换器或低压降稳压器 (LDO))的使能输入。

Product Folder Links: TPS389006

8.3.7 ADC

TPS389006 中使用的 ADC 以 1MHz 时钟频率运行,有效采样率为 1/8MHz (= 125kHz)。最初,ADC 以 12 位的分辨率 (1LSB = 0.41667mV) 进行记录,稍后将其舍入到 8 位数据以用于 I^2 C 事务。(1LSB = 5mV) ADC 采用乒乓架构,在该架构中,每个通道的采样和转换都需要 $2 \, \mu \, \text{s}$,总共有 2 个采样通道。当 CH0 执行粗转换时,CH1 执行精细转换,反之亦然。

精细转换完成后,数字化 8 位数据将更新,每 8 μ s 发生一次。启动每个 I^2 C 事务以读取 8 位 MON_LVL 数据 (特定通道的 ADC 数据),8 位数据暂停更新,直到 I^2 C 事务完成。

电压调节是使用电阻梯完成的,但对于差分模式通道,使用斩波电路来获得两个电压的平均值 (VMON + VMON_RS)/2,因为 VMON_RS 可以为负值,并且无法转换为 ADC 代码。VMON - 以数字方式计算 VMON_RS, 具体方法是从 VMON 减去 ((VMON + VMON_RS) /2) 然后乘以 2。

MONX 通道可配置为 1x (0.2V 至 1.475V) 或 4x 模式 (0.8V 至 5.5V)。对于配置为 1x 模式的差分模式通道 (MON1 和 MON2), ADC 范围限制为高达 1.7V。要将 ADC 通道配置为高于 1.7V,请使用 4x 模式。

实时电压测量使用方程式 1。

$$V_{|v|} = ((ADC[7:0] * 5mV) + 0.2) * (VRANGE_MULT)$$
 (1)

- 1. ADC[7:0] 被转换为相应的十进制值。对应于 MON1-MON6 的 ADC[7:0] 的值可从 节 8.5.1 的寄存器 0x40-0x45 中读取。
- 2. VRANGE MULT 对应于 节 8.5.2 的寄存器 0x1F 中设置的所选监控电压倍增器。
- 3. VRANGE_MULT设置为十进制值1或4,具体取决于监测到的值。

8.3.8 时间戳

时间戳测量使用方程式 2。时间戳用于序列记录,以确定电源轨的导通或关断顺序。

$$t_{stamp} = 50 \mu s*CLOCK[15:0]$$
 (2)

Product Folder Links: TPS389006

1. CLOCK[15:0] 转换为相应的十进制值。对应于 MON1-MON6 的 CLOCK[15:0] 的值可从 BANK0 的寄存器 0x90-0x9B 中读取。

8.4 器件功能模式

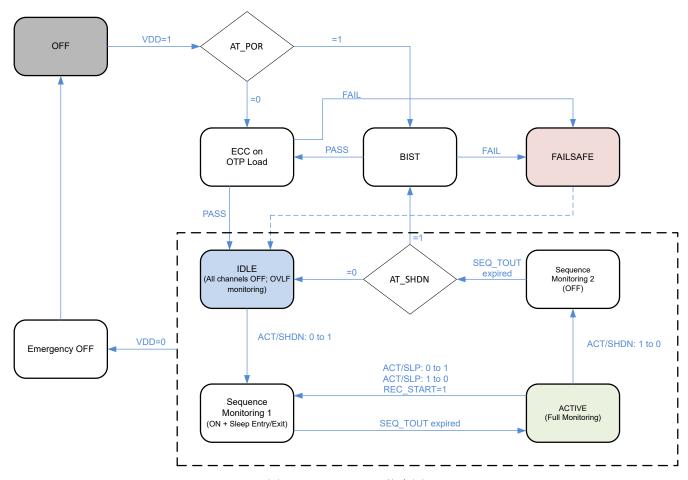


图 8-6. TPS389006 状态图

8.4.1 内置自检和配置负载

执行内置自检 (BIST):

- 1. 上电复位 (POR) 时,如果 TEST CFG.AT POR=1
- 2. 如果 TEST_CFG.AT_SHDN=1,则当因 ACT 1→0 转换而退出运行状态时

从 OTP 加载配置由 ECC (支持 SEC-DED)提供辅助。这是为了防止数据完整性问题并更大程度地提高系统可用性。

在 BIST 期间,NIRQ 被置为无效(在故障情况下置为有效),输入引脚被忽略,SYNC 为三态,并且 I²C 块在 SDA 和 SCL 置为无效时处于不活动状态。BIST 包括器件测试,以满足功能安全文档中概述的功能安全目标。一旦 BIST 成功完成,I²C 将立即激活,并且器件在从 OTP 加载配置数据后进入空闲状态。如果 BIST 失败且/或 ECC 报告双比特错误检测(DED;用于在从存储器加载数据时检测多个位翻转),则 NIRQ 被置为有效,器件进入失效防护状态,并尽可能使 I²C 功能保持活动状态。TEST INFO 寄存器可能会提供有关测试结果的附加信息。

BIST 成功/失败时的详细行为由 INT_TEST 和 IEN_TEST 寄存器控制。通过以下方式报告 BIST 结果:

- NIRQ 引脚:被拉低,具体取决于测试结果以及 IEN TEST 中的 BIST C 和 BIST 位
- INT_TEST 寄存器中的 I_BIST_C 和 BIST 位,具体取决于 IEN_TEST 设置
- VMON STAT.ST BIST C 寄存器位
- TEST INFO[3:0] 寄存器位

8.4.1.1 BIST 执行注意事项

上电复位时,TPS389006 需要根据TEST CFG.AT POR 寄存器位的值来决定是否运行 BIST。假设在 BIST 检查 ECC 逻辑本身之后执行该寄存器上的 ECC,则在运行 BIST 之前无法保证其数据完整性。

8.4.2 TPS389006 上电

TPS389006 上电时,可选择执行 BIST(取决于 TEST_CFG.AT_POR 寄存器位);完成 BIST 并从 OTP 加载配 置(由 ECC 提供辅助,支持 SEC-DED)后,I²C 和故障报告(通过 NIRQ)会立即变为激活状态。

配置加载 ECC 和 BIST 结果的详细信息在 TEST INFO 寄存器中报告。

检测到 ACT 上升沿时, TPS389006 将启动序列超时计时器并监测上电序列。SLEEP 将被忽略,直到 ACT 为高 电平并且序列超时已结束。然后,TPS389006 将对 SLEEP 转换执行操作,以监控/记录睡眠进入/退出序列。

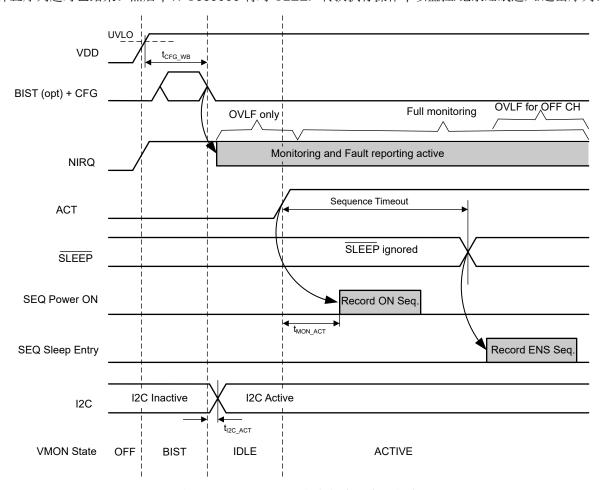


图 8-7. TPS389006 上电信令和内部状态

BIST 完成可通过中断或寄存器轮询来检测:

- 中断:如果 IEN TEST.BIST C=1,会设置 INT TEST.I BIST C标志并且 NIRQ 置为有效
- 轮询:可以轮询 VMON STAT 寄存器来读取 ST BIST C 位

8.4.3 常规监控

TPS389006 具有多种监控模式,包括 IDLE、ACTIVE、SLEEP 和 DEEP SLEEP。这些模式指的是器件的监视状 态,如表8-3所示。

Product Folder Links: TPS389006

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

8.4.3.1 空闲监控

当 ACT 为低电平并且 BIST 完成时, TPS389006 处于空闲状态。

在此状态下,所有受监控通道均应处于关闭状态(低于 OFF 阈值)。

对于处于关闭状态的已启用通道,仅监控过压低频(OVLF)阈值,以确保不违反可靠性限制。

8.4.3.2 活动监控

当 ACT 为高电平时, TPS389006 处于运行状态。

VMON 根据欠压高频 (UVHF)、过压高频 (OVHF)、欠压低频 (UVLF) 和过压低频 (OVLF) 阈值监控高频通道电平 (比较器检测路径)和低频通道电平(ADC检测路径)。

某些通道可连接到由用户软件控制的电源轨。当 TPS389006 处于运行状态时,此类通道可以处于关闭状态(低于 OFF 阈值),并且通常会禁用 UVLF/UVHF 中断。一旦这些电源轨打开,TPS389006 主机将启用通道 UVLF/UVHF 中断,以实现全面监控。同样,在关闭这些电源轨之前,TPS389006 主机会禁用通道 UVLF/UVHF 中断,以避免在斜降期间发生错误的 UV 违规。由于这些通道不是由 ACT 或 SLEEP 启动的时序控制的一部分,因此无法使用自动屏蔽寄存器自动启用/禁用它们的 UVLF/UVHF/OVHF 中断。在关闭状态下,仅监控 OVLF 阈值,以确保不违反可靠性限制。

由于 SLEEP 1→0 转换序列,其他已启用的通道可能处于关闭状态。这些通道由 AMSK_ENS 自动屏蔽寄存器识别,用于在转换期间避免 UVLF 中断(以及 UVHF 和 OVHF 中断)。对于处于关闭状态并由 AMSK_ENS 寄存器标识的通道,仅监控 OVLF 阈值以确保不违反可靠性限制。

模式	引脚/位条件	lq	被监控 - 如果 CHx 被启用,则触发 NIRQ	仅限状态	ADC/遥测
ACTIVE	ACT=高电平,睡眠= 高电平	1.5mA	OVLF、UVLF、OVHF、UVHF	OFF	被启用
IDLE	ACT=低电平,睡眠=X	230uA	OVLF	OFF	禁用
SLEEP	CHx 未分配到睡眠模式		OVLF、UVLF、OVHF、UVHF	OFF	
ACT=高电平, SLEEP=低电平	CHx 分配给睡眠 (AMSK=1)	1.5mA	OVLF	OFF	被启用
睡眠功率位=1	CHx 分配给睡眠 (AMSK=0)		OVLF、UVLF、OVHF、UVHF	OFF	
DEEP SLEEP	CHx 未分配到睡眠模式		OVHF、UVHF	-	
ACT=高电平, SLEEP=低电平	CHx 分配给睡眠 (AMSK=1)	330uA	不监控	-	禁用
睡眠功率位=0	CHx 分配给睡眠 (AMSK=0)		OVHF、UVHF	-	

表 8-3. 运行模式摘要

8.4.3.3 序列监控 1

除了电压监控,还会在 ACT 和 SLEEP 更改时或设置 SEQ_REC_CTL.REC_START=1 时监控电压轨序列。

- 1. ACT 转换 0→1
- 2. ACT=1 时的 SLEEP 转换 0→1
- 3. ACT=1 时的 SLEEP 转换 1→0
- 4. 主机设置 SEQ_REC_CTL.REC_START=1

序列监控 1 是在以下情况下进入的过渡状态:

前三个转换触发同一组操作,TPS389006 始终在运行状态下结束。但是,用于记录和检查时序控制信息的寄存器是不同的。

Product Folder Links: TPS389006

第四种启动序列监控方法(主机设置寄存器位)使主机能够灵活地决定在外部信号为静态时跟踪序列的时间和位置。例如,当使用 FORCE_SHUTDOWN[1:0] 启动软件关断时,此方法很有用。

以下各节明确描述了针对前三种情况执行的操作,使之更加清晰。

8.4.3.3.1 ACT 转换 0→1

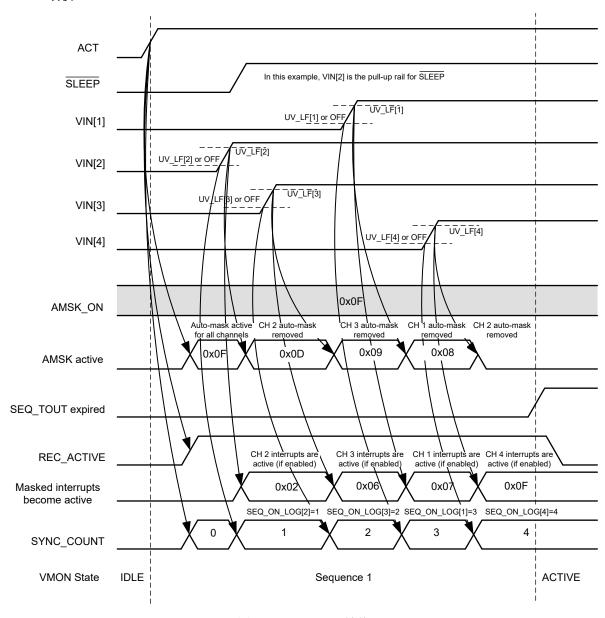


图 8-8. ACT 0→1 转换

- 1. TPS389006 针对 ACT 0→1 转换需要若干操作:
 - a. 同步计数器复位为 0。
 - b. REC ACTIVE 位被置位, SEQ[1:0] 位更新为 00b。
 - c. 如果序列覆盖位被启用 (EN_SEQ_OW=1),序列记录寄存器 (SEQ_ON_LOG[N]) 将被新数据覆盖。如果寄存器中存在未被主机读取的数据 (SEQ_ON_RDY 仍被置位),则会设置序列覆盖标志 (SEQ_ON_OW)。

d. 如果启用了时间戳覆盖位 (EN_TS_OW=1),则时间戳记录寄存器 (SEQ_TIME_XSB[N])将被新数据覆盖。如果寄存器中存在未被主机读取的数据 (TS_RDY 仍被置位),则会设置时间戳覆盖标志 (TS_OW)。

- e. 如果序列覆盖位被禁用 (EN_SEQ_OW=0) 并且寄存器 SEQ_ON_LOG[N] 中有数据未被主机读取和确认 (SEQ_ON_RDY 仍被置位),则设置序列覆盖标志 (SEQ_ON_OW) 且该标志不会用新数据覆盖寄存器。
- f. 如果时间戳覆盖位被禁用 (EN_TS_OW=0) 并且寄存器 SEQ_TIME_xSB[N] 中有数据未被主机读取和确认 (TS RDY 仍被置位),则设置时间戳覆盖标志 (TS OW) 且该标志不会用新数据覆盖寄存器。
- g. 内部序列计时器(重新)启动。
- 2. 通过自动屏蔽寄存器 AMSK_ON 选择的所有 TPS389006 输入,在欠压低频 (UVLF)、欠压高频 (UVHF) 和过 压高频 (OVHF) 条件下开始屏蔽 (禁用)中断。
- 3. 当每个电源轨突破 UVLF 阈值 (UV_LF[N]) 时,相关的 UV 和 OV 中断将自动 (预计会在大约 5-10 μ s 内发生) 根据 IEN UVLF、IEN UVHF 和 IEN OVHF 寄存器解除屏蔽和启用/禁用。
- 4. 当每个电源轨突破 UVLF 或 OFF 阈值(取决于 SEQ_UP_THLD.OFF_UV[N] 寄存器设置)时,用一个对应于上升沿转换顺序的计数器标记电源轨。还会记录时间戳。
 - a. 如果覆盖设置和状态允许,标签值会存储在相关状态寄存器 SEQ_ON_LOG[N] 中。此外,在覆盖设置和状态允许的情况下,事件时间戳存储在寄存器 SEQ_TIME_MSB[N] 和 SEQ_TIME_LSB[N] 中。
 - b. 将 SEQ_ON_LOG[N] 寄存器与 SEQ_EXP[N] 寄存器中定义的预期序列顺序值进行比较,如果不同并且设置了相关中断使能位 (IEN_SEQ_ON),则会生成一个中断。请注意,如果覆盖设置和记录状态不允许向记录寄存器写入新数据,则不能执行比较,也不会产生中断。
- 5. 超时后,标记停止。
 - a. 清除 REC ACTIVE 位。
 - b. 如果电源轨按照正确的顺序启动,则 TPS389006 处于运行状态并开始正常监控。
 - c. 如果任何电源轨的标签与 SEQ_ON_EXP[N] 寄存器中配置的值不匹配,则 NIRQ 被置为有效。 TPS389006 继续正常监控。
 - d. 如果 SLEEP 为低电平,TPS389006 将不会开始记录睡眠进入序列,因为在 ACT 和 SLEEP 转换期间或者通过 I²C 命令启动时开始序列记录。

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

8.4.3.3.2 SLEEP 转换 1→0

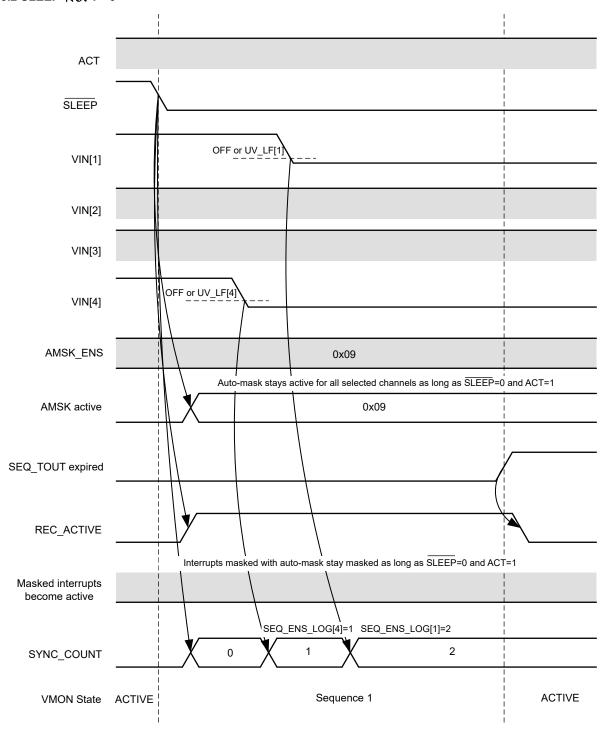


图 8-9. SLEEP 1→0 转换

- 1. TPS389006 针对 SLEEP 1→0 转换需要若干操作:
 - a. 同步计数器复位为 0。
 - b. REC_ACTIVE 位被置位, SEQ[1:0] 位更新为 11b。
 - c. 如果序列覆盖位被启用 (EN_SEQ_OW=1),序列记录寄存器 (SEQ_ENS_LOG[N])将被新数据覆盖。如果寄存器中存在未被主机读取的数据 (SEQ_ENS_RDY 仍被置位),则会设置时间戳覆盖标志 (TS_OW)。

d. 如果启用了时间戳覆盖位 (EN_TS_OW=1),则时间戳记录寄存器 (SEQ_TIME_XSB[N])将被新数据覆盖。如果寄存器中存在未被主机读取的数据 (TS_RDY 仍被置位),则会设置时间戳覆盖标志 (TS_OW)。

- e. 如果序列覆盖位被禁用 (EN_SEQ_OW=0) 并且寄存器 SEQ_ENS_LOG[N] 中有数据未被主机读取和确认 (SEQ_ENS_RDY 仍被置位),则设置序列覆盖标志 (SEQ_ENS_OW) 且不会用新数据覆盖这些寄存器。
- f. 如果时间戳覆盖位被禁用 (EN_TS_OW=0) 并且寄存器 SEQ_TIME_xSB[N] 中有数据未被主机读取和确认 (TS RDY 仍被置位),则设置时间戳覆盖标志 (TS OW) 且不会用新数据覆盖这些寄存器。
- g. 内部序列计时器(重新)启动。
- 2. 通过自动屏蔽寄存器 AMSK_ENS 选择的相关 TPS389006 输入是由 UVLF、UVHF 和 OVHF 条件的屏蔽中断设置的
- 3. 当每个电源轨突破 OFF 或 UVLF 阈值(取决于 SEQ_DN_THLD.OFF_UV[N] 寄存器设置)时,用一个对应于下降沿转换顺序的计数器标记电源轨。还会记录时间戳。
 - a. 如果覆盖设置和状态允许,标签值将存储在相关状态寄存器 SEQ_ENS_LOG[N] 中。此外,在覆盖设置和状态允许的情况下,事件时间戳会存储在寄存器 SEQ TIME MSB[N] 和 SEQ TIME LSB[N] 中。
 - b. 将 SEQ_ENS_LOG[N] 寄存器与 SEQ_ENS_EXP[N] 寄存器中定义的预期序列顺序值进行比较,如果不同并且设置了相关中断使能位 (IEN_SEQ_ENS),则会生成一个中断。请注意,如果覆盖设置和记录状态不允许向记录寄存器写入新数据,则不能执行比较,也不会产生中断。
- 4. 超时后,标记停止。
 - a. REC ACTIVE 位被清除。
 - b. 如果电源轨按正确顺序关闭,则 TPS389006 处于运行状态并继续正常监控(仅监控处于关闭状态的已启用通道的 OVLF 阈值)。

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

8.4.3.3.3 SLEEP 转换 0→1

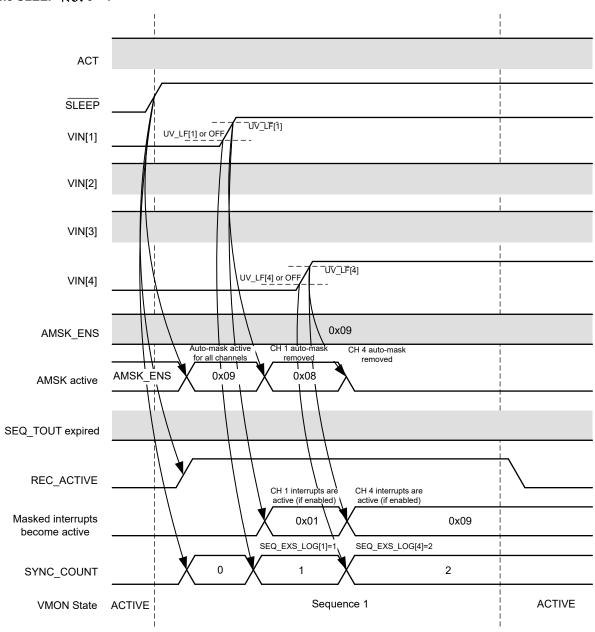


图 8-10. SLEEP 0→1 转换

- 1. TPS389006 针对 SLEEP 0→1 转换需要若干操作:
 - a. 同步计数器复位为 0。
 - b. REC_ACTIVE 位被置位, SEQ[1:0] 位更新为 10b。
 - c. 如果序列覆盖位被启用 (EN_SEQ_OW=1),序列记录寄存器 (SEQ_EXS_LOG[N]) 将被新数据覆盖。如果寄存器中存在未被主机读取的数据 (SEQ_EXS_RDY 仍被置位),则会设置序列覆盖标志 (SEQ_EXS_OW)。
 - d. 如果启用了时间戳覆盖位 (EN_TS_OW=1),则时间戳记录寄存器 (SEQ_TIME_XSB[N])将被新数据覆盖。如果寄存器中存在未被主机读取的数据 (TS_RDY 仍被置位),则会设置时间戳覆盖标志 (TS_OW)。

- e. 如果序列覆盖位被禁用 (EN_SEQ_OW=0) 并且寄存器 SEQ_EXS_LOG[N] 中有数据未被主机读取和确认 (SEQ_EXS_RDY 仍被置位),则设置序列覆盖标志 (SEQ_EXS_OW) 且不会用新数据覆盖这些寄存器。
- f. 如果时间戳覆盖位被禁用 (EN_TS_OW=0) 并且寄存器 SEQ_TIME_xSB[N] 中有数据未被主机读取和确认 (TS_RDY 仍被置位),则设置时间戳覆盖标志 (TS_OW) 且不会用新数据覆盖这些寄存器。
- g. 内部序列计时器(重新)启动。
- 2. 通过自动屏蔽寄存器 AMSK_EXS 选择的相关 TPS389006 输入是由 UVLF、UVHF 和 OVHF 条件的屏蔽 (禁用)中断设置的。
- 3. 当每个电源轨突破 UVLF 阈值 (UV_LF[N]) 时,相关的 UV 和 OV 中断将自动 (预计会在大约 5-10 μ s 内发生) 根据 IEN UVLF、IEN UVHF 和 IEN OVHF 寄存器解除屏蔽和启用/禁用。
- 4. 当每个电源轨突破 UVLF 或 OFF 阈值(取决于 SEQ_UP_THLD.OFF_UV[N] 寄存器设置)时,用一个对应于上升沿转换顺序的计数器标记电源轨。还会记录时间戳。
 - a. 如果覆盖设置和状态允许,标签值将存储在相关状态寄存器 SEQ_EXS_LOG[N] 中。此外,在覆盖设置和状态允许的情况下,事件时间戳会存储在寄存器 SEQ_TIME_MSB[N] 和 SEQ_TIME_LSB[N] 中。
 - b. 将 SEQ_EXS_LOG[N] 寄存器与 SEQ_EXS_EXP[N] 寄存器中定义的预期序列顺序值进行比较,如果不同并且设置了相关中断使能位 (IEN_SEQ_EXS),则会生成一个中断。请注意,如果覆盖设置和记录状态不允许向记录寄存器写入新数据,则不能执行比较,也不会产生中断。
- 5. 超时后,标记停止。
 - a. REC ACTIVE 位被清除。
 - b. 如果电源轨按照正确的顺序启动,则 TPS389006 处于运行状态并开始正常监控。
 - c. 如果任何电源轨的标签与 SEQ_EXS_EXP[N] 寄存器中配置的值不匹配,则 NIRQ 被置为有效。 TPS389006 继续正常监控。

8.4.3.4 序列监控 2

序列监控 2 与序列监控 1 非常相似,但是,根据 TEST_CFG.AT_SHDN 寄存器位,退出此转换状态时会采取额外的步骤。

当执行转换 ACT 1→0 时,进入序列监控 2。节 8.4.3.4.1 中介绍了所采取的操作。

8.4.3.4.1 ACT 转换 1→0

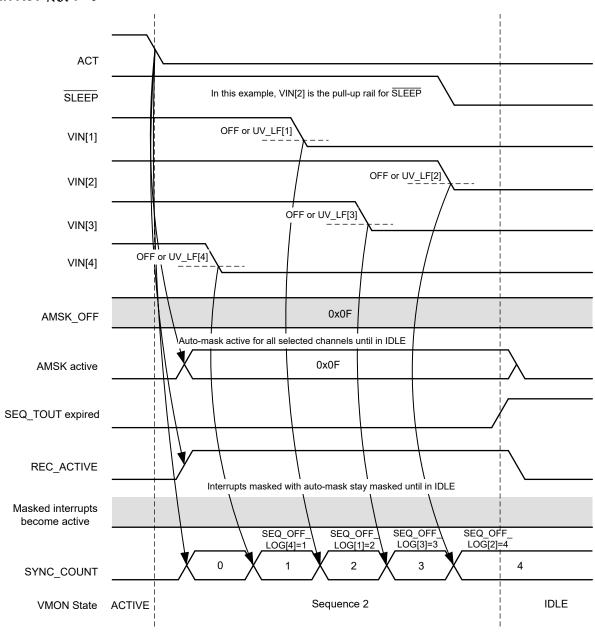


图 8-11. ACT 1→0 转换

- 1. TPS389006 针对 ACT 1→0 转换需要若干操作:
 - a. 同步计数器复位为 0。
 - b. REC_ACTIVE 位被置位, SEQ[1:0] 位更新为 01b。
 - c. 如果序列覆盖位被启用 (EN_SEQ_OW=1),序列记录寄存器 (SEQ_OFF_LOG[N]) 将被新数据覆盖。如果寄存器中存在未被主机读取的数据 (SEQ_OFF_RDY 仍被置位),则会设置序列覆盖标志 (SEQ_OFF_OW)。
 - d. 如果启用了时间戳覆盖位 (EN_TS_OW=1),则时间戳记录寄存器 (SEQ_TIME_XSB[N])将被新数据覆盖。如果寄存器中存在未被主机读取的数据 (TS_RDY 仍被置位),则会设置时间戳覆盖标志 (TS_OW)。

- e. 如果序列覆盖位被禁用 (EN_SEQ_OW=0) 并且寄存器 SEQ_OFF_LOG[N] 中有数据未被主机读取和确认 (SEQ_OFF_RDY 仍被置位),则设置序列覆盖标志 (SEQ_OFF_OW) 且不会用新数据覆盖这些寄存器。
- f. 如果时间戳覆盖位被禁用 (EN_TS_OW=0) 并且寄存器 SEQ_TIME_xSB[N] 中有数据未被主机读取和确认 (TS_RDY 仍被置位),则设置时间戳覆盖标志 (TS_OW) 且不会用新数据覆盖这些寄存器。
- g. 内部序列计时器(重新)启动。
- 2. 通过自动屏蔽寄存器 AMSK_OFF 选择的所有 TPS389006 输入是由 UVLF、UVHF 和 OVHF 条件的屏蔽(禁用)中断设置的。
- 3. 当每个电源轨突破 OFF 或 UVLF 阈值(取决于 SEQ_DN_THLD.OFF_UV[N] 寄存器设置)时,用一个对应于下降沿转换顺序的计数器标记电源轨。还会记录时间戳。
 - a. 如果覆盖设置和状态允许,标签值将存储在相关状态寄存器 SEQ_OFF_LOG[N] 中。此外,在覆盖设置和状态允许的情况下,事件时间戳会存储在寄存器 SEQ_TIME_MSB[N] 和 SEQ_TIME_LSB[N] 中。
 - b. 将 SEQ_OFF_LOG[N] 寄存器与 SEQ_OFF_EXP[N] 寄存器中定义的预期序列顺序值进行比较,如果不同并且设置了相关中断使能位 (IEN_SEQ_OFF),则会生成一个中断。请注意,如果覆盖设置和记录状态不允许向记录寄存器写入新数据,则不能执行比较,也不会产生中断。
- 4. 超时后,标记停止。
 - a. REC ACTIVE 位被清除。
 - b. 如果电源轨按正确的顺序关闭,请继续检查 TEST CFG.AT SHDN 寄存器位。
 - c. 如果任何电源轨的标签与 SEQ_OFF_EXP[N] 寄存器中配置的值不匹配,则 NIRQ 被置为有效。 TPS389006 继续检查 TEST CFG.AT SHDN 寄存器位。
- 5. 如果设置了 TEST CFG.AT SHDN 寄存器位,则执行 BIST(下一状态取决于 BIST 结果)。
- 6. 如果未设置 TEST_CFG.AT_SHDN 寄存器位,则 TPS389006 进入 IDLE 状态。

Product Folder Links: TPS389006

8.5 寄存器映射

寄存器映射旨在通过寄存器组支持多达 16 个通道,具有以下组织:

- 组 0 状态寄存器组摘要:
 - 供应商信息和使用情况寄存器(独立于组)
 - 中断寄存器
 - 状态寄存器
 - 组选择寄存器(独立于组)
 - 保护寄存器 (独立于组)
 - 器件配置寄存器(独立于组)
- 组 1 通道 1-8 配置寄存器组摘要:
 - 供应商信息和使用情况寄存器(独立于组)
 - 控制寄存器 (器件全局寄存器)
 - 监视配置寄存器(通道专用寄存器)
 - 序列配置寄存器 (器件全局寄存器和通道特定寄存器)
 - 组选择寄存器(独立于组)
 - 保护寄存器(独立于组)
 - 器件配置寄存器(独立于组)

无论当前组选择如何,均可在同一地址访问组独立寄存器。访问其他寄存器需要选择适当的组。

所有寄存器为8位宽,在引导时加载了此处描述的默认值或在出厂时编程的OTP值。

未使用的寄存器地址被保留供将来使用并支持多达 16 个通道。

应否定对受保护寄存器(请参阅 PROT1/2 详细信息)、无效寄存器或具有无效数据的有效寄存器的写访问。

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

English Data Sheet: SNVSC50

8.5.1 BANK0 寄存器

表 8-4 列出了 BANKO 寄存器的存储器映射寄存器。表 8-4 中未列出的所有寄存器偏移地址都应视为保留的位置,并且不应修改寄存器内容。

表 8-4. BANK0 寄存器

		10	. 0-4. DAI	NKU 奇仔	位计				
地址	首字母缩写	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0
0x10	INT_SRC	F_OTHE R		RS	SVD		测试	控制	MONITO R
0x11	INT_MONITOR	SEQ_ON	SEQ_OF F	SEQ_EX S	SEQ_EN S	OV_LF	OV_HF	UV_LF	UV_HF
0x12	INT_UVHF	RS	VD		1	UVF	IF[N]	1	
0x14	INT_UVLF	RS	VD			UVL	.F[N]		
0x16	INT_OVHF	RS	VD			OVE	HF[N]		
0x18	INT_OVLF	RS	VD			OVL	-F[N]		
0x1A	INT_SEQ_ON	RS	VD			F_SEC	_ON[N]		
0x1C	INT_SEQ_OFF	RS	VD			F_SEQ	_OFF[N]		
0x1E	INT_SEQ_EXS	RS	VD			F_SEQ	_EXS[N]		
0x20	INT_SEQ_ENS	RS	VD			F_SEQ	_ENS[N]		
0x22	INT_CONTROL		RSVD		F_CRC	F_NIRQ	F_TSD	F_SYNC	F_PEC
0x23	INT_TEST		RS	SVD		ECC_SE C	ECC_DE D	I_BIST_C	BIST
0x24	INT_VENDOR	LDO_O	LDO_OV_Error Freq_D		EV_Error	SHORT_ DET	OPEN_D ET	RS	VD
0x30	VMON_STAT	FAILSAF E	ST_BIDT _C	ST_VDD	ST_NIRQ	ST_ACTS LP	ST_ACTS HDN	ST_SYNC	RSVD
0x31	TEST_INFO	RS	RSVD		ECC_DE D	BIST_VM	BIST_NV M	BIST_L	BIST_A
0x32	OFF_STAT	RS	VD			VIIV	N[N]		
0x34	SEQ_REC_STAT	REC_AC TIVE	SI	ĒQ	TS_RDY	SEQ_ON _RDY	SEQ_OF F_RDY	SEQ_EX S_RDY	SEQ_EN S_RDY
0x35	SEQ_OW_STAT		RSVD		TS_OW	SEQ_ON _OW	SEQ_OF F_OW	SEQ_EX S_OW	SEQ_EN S_OW
0x36	SEQ_ORD_STAT				SYNC_C	OUNT[7:0]	1		
0x40	MON_LVL[1]				ADC	[7:0]			
0x41	MON_LVL[2]				ADC	[7:0]			
0x42	MON_LVL[3]				ADC	[7:0]			
0x43	MON_LVL[4]				ADC	[7:0]			
0x44	MON_LVL[5]				ADC	[7:0]			
0x45	MON_LVL[6]				ADC	[7:0]			
0x50	SEQ_ON_LOG[1]				ORDE	R[7:0]			
0x51	SEQ_ON_LOG[2]	ORDER[7:0]							
0x52	SEQ_ON_LOG[3]		ORDI						
0x53	SEQ_ON_LOG[4]					R[7:0]			
0x54	SEQ_ON_LOG[5]					R[7:0]			
0x55	SEQ_ON_LOG[6]		ORDER[7:0]						
0x60	SEQ_OFF_LOG[1]					R[7:0]			
0x61	SEQ_OFF_LOG[2]					R[7:0]			
0x62	SEQ_OFF_LOG[3]					R[7:0]			
0x63	SEQ_OFF_LOG[4]					R[7:0]			
0x64	SEQ_OFF_LOG[5]				ORDE	R[7:0]			

表 8-4. BANKO 寄存器 (continued)

地址	首字母缩写	位7	位 6	位5	位 4	位 3	位 2	位 1	位 0
0x65	SEQ_OFF_LOG[6]		ORDER[7:0]						
0x70	SEQ_EXS_LOG[1]		ORDER[7:0]						
0x71	SEQ_EXS_LOG[2]				ORDE	R[7:0]			
0x72	SEQ_EXS_LOG[3]				ORDE	R[7:0]			
0x73	SEQ_EXS_LOG[4]				ORDE	R[7:0]			
0x74	SEQ_EXS_LOG[5]				ORDE	R[7:0]			
0x75	SEQ_EXS_LOG[6]				ORDE	R[7:0]			
0x80	SEQ_ENS_LOG[1]				ORDE	R[7:0]			
0x81	SEQ_ENS_LOG[2]				ORDE	R[7:0]			
0x82	SEQ_ENS_LOG[3]				ORDE	R[7:0]			
0x83	SEQ_ENS_LOG[4]				ORDE	R[7:0]			
0x84	SEQ_ENS_LOG[5]				ORDE	R[7:0]			
0x85	SEQ_ENS_LOG[6]		ORDER[7:0]						
0x90	SEQ_TIME_MSB[1]		CLOCK[7:0]						
0x91	SEQ_TIME_LSB[1]		CLOCK[7:0]						
0x92	SEQ_TIME_MSB[2]	CLOCK[7:0]							
0x93	SEQ_TIME_LSB[2]	CLOCK[7:0]							
0x94	SEQ_TIME_MSB[3]		CLOCK[7:0]						
0x95	SEQ_TIME_LSB[3]				CLOC	K[7:0]			
0x96	SEQ_TIME_MSB[4]				CLOC	K[7:0]			
0x97	SEQ_TIME_LSB[4]				CLOC	K[7:0]			
0x98	SEQ_TIME_MSB[5]				CLOC	K[7:0]			
0x99	SEQ_TIME_LSB[5]				CLOC	K[7:0]			
0x9A	SEQ_TIME_MSB[6]	CLOCK[7:0]							
0x9B	SEQ_TIME_LSB[6]	CLOCK[7:0]							
0xF0	BANK_SEL		RSVD BANK_SE LECT				BANK_SE LECT	BANK	
0xF1	PROT1	RS	VD	WRKC	WRKS	CFG	IEN	MON	SEQ
0xF2	PROT2	RS	VD	WRKC	WRKS	CFG	IEN	MON	SEQ
0xF3	PROT_MON2	RS	VD	MON[N]					
0xF9	I2CADDR	RSVD		ADDR_NVM[3:0]			AD	ADDR_STRAP[2:0]	
0xFA	DEV_CFG				RSVD				SOC_IF

复杂的位访问类型经过编码可适应小型表单元。表 8-5 显示了适用于此部分中访问类型的代码。

表 8-5. BANK0 访问类型代码

访问类型	代码	说明					
读取类型							
R	R	读取					
写入类型							
W	W	写入					
W1C	W 1C	写入 1 以进行清除					
复位或默认值							
-n		复位后的值或默认值					

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

8.5.1.1 INT_SRC 寄存器 (地址 = 0x10) [默认值 = X]

表 8-6 中显示了 INT_SRC。

返回到汇总表。

全局中断源状态寄存器。该寄存器包含 UV/OV HF/LF 中断和内部故障中断等故障中断。INT_SRC 表示 NIRQ 被置为有效的原因。当主机处理器收到 NIRQ 时,处理器可以读取该寄存器来快速判断中断源。如果该寄存器清零,则器件未将 NIRQ 置为有效。

表 8-6. INT_SRC 寄存器字段说明

位	字段	类型	默认值	说明
_	, , , , , , , , , , , , , , , , , , ,			
7	F_OTHER	R	X	供应商特定的内部故障。
				INT_F_OTHER 中报告了详细信息。
				该位表示 INT_F_OTHER 中所有位的或运算值。
				0b = INT F OTHER 中未报告故障
				1b = INT_F_OTHER 中报告故障
6:3	RSVD	R	Х	RSVD
2	TEST	R	X	内部测试或配置负载故障。
				INT TEST 中报告了详细信息。
				表示 INT_TEST 中所有位的或运算值。
				0b = 未检测到测试/配置故障
				1b = 检测到测试/配置故障
1	₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	R	X	
'	控制	IX.	^	控制状态或通信故障。 INT CONTROL 中报告了详细信息。
				表示 INT_CONTROL 中所有位的或运算值。
				0b = 未检测到状态或通信故障
				1b = 检测到状态或通信故障
0	MONITOR	R	X	电压或序列监控器故障。
				INT_MONITOR 中报告了详细信息。
				表示 INT_MONITOR 中所有位的或运算值。
				0b = 未检测到电压或序列故障
				1b = 检测到电压或序列故障
		1	I .	

8.5.1.2 INT_MONITOR 寄存器 (地址 = 0x11) [默认值 = X]

表 8-7 中显示了 INT_MONITOR。

返回到汇总表。

电压和序列监控器中断状态寄存器。该寄存器包含用于序列进入/退出活动/睡眠模式以及 HF 和 LF 故障的故障中断。

表 8-7. INT_MONITOR 寄存器字段说明

位	字段	类型	默认值	说明
7	SEQ_ON	R	X	上电序列故障。 INT_SEQ_ON 中报告了详细信息。 表示 INT_SEQ_ON 中所有位的或运算值。 当 SEQ_ON_LOG[N] 寄存器的内容与 SEQ_ON_EXP[N] 寄存器中定义的值不匹配时,会发生上电序列故障。 0b = 未检测到上电序列故障 1b = 检测到上电序列故障
6	SEQ_OFF	R	X	断电序列故障。 INT_SEQ_OFF 中报告了详细信息。 表示 INT_SEQ_OFF 中所有位的或运算值。 当 SEQ_OFF_LOG[N] 寄存器的内容与 SEQ_OFF_EXP[N] 寄存器中定义的值不匹配时,会发生断电序列故障。 0b = 未检测到断电序列故障 1b = 检测到断电序列故障

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

表 8-7. INT MONITOR 寄存器字段说明 (continued)

农 o-7. IN I_MONITOR 前行船子校优労 (Continued)								
位	字段	类型	默认值	说明				
5	SEQ_EXS	R	X	退出睡眠序列故障。 INT_SEQ_EXS 中报告了详细信息。 表示 INT_SEQ_EXS 中所有位的或运算值。 当 SEQ_EXS_LOG[N] 寄存器的内容与 SEQ_EXS_EXP[N] 寄存器中定义的值不匹配时,会发生退出睡眠序列故障。 0b = 未检测到退出睡眠序列故障 1b = 检测到退出睡眠序列故障				
4	SEQ_ENS	R	X	进入睡眠序列故障。 INT_SEQ_ENS 中报告了详细信息。 表示 INT_SEQ_ENS 中所有位的或运算值。 当 SEQ_ENS_LOG[N] 寄存器的内容与 SEQ_ENS_EXP[N] 寄存器中定义的值不匹配时,会发生进入睡眠序列故障。 Ob = 未检测到进入睡眠序列故障 1b = 检测到进入睡眠序列故障				
3	OV_LF	R	Х	过压低频故障。 INT_OVLF 中报告了详细信息。 表示 INT_OVLF 中所有位的或运算值。 0b = 未检测到 OVLF 故障 1b = 检测到 OVLF 故障				
2	OV_HF	R	Х	过压高频故障。 INT_OVHF 中报告了详细信息。 表示 INT_OVHF 中所有位的或运算值。 0b = 未检测到 OVHF 故障 1b = 检测到 OVHF 故障				
1	UV_LF	R	Х	欠压低频故障。 INT_UVLF 中报告了详细信息。 表示 INT_UVLF 中所有位的或运算值。 0b = 未检测到 UVLF 故障 1b = 检测到 UVLF 故障				
0	UV_HF	R	Х	欠压高频故障。 INT_UVHF 中报告了详细信息。 表示 INT_UVHF 中所有位的或运算值。 0b = 未检测到 UVHF 故障 1b = 检测到 UVHF 故障				

8.5.1.3 INT_UVHF 寄存器 (地址 = 0x12) [默认值 = X]

表 8-8 中显示了 INT_UVHF。

返回到汇总表。

高频通道欠压中断状态寄存器。该寄存器包含有关哪个通道发生 UV HF 故障的信息。

表 8-8. INT_UVHF 寄存器字段说明

位	字段	类型	默认值	说明
7:6	被保留	R/W1C	X	RSVD

Product Folder Links: TPS389006

表 8-8. INT_UVHF 寄存器字段说明 (continued)

	70001111_011111111111111111111111111111						
位 字段 类型 默认值 说明							
5:0 UVHF[N] R/W1C X 通道 N (1 至 6) 的如果通道 N 高频信号 故障条件的恢复不会它只能由主机通过 w (写入 1 以清除) 来仅当 UVHF 故障条件时,Write-1-to-clear (写)	号低于 UV_HF[N],则跳闸。 会清除该位。 write-1-to-clear 来清除。 件同时被清除(通道 N 高频信号高于 UV_HF[N]) 号入 1 以清除)才会清除该位。 到 UVHF 故障(或 IEN_UVHF 寄存器中禁用中						

8.5.1.4 INT_UVLF 寄存器 (地址 = 0x14) [默认值 = X]

表 8-9 中显示了 INT_UVLF。

返回到汇总表。

低频通道欠压中断状态寄存器。该寄存器包含有关哪个通道发生 UV LF 故障的信息。

表 8-9. INT_UVLF 寄存器字段说明

位	字段	类型	默认值	说明
7:6	被保留	R/W1C	Х	RSVD
5:0	UVLF[N]	R/W1C	X	通道 N (1至6)的欠压低频故障。 如果通道 N 低频信号低于 UV_LF[N],则跳闸。 故障条件的恢复不会清除该位。 它只能由主机通过 write-1-to-clear (写入1以清除)来清除。 仅当 UVLF 故障条件同时被清除(通道 N 低频信号高于 UV_LF[N])时, Write-1-to-clear(写入1以清除)才会清除该位。 0b = 通道 N 未检测到 UVLF 故障(或 IEN_UVLF 寄存器中禁用中断) 1b = 通道 N 检测到 UVLF 故障

8.5.1.5 INT_OVHF 寄存器 (地址 = 0x16) [默认值 = X]

表 8-10 中显示了 INT_OVHF。

返回到汇总表。

高频通道过压中断状态寄存器。该寄存器包含有关哪个通道发生 OV HF 故障的信息。

表 8-10. INT_OVHF 寄存器字段说明

位	字段	类型	默认值	说明
7:6	被保留	R/W1C	x	RSVD

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

表 8-10. INT OVHF 寄存器字段说明 (continued)

		. • . •	. ~ ,,	HH 3 120033 (CONTINUOU)
位	字段	类型	默认值	说明
	子校 OVHF[N]	突坐 R/W1C	X	通道 N (1至6)的过压高频故障。 如果通道 N 高频信号高于 OV_HF[N],则跳闸。 故障条件的恢复不会清除该位。 它只能由主机通过 write-1-to-clear (写入1以清除)来清除。 仅当 OVHF 故障条件同时被清除(通道 N 高频信号低于 OV_HF[N])时, Write-1-to-clear(写入1以清除)才会清除该位。 Ob = 通道 N 未检测到 OVHF 故障(或 IEN OVHF 寄存器中禁用中
				断)
				1b = 通道 N 检测到 OVHF 故障

8.5.1.6 INT_OVLF 寄存器 (地址 = 0x18) [默认值 = X]

表 8-11 中显示了 INT_OVLF。

返回到汇总表。

低频通道过压中断状态寄存器。该寄存器包含有关哪个通道发生 OV LF 故障的信息。

表 8-11. INT_OVLF 寄存器字段说明

位	字段	类型	默认值	说明
7:6	被保留	R/W1C	Х	RSVD
5:0	OVLF[N]	R/W1C	X	通道 N (1至6)的过压低频故障。 如果通道 N 低频信号高于 OV_LF[N],则跳闸。 故障条件的恢复不会清除该位。 它只能由主机通过 write-1-to-clear (写入1以清除)来清除。 仅当 OVLF 故障条件同时被清除(通道 N 低频信号低于 OV_LF[N])时, Write-1-to-clear(写入1以清除)才会清除该位。 0b = 通道 N 未检测到 OVLF 故障(或 IEN_OVLF 寄存器中禁用中断) 1b = 通道 N 检测到 OVLF 故障

8.5.1.7 INT_SEQ_ON 寄存器 (地址 = 0x1A) [默认值 = X]

表 8-12 中显示了 INT_SEQ_ON。

返回到汇总表。

上电序列(ACT/SLEEP从0变为1)中断状态寄存器。该寄存器包含有关哪个通道没有遵循上电顺序的信息。

表 8-12. INT_SEQ_ON 寄存器字段说明

位	字段	类型	默认值	说明
7:6	被保留	R/W1C	X	RSVD

Product Folder Links: TPS389006

English Data Sheet: SNVSC50

表 8-12. INT_SEQ_ON 寄存器字段说明 (continued)

_		•			,
	位	字段	类型	默认值	说明
	5:0	F_SEQ_ON[N]	R/W1C	X	通道 N(1 到 6)的上电顺序错误。 如果 SEQ_ON_LOG[N] 寄存器中记录的通道 N 上电序列计数器与 SEQ_ON_EXP[N] 寄存器中定义的值不匹配,则跳闸。 故障条件的恢复不会清除该位。 它只能由主机通过 write-1-to-clear (写入 1 以清除)来清除。 Write-1-to-clear(写入 1 以清除)将清除该位。 如果检测到相同的故障,将在下一个序列中再次设置该位。 Ob = 未检测到通道 N 上电序列故障(或 IEN_SEQ_ON 寄存器中禁用中断) 1b = 检测到通道 N 上电序列故障

8.5.1.8 INT_SEQ_OFF 寄存器(地址 = 0x1C)[默认值 = X]

表 8-13 中显示了 INT_SEQ_OFF。

返回到汇总表。

断电序列(ACT/SLEEP从1变为0)中断状态寄存器。该寄存器包含有关哪个通道没有遵循断电顺序的信息。

表 8-13. INT_SEQ_OFF 寄存器字段说明

位	字段	类型	默认值	说明
7:6	被保留	R/W1C	Х	RSVD
5:0	F_SEQ_OFF[N]	R/W1C	X	通道 N(1 到 6)的断电顺序错误。 如果 SEQ_OFF_LOG[N] 寄存器中记录的通道 N 断电序列计数器与 SEQ_OFF_EXP[N] 寄存器中定义的值不匹配,则跳闸。 故障条件的恢复不会清除该位。 它只能由主机通过 write-1-to-clear (写入 1 以清除)来清除。 Write-1-to-clear(写入 1 以清除)将清除该位。 如果检测到相同的故障,将在下一个序列中再次设置该位。 0b = 未检测到通道 N 断电序列故障(或 IEN_SEQ_OFF 寄存器中禁用中断) 1b = 检测到通道 N 断电序列故障

8.5.1.9 INT_SEQ_EXS 寄存器 (地址 = 0x1E) [默认值 = X]

表 8-14 中显示了 INT_SEQ_EXS。

返回到汇总表。

退出睡眠序列(ACT/ SLEEP 从 0 变为 1)中断状态寄存器。该寄存器包含有关哪个通道没有遵循睡眠退出顺序的信息。

表 8-14. INT_SEQ_EXS 寄存器字段说明

位	字段	类型	默认值	说明
7:6	被保留	R/W1C	X	RSVD

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

表 8-14. INT SEQ EXS 寄存器字段说明 (continued)

_					13 HH 3 120073 (COLINICAL)
	位	字段	类型	默认值	说明
	5:0	F_SEQ_EXS[N]	R/W1C	X	通道 N(1 到 6)的退出睡眠序列故障。 如果 SEQ_EXS_LOG[N] 寄存器中记录的通道 N 退出睡眠序列计数器与 SEQ_EXS_EXP[N] 寄存器中定义的值不匹配,则跳闸。故障条件的恢复不会清除该位。它只能由主机通过 write-1-to-clear(写入 1 以清除)来清除。 Write-1-to-clear(写入 1 以清除)将清除该位。如果检测到相同的故障,将在下一个序列中再次设置该位。0b=未检测到通道 N 退出睡眠序列故障(或 IEN_SEQ_EXS 寄存器中禁用中断) 1b=检测到通道 N 退出睡眠序列故障

8.5.1.10 INT_SEQ_ENS 寄存器 (地址 = 0x20) [默认值 = X]

表 8-15 中显示了 INT_SEQ_ENS。

返回到汇总表。

进入睡眠序列(SLEEP 从 1 变为 0)中断状态寄存器。该寄存器包含有关哪个通道没有遵循睡眠进入顺序的信息。

表 8-15. INT_SEQ_ENS 寄存器字段说明

位	字段	类型	默认值	说明
7:6	被保留	R/W1C	Х	RSVD
5:0	F_SEQ_ENS[N]	R/W1C	X	通道 N (1 到 6)的进入睡眠序列故障。 如果 SEQ_ENS_LOG[N] 寄存器中记录的通道 N 进入睡眠序列计数器 与 SEQ_ENS_EXP[N] 寄存器中定义的值不匹配,则跳闸。 0b = 未检测到通道 N 进入睡眠序列故障(或 IEN_SEQ_ENS 寄存器中禁用中断) 1b = 检测到通道 N 进入睡眠序列故障

8.5.1.11 INT_CONTROL 寄存器 (地址 = 0x22) [默认值 = X]

表 8-16 中显示了 INT_CONTROL。

返回到汇总表。

控制和通信中断状态寄存器。

表 8-16. INT_CONTROL 寄存器字段说明

位	字段	类型	默认值	说明
7:5	RSVD	R/W1C	X	RSVD
4	F_CRC	R/W1C	X	运行时寄存器 CRC 故障:故障条件的恢复不会清除该位。它只能由主机通过 write-1-to-clear (写入 1 以清除)来清除。Write-1-to-clear (写入 1 以清除)将清除该位。如果检测到相同的故障,将在下一次寄存器 CRC 检查期间再次设置该位。 0b = 未检测到故障(或 IEN_CONTROL.RT_CRC 被禁用) 1b = 检测到寄存器 CRC 故障

Product Folder Links: TPS389006

表 8-16. INT CONTROL 寄存器字段说明 (continued)

位	字段	类型	默认值	说明
3	F_NIRQ	R/W1C	X	中断引脚故障(故障位始终启用, 无使能位可用):故障条件的恢复不会清除该位。 它只能由主机通过 write-1-to-clear (写入 1 以清除)来清除。 仅当 NIRQ 故障条件同时被清除时, Write-1-to-clear(写入 1 以清除)才会清除该位。 0b = 在 NIRQ 引脚上未检测到故障 1b = 在 NIRQ 引脚上检测到电源的低电阻路径
2	F_TSD	R/W1C	X	热关断故障:故障条件的恢复不会清除该位。 它只能由主机通过 write-1-to-clear (写入 1 以清除)来清除。 仅当 TSD 故障条件同时被清除时, Write-1-to-clear(写入 1 以清除)才会清除该位。 0b = 未检测到 TSD 故障(或 IEN_CONTROL.TSD 被禁用) 1b = 检测到 TSD 故障
1	F_SYNC	R/W1C	х	SYNC 引脚故障:故障条件的恢复不会清除该位。它只能由主机通过 write-1-to-clear(写入1以清除)来清除。仅当 SYNC 故障条件同时被清除时,Write-1-to-clear(写入1以清除)才会清除该位。0b = 未在 SYNC 引脚上检测到故障(或 IEN_CONTROL.SYNC 被禁用)1b = 在 SYNC 引脚上检测到电源的低电阻路径
0	F_PEC	R/W1C	Х	数据包错误检查故障:故障条件的恢复不会清除该位。 它只能由主机通过 write-1-to-clear (写入 1 以清除)来清除。 Write-1-to-clear(写入 1 以清除)将清除该位。 如果检测到相同的故障,将在下一个 I2C 事务期间再次设置该位。

8.5.1.12 INT_TEST 寄存器 (地址 = 0x23) [默认值 = X]

表 8-17 中显示了 INT_TEST。

返回到汇总表。

内部测试和配置加载中断状态寄存器。

表 8-17. INT_TEST 寄存器字段说明

位	字段	类型	默认值	说明
7:4	被保留	R/W1C	Х	RSVD
3	ECC_SEC	R/W1C	X	在加载 OTP 配置时纠正了 ECC 单比特错误:Write-1-to-clear (写入1以清除)将清除该位。如果检测到相同的故障,将在下次加载 OTP 配置期间再次设置该位。0b = 未纠正单比特错误(或 IEN_TEST.ECC_SEC 被禁用)1b = 已纠正单比特错误
2	ECC_DED	R/W1C	X	在加载 OTP 配置时检测到 ECC 双比特错误:故障位始终启用(没有关联的中断使能位)。 Write-1-to-clear(写入 1 以清除)将清除该位。 如果检测到相同的故障,将在下次加载 OTP 配置期间再次设置该位。 0b = 加载 OTP 时未检测到双比特错误 1b = 加载 OTP 时检测到双比特错误

Copyright © 2023 Texas Instruments Incorporated

表 8-17. INT TEST 寄存器字段说明 (continued)

位	字段	类型	默认值	说明
1	I_BIST_C	R/W1C	X	内置自检完成指示:Write-1-to-clear(写入 1 以清除)将清除该位。 将在完成下一次 BIST 执行时再次设置该位。 Write-1-to-clear(写入 1 以清除)将清除该位。 将在完成下一次 BIST 执行时再次设置该位。 0b = BIST 未完成(或 IEN_TEST.BIST_C 被禁用) 1b = BIST 完成
0	BIST	R/W1C	X	内置自检故障:Write-1-to-clear(写入 1 以清除)将清除该位。 如果检测到相同的故障,将在下一次 BIST 执行期间再次设置该位。 0b = 未检测到 BIST 故障(或 IEN_TEST.BIST 被禁用) 1b = 检测到 BIST 故障

8.5.1.13 INT_VENDOR 寄存器(地址 = 0x24)[默认值 = X]

表 8-18 中显示了 INT_VENDOR。

返回到汇总表。

该寄存器包含各种内部故障和 ADDR 检测引脚故障。

表 8-18. INT_VENDOR 寄存器字段说明

2010.111.2017					
位	字段	类型	默认值	说明	
7	RSVD	R/W1C	X	RSVD	
6	LDO_OV_Error	R/W1C	Х	内部 LDO 故障: 0 = 未检测到内部 LDO 故障 1 = 检测到内部 LDO 故障。 Write-1-to-clear(写入 1 以清除)将清除该位。	
5	RSVD	R/W1C	X	RSVD	
4	Freq_DEV_Error	R/W1C	X	内部振荡器故障: 0 = 未检测到内部振荡器故障 1 = 检测到内部振荡器故障。 Write-1-to-clear (写入 1 以清除) 将清除该位。	
3	SHORT_DET	R/W1C	X	地址引脚故障: 0 = 未检测到地址引脚故障 1 = 检测到地址引脚故障。 Write-1-to-clear(写入1以清除)将清除该位。	
2	OPEN_DET	R/W1C	Х	地址引脚故障: 0 = 未检测到地址引脚故障 1 = 检测到地址引脚故障。 Write-1-to-clear(写入1以清除)将清除该位。	
1:0	RSVD	R/W1C	X	RSVD	

8.5.1.14 VMON_STAT 寄存器 (地址 = 0x30) [默认值 = X]

表 8-19 中显示了 VMON_STAT。

返回到汇总表。

内部操作和其他非关键条件的状态标志。显示 BIST 完成状态 (可以是有效、睡眠或有效/关断)的寄存器。

表 8-19. VMON_STAT 寄存器字段说明

位	字段	类型	默认值	说明
7	FAILSAFE	R		失效防护状态: 0 = 未处于失效防护状态 1 = 处于失效防护状态

Product Folder Links: TPS389006

表 8-19. VMON_STAT 寄存器字段说明 (continued)

位	字段	类型	默认值	说明
6	ST_BIDT_C	R	Х	内置自检状态: 0 = BIST 未完成 1 = BIST 完成
5	ST_VDD	R	X	VDD 引脚的当前状态: 0 = VDD 引脚为低电平。 1 = VDD 引脚为高电平。
4	ST_NIRQ	R	Х	NIRQ 输入的当前状态: 0 = 系统将 NIRQ 引脚驱动为低电平。 1 = 系统将 NIRQ 引脚驱动为高电平。
3	ST_ACTSLP	R	Х	SLEEP 输入的当前状态: 0 = 系统将 SLEEP 引脚驱动为低电平。 1 = 系统将睡眠引脚驱动为高电平。
2	ST_ACTSHDN	R	Х	ACT 输入的当前状态: 0 = 系统将 ACT 引脚驱动为低电平。 1 = 系统将 ACT 引脚驱动为高电平。
1	ST_SYNC	R	Х	SYNC 引脚的当前状态: 0 = SYNC 引脚为低电平。 1 = SYNC 引脚为高电平。
0	RSVD	R	Х	RSVD

8.5.1.15 TEST_INFO 寄存器 (地址 = 0x31) [默认值 = X]

表 8-20 中显示了 TEST_INFO。

返回到汇总表。

内部自检和 ECC 信息。

表 8-20. TEST INFO 寄存器字段说明

	次 0 20. 1201_III 0 内 1 冊 1							
位	字段	类型	默认值	说明				
7:6	RSVD	R	X	RSVD				
5	ECC_SEC	R	X	OTP 配置负载上的 ECC 单比特错误更正状态。 0 = 未应用错误更正 1 = 应用单比特错误更正				
4	ECC_DED	R	X	OTP 配置负载上 ECC 双比特错误检测的状态。 0 = 未检测到双比特错误 1 = 检测到双比特错误				
3	BIST_VM	R	Х	BIST 的易失性存储器测试输出状态。 0=易失性存储器测试通过 1=易失性存储器测试失败				
2	BIST_NVM	R	Х	BIST 的非易失性存储器测试输出状态。 0 = 非易失性存储器测试通过 1 = 非易失性存储器测试失败				
1	BIST_L	R	Х	BIST 的逻辑测试输出状态。 0 = 逻辑测试通过 1 = 逻辑测试失败				
0	BIST_A	R	Х	BIST 的模拟测试输出状态。 0 = 模拟测试通过 1 = 模拟测试失败				

8.5.1.16 OFF_STAT 寄存器 (地址 = 0x32) [默认值 = X]

表 8-21 中显示了 OFF_STAT。

返回到汇总表。

通道 OFF 状态。

表 8-21. OFF_STAT 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R	X	RSVD
5:0	VIN[N]	R		该寄存器表示每个通道的 OFF 状态: 0 = 通道 N NOT OFF 1 = 通道 N OFF (低于 OFF 阈值)

8.5.1.17 SEQ_REC_STAT 寄存器 (地址 = 0x34) [默认值 = X]

表 8-22 中显示了 SEQ_REC_STAT。

返回到汇总表。

序列记录状态寄存器。

表 8-22. SEQ_REC_STAT 寄存器字段说明

位	字段	类型	默认值	说明
7	REC_ACTIVE	R	Х	指示序列记录的状态: 0 = 无序列记录处于活动状态。 1 = ACT 或 SLEEP 或 SEQ_REC_CTL.REC_START 启动了电源序列,并且记录处于活动状态。
6:5	SEQ	R	X	正在记录当前序列: 00b = 上电 (ACT 01) 01b = 断电 (ACT 10) 10b = 退出睡眠状态 (SLEEP 01) 11b = 进入睡眠状态 (SLEEP 10)
4	TS_RDY	R	X	SEQ_TIME_XSB 寄存器中的时间戳数据可用性:如果EN_TS_OW=0,当 TS_ACK 被主机写入 1 时,该位被清除。如果 EN_TS_OW=1,则在读取已启用通道(在 VIN_CH_EN 寄存器中)的所有 SEQ_TIME_xSB[N] 寄存器时清除该位。如果该位已设置且 REC_ACTIVE 也已设置,则 SEQ_TIME_xSB 寄存器中的数据将被覆盖。0 = 没有新数据可用或已读取数据。1 = 有新数据可用(仍需要读取数据)。
3	SEQ_ON_RDY	R	X	SEQ_ON_LOG 寄存器中的上电序列数据可用性:如果EN_SEQ_OW=0,当 SEQ_ON_ACK 被主机写入 1 时,该位被清除。如果 EN_SEQ_OW=1,则在读取已启用通道(在 VIN_CH_EN 寄存器中)的所有 SEQ_ON_LOG 寄存器时清除该位。如果该位已设置,REC_ACTIVE 也已设置,且 SEQ[1:0]=00b,则 SEQ_ON_LOG 寄存器中的数据将被覆盖。0 = 没有新数据可用或已读取数据。1 = 有新数据可用(仍需要读取数据)。
2	SEQ_OFF_RDY	R	X	SEQ_OFF_LOG 寄存器中的断电序列数据可用性:如果EN_SEQ_OW=0,当 SEQ_OFF_ACK 被主机写入 1 时,该位被清除。如果EN_SEQ_OW=1,则在读取已启用通道(在 VIN_CH_EN 寄存器中)的所有 SEQ_OFF_LOG 寄存器时清除该位。如果该位已设置,REC_ACTIVE 也已设置,且 SEQ[1:0]=01b,则 SEQ_OFF_LOG 寄存器中的数据将被覆盖。0=没有新数据可用或已读取数据。1=有新数据可用(仍需要读取数据)。

English Data Sheet: SNVSC50

表 8-22. SEQ REC STAT 寄存器字段说明 (continued)

位	字段		默认值	说明
1	SEQ_EXS_RDY	R	X	SEQ_EXS_LOG 寄存器中的睡眠退出序列数据可用性:如果EN_SEQ_OW=0,当 SEQ_EXS_ACK 被主机写入 1 时,该位被清除。如果 EN_SEQ_OW=1,则在读取已启用通道(在 VIN_CH_EN 寄存器中)的所有 SEQ_EXS_LOG 寄存器时清除该位。如果该位已设置,REC_ACTIVE 也已设置,且 SEQ[1:0]=10b,则 SEQ_EXS_LOG 寄存器中的数据将被覆盖。0=没有新数据可用或已读取数据。1=有新数据可用(仍需要读取数据)。
0	SEQ_ENS_RDY	R	X	SEQ_ENS_LOG 寄存器中的睡眠进入序列数据可用性:如果EN_SEQ_OW=0,当 SEQ_ENS_ACK 被主机写入 1 时,该位被清除。 如果 EN_SEQ_OW=1,则在读取已启用通道(在 VIN_CH_EN 寄存器中)的所有 SEQ_ENS_LOG 寄存器时清除该位。如果该位已设置,REC_ACTIVE 也已设置,且 SEQ[1:0]=11b,则 SEQ_ENS_LOG 寄存器中的数据将被覆盖。0=没有新数据可用或已读取数据。1=有新数据可用(仍需要读取数据)。

8.5.1.18 SEQ_OW_STAT 寄存器 (地址 = 0x35) [默认值 = X]

表 8-23 中显示了 SEQ_OW_STAT。

返回到汇总表。

序列记录覆盖状态寄存器。

表 8-23. SEQ OW STAT 寄存器字段说明

	\	217 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
位	字段	类型	默认值	说明
7:5	RSVD	R	X	RSVD
4	TS_OW	R	X	时间戳数据覆盖状态: 0 = 数据未被覆盖 1 = 数据被覆盖(如果 VMON_MISC.EN_TS_OW=1),或者无法写 入数据(如果 VMON_MISC.EN_TS_OW=0)
3	SEQ_ON_OW	R	X	加电序列数据覆盖状态: 0 = 数据未被覆盖 1 = 数据被覆盖(如果 VMON_MISC.EN_SEQ_OW=1),或者无法 写入数据(如果 VMON_MISC.EN_SEQ_OW=0)
2	SEQ_OFF_OW	R	X	断电序列数据覆盖状态: 0 = 数据未被覆盖 1 = 数据被覆盖(如果 VMON_MISC.EN_SEQ_OW=1),或者无法 写入数据(如果 VMON_MISC.EN_SEQ_OW=0)
1	SEQ_EXS_OW	R	Х	睡眠退出序列数据覆盖状态: 0 = 数据未被覆盖 1 = 数据被覆盖(如果 VMON_MISC.EN_SEQ_OW=1),或者无法 写入数据(如果 VMON_MISC.EN_SEQ_OW=0)
0	SEQ_ENS_OW	R	Х	睡眠进入序列数据覆盖状态: 0 = 数据未被覆盖 1 = 数据被覆盖(如果 VMON_MISC.EN_SEQ_OW=1),或者无法 写入数据(如果 VMON_MISC.EN_SEQ_OW=0)

8.5.1.19 SEQ_ORD_STAT 寄存器 (地址 = 0x36) [默认值 = X]

表 8-24 中显示了 SEQ_ORD_STAT。

返回到汇总表。

时序控制/SYNC 计数器(电源轨顺序)寄存器值。

表 8-24. SEQ_ORD_STAT 寄存器字段说明

位	字段	类型	默认值	说明
7:0	SYNC_COUNT[7:0]	R	X	该寄存器表示上电/睡眠序列期间的计数器值。
				它对应于检测到的 SYNC 下降沿数量,并用作受监控通道的标记值。

8.5.1.20 MON_LVL[1] 寄存器 (地址 = 0x40) [默认值 = X]

表 8-25 中显示了 MON_LVL[1]。

返回到汇总表。

对于每个通道的 ADC 读数 - 8 位

表 8-25. MON LVL[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ADC[7:0]	R		该寄存器表示通道 1 的 8 位电压电平。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 调节设置为 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1LSB = 5mV。 调节设置为 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1LSB = 20mV。

8.5.1.21 MON_LVL[2] 寄存器 (地址 = 0x41) [默认值 = X]

表 8-26 中显示了 MON LVL[2]。

返回到汇总表。

对于每个通道的 ADC 读数 - 8 位

表 8-26. MON_LVL[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ADC[7:0]	R		该寄存器表示通道 2 的 8 位电压电平。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 调节设置为 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1LSB = 5mV。 调节设置为 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1LSB = 20mV。

8.5.1.22 MON_LVL[3] 寄存器 (地址 = 0x42) [默认值 = X]

表 8-27 中显示了 MON_LVL[3]。

返回到汇总表。

对于每个通道的 ADC 读数 - 8 位

Submit Document Feedback

Product Folder Links: TPS389006

表 8-27. MON LVL[3] 寄存器字段说明

位 字段 类型 默认值 说明 7:0 ADC[7:0] R X 该寄存器表示通道 3 的 8 位电压电平。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 调节设置为 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1LSB = 5mV。 调节设置为 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1LSB = 20mV。					• • • • • • • • • • • • • • • • • • • •
8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 调节设置为 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1LSB = 5mV。 调节设置为 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1LSB =	位	字段	类型	默认值	说明
	7:0	ADC[7:0]	R		8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 调节设置为 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1LSB = 5mV。 调节设置为 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1LSB =

8.5.1.23 MON_LVL[4] 寄存器 (地址 = 0x43) [默认值 = X]

表 8-28 中显示了 MON LVL[4]。

返回到汇总表。

对于每个通道的 ADC 读数 - 8 位

表 8-28. MON LVL[4] 寄存器字段说明

			_	
位	字段	类型	默认值	说明
7:0	ADC[7:0]	R	X	该寄存器表示通道 4 的 8 位电压电平。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 调节设置为 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1LSB = 5mV。 调节设置为 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1LSB = 20mV。
				20mV。

8.5.1.24 MON_LVL[5] 寄存器 (地址 = 0x44) [默认值 = X]

表 8-29 中显示了 MON LVL[5]。

返回到汇总表。

对于每个通道的 ADC 读数 - 8 位

表 8-29. MON_LVL[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ADC[7:0]	R		该寄存器表示通道 5 的 8 位电压电平。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 调节设置为 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1LSB = 5mV。 调节设置为 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1LSB = 20mV。

Product Folder Links: TPS389006

8.5.1.25 MON_LVL[6] 寄存器 (地址 = 0x45) [默认值 = X]

表 8-30 中显示了 MON LVL[6]。

返回到汇总表。

对于每个通道的 ADC 读数 - 8 位

表 8-30. MON LVL[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ADC[7:0]	R		该寄存器表示通道 6 的 8 位电压电平。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 调节设置为 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1LSB = 5mV。 调节设置为 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1LSB =
				20mV。

8.5.1.26 SEQ_ON_LOG[1] 寄存器(地址 = 0x50)[默认值 = X]

表 8-31 中显示了 SEQ ON LOG[1]。

返回到汇总表。

通道 N 上电序列顺序值 (ACT/ SLEEP 从 0 变为 1)。

表 8-31. SEQ ON LOG[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 1 的上电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV _LF[N] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.27 SEQ_ON_LOG[2] 寄存器(地址 = 0x51)[默认值 = X]

表 8-32 中显示了 SEQ_ON_LOG[2]。

返回到汇总表。

通道 N 上电序列顺序值(ACT/ SLEEP 从 0 变为 1)。

表 8-32. SEQ_ON_LOG[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R	X	该寄存器存储通道 2 的上电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[N] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.28 SEQ_ON_LOG[3] 寄存器(地址 = 0x52)[默认值 = X]

表 8-33 中显示了 SEQ_ON_LOG[3]。

Submit Document Feedback

返回到汇总表。

通道 N 上电序列顺序值 (ACT/ SLEEP 从 0 变为 1)。

表 8-33. SEQ_ON_LOG[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 3 的上电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[N] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

English Data Sheet: SNVSC50

8.5.1.29 SEQ_ON_LOG[4] 寄存器 (地址 = 0x53) [默认值 = X]

表 8-34 中显示了 SEQ_ON_LOG[4]。

返回到汇总表。

通道 N 上电序列顺序值 (ACT/ SLEEP 从 0 变为 1)。

表 8-34. SEQ_ON_LOG[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 4 的上电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[N] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.30 SEQ_ON_LOG[5] 寄存器(地址 = 0x54)[默认值 = X]

表 8-35 中显示了 SEQ_ON_LOG[5]。

返回到汇总表。

通道 N 上电序列顺序值 (ACT/ SLEEP 从 0 变为 1)。

表 8-35. SEQ_ON_LOG[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 5 的上电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[N] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.31 SEQ_ON_LOG[6] 寄存器(地址 = 0x55)[默认值 = X]

表 8-36 中显示了 SEQ_ON_LOG[6]。

返回到汇总表。

通道 N 上电序列顺序值(ACT/SLEEP 从 0 变为 1)。

表 8-36. SEQ_ON_LOG[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 6 的上电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[N] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

Product Folder Links: TPS389006

8.5.1.32 SEQ_OFF_LOG[1] 寄存器(地址 = 0x60)[默认值 = X]

表 8-37 中显示了 SEQ_OFF_LOG[1]。

返回到汇总表。

通道 N 断电序列顺序值 (ACT 从 1 变为 0)。

表 8-37. SEQ OFF LOG[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 1 的断电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.33 SEQ_OFF_LOG[2] 寄存器 (地址 = 0x61) [默认值 = X]

表 8-38 中显示了 SEQ_OFF_LOG[2]。

返回到汇总表。

通道 N 断电序列顺序值(ACT 从 1 变为 0)。

表 8-38. SEQ OFF LOG[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R	X	该寄存器存储通道 2 的断电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.34 SEQ_OFF_LOG[3] 寄存器(地址 = 0x62)[默认值 = X]

表 8-39 中显示了 SEQ_OFF_LOG[3]。

返回到汇总表。

通道 N 断电序列顺序值 (ACT 从 1 变为 0)。

表 8-39. SEQ_OFF_LOG[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R	X	该寄存器存储通道 3 的断电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.35 SEQ_OFF_LOG[4] 寄存器 (地址 = 0x63) [默认值 = X]

表 8-40 中显示了 SEQ_OFF_LOG[4]。

返回到汇总表。

通道 N 断电序列顺序值(ACT 从 1 变为 0)。

表 8-40. SEQ_OFF_LOG[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 4 的断电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

Product Folder Links: TPS389006

8.5.1.36 SEQ_OFF_LOG[5] 寄存器 (地址 = 0x64) [默认值 = X]

表 8-41 中显示了 SEQ_OFF_LOG[5]。

Copyright © 2023 Texas Instruments Incorporated

返回到汇总表。

通道 N 断电序列顺序值 (ACT 从 1 变为 0)。

表 8-41. SEQ_OFF_LOG[5] 寄存器字段说明

位 字段	
7:0 ORDER[7:0] R X 该寄存器存储通道 5 的断电序列顺序值。	配标签。

8.5.1.37 SEQ_OFF_LOG[6] 寄存器(地址 = 0x65)[默认值 = X]

表 8-42 中显示了 SEQ_OFF_LOG[6]。

返回到汇总表。

通道 N 断电序列顺序值 (ACT 从 1 变为 0)。

表 8-42. SEQ_OFF_LOG[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R	X	该寄存器存储通道 6 的断电序列顺序值。 序列顺序值是在 ACT 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.38 SEQ_EXS_LOG[1] 寄存器 (地址 = 0x70) [默认值 = X]

表 8-43 中显示了 SEQ EXS LOG[1]。

返回到汇总表。

通道N睡眠退出序列顺序值(SLEEP从0变为1)。

表 8-43. SEQ EXS LOG[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R	X	该寄存器存储通道 1 的睡眠退出序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[1] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.39 SEQ_EXS_LOG[2] 寄存器 (地址 = 0x71) [默认值 = X]

表 8-44 中显示了 SEQ_EXS_LOG[2]。

返回到汇总表。

通道N睡眠退出序列顺序值(SLEEP从0变为1)。

表 8-44. SEQ_EXS_LOG[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 2 的睡眠退出序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[2] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

8.5.1.40 SEQ_EXS_LOG[3] 寄存器 (地址 = 0x72) [默认值 = X]

表 8-45 中显示了 SEQ_EXS_LOG[3]。

返回到汇总表。

通道 N 睡眠退出序列顺序值(SLEEP 从 0 变为 1)。

表 8-45. SEQ_EXS_LOG[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R	X	该寄存器存储通道 3 的睡眠退出序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[3] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.41 SEQ_EXS_LOG[4] 寄存器 (地址 = 0x73) [默认值 = X]

表 8-46 中显示了 SEQ_EXS_LOG[4]。

返回到汇总表。

通道N睡眠退出序列顺序值(SLEEP从0变为1)。

表 8-46. SEQ_EXS_LOG[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R	X	该寄存器存储通道 4 的睡眠退出序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[4] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.42 SEQ_EXS_LOG[5] 寄存器 (地址 = 0x74) [默认值 = X]

表 8-47 中显示了 SEQ_EXS_LOG[5]。

返回到汇总表。

通道 N 睡眠退出序列顺序值(SLEEP 从 0 变为 1)。

表 8-47. SEQ_EXS_LOG[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 5 的睡眠退出序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[5] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.43 SEQ_EXS_LOG[6] 寄存器 (地址 = 0x75) [默认值 = X]

表 8-48 中显示了 SEQ_EXS_LOG[6]。

返回到汇总表。

通道N睡眠退出序列顺序值(SLEEP从0变为1)。

Copyright © 2023 Texas Instruments Incorporated

Product Folder Links: *TPS389006*

表 8-48. SEQ EXS LOG[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 6 的睡眠退出序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压上升电平超过 UV_LF[6] 阈值时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.44 SEQ_ENS_LOG[1] 寄存器 (地址 = 0x80) [默认值 = X]

表 8-49 中显示了 SEQ_ENS_LOG[1]。

返回到汇总表。

通道N睡眠进入序列顺序值(SLEEP从1变为0)。

表 8-49. SEQ ENS LOG[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 1 的睡眠进入序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.45 SEQ_ENS_LOG[2] 寄存器 (地址 = 0x81) [默认值 = X]

表 8-50 中显示了 SEQ_ENS_LOG[2]。

返回到汇总表。

通道 N 睡眠进入序列顺序值(SLEEP 从 1 变为 0)。

表 8-50. SEQ ENS LOG[2] 寄存器字段说明

_					
	位	字段	类型	默认值	说明
	7:0	ORDER[7:0]	R		该寄存器存储通道 2 的睡眠进入序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.46 SEQ_ENS_LOG[3] 寄存器 (地址 = 0x82) [默认值 = X]

表 8-51 中显示了 SEQ_ENS_LOG[3]。

返回到汇总表。

通道N睡眠进入序列顺序值(SLEEP从1变为0)。

表 8-51. SEQ_ENS_LOG[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 3 的睡眠进入序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

Product Folder Links: TPS389006

8.5.1.47 SEQ_ENS_LOG[4] 寄存器 (地址 = 0x83) [默认值 = X]

表 8-52 中显示了 SEQ_ENS_LOG[4]。

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

49

返回到汇总表。

通道N睡眠进入序列顺序值(SLEEP从1变为0)。

表 8-52. SEQ_ENS_LOG[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R	X	该寄存器存储通道 4 的睡眠进入序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.48 SEQ_ENS_LOG[5] 寄存器 (地址 = 0x84) [默认值 = X]

表 8-53 中显示了 SEQ_ENS_LOG[5]。

返回到汇总表。

通道N睡眠进入序列顺序值(SLEEP从1变为0)。

表 8-53. SEQ_ENS_LOG[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R	X	该寄存器存储通道 5 的睡眠进入序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.49 SEQ_ENS_LOG[6] 寄存器 (地址 = 0x85) [默认值 = X]

表 8-54 中显示了 SEQ ENS LOG[6]。

返回到汇总表。

通道 N 睡眠进入序列顺序值(SLEEP 从 1 变为 0)。

表 8-54. SEQ_ENS_LOG[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R		该寄存器存储通道 6 的睡眠进入序列顺序值。 序列顺序值是在 SLEEP 触发的序列期间分配给通道的标签。 当电压下降电平超过关断阈值 (200mV) 时分配标签。 在超过阈值时,标签值为 SYNC_ORD_COUNT。

8.5.1.50 SEQ_TIME_MSB[1] 寄存器(地址 = 0x90)[默认值 = X]

表 8-55 中显示了 SEQ_TIME_MSB[1]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

Product Folder Links: TPS389006

English Data Sheet: SNVSC50

表 8-55. SEQ TIME MSB[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R		该寄存器存储通道 1 的序列时间戳的 MSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[1] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV)时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

8.5.1.51 SEQ_TIME_LSB[1] 寄存器(地址 = 0x91)[默认值 = X]

表 8-56 中显示了 SEQ_TIME_LSB[1]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

表 8-56. SEQ_TIME_LSB[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R		该寄存器存储通道 1 的序列时间戳的 LSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[1] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV)时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

8.5.1.52 SEQ_TIME_MSB[2] 寄存器(地址 = 0x92)[默认值 = X]

表 8-57 中显示了 SEQ_TIME_MSB[2]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

表 8-57. SEQ_TIME_MSB[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R		该寄存器存储通道 2 的序列时间戳的 MSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[2] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV)时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

Product Folder Links: TPS389006

8.5.1.53 SEQ_TIME_LSB[2] 寄存器(地址 = 0x93)[默认值 = X]

表 8-58 中显示了 SEQ_TIME_LSB[2]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

51

表 8-58. SEQ TIME LSB[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R		该寄存器存储通道 2 的序列时间戳的 LSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[2] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV)时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

8.5.1.54 SEQ_TIME_MSB[3] 寄存器(地址 = 0x94)[默认值 = X]

表 8-59 中显示了 SEQ_TIME_MSB[3]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

表 8-59. SEQ_TIME_MSB[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R	X	该寄存器存储通道 3 的序列时间戳的 MSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[3] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV) 时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

8.5.1.55 SEQ_TIME_LSB[3] 寄存器 (地址 = 0x95) [默认值 = X]

表 8-60 中显示了 SEQ_TIME_LSB[3]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

表 8-60. SEQ_TIME_LSB[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R		该寄存器存储通道 3 的序列时间戳的 LSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[3] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV)时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

8.5.1.56 SEQ_TIME_MSB[4] 寄存器(地址 = 0x96)[默认值 = X]

表 8-61 中显示了 SEQ_TIME_MSB[4]。

Submit Document Feedback

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

English Data Sheet: SNVSC50

表 8-61. SEQ TIME MSB[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R		该寄存器存储通道 4 的序列时间戳的 MSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[4] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV)时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

8.5.1.57 SEQ_TIME_LSB[4] 寄存器(地址 = 0x97)[默认值 = X]

表 8-62 中显示了 SEQ_TIME_LSB[4]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

表 8-62. SEQ_TIME_LSB[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R	X	该寄存器存储通道 4 的序列时间戳的 LSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[4] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV)时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

8.5.1.58 SEQ_TIME_MSB[5] 寄存器(地址 = 0x98)[默认值 = X]

表 8-63 中显示了 SEQ_TIME_MSB[5]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

表 8-63. SEQ_TIME_MSB[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R		该寄存器存储通道 5 的序列时间戳的 MSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[5] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV) 时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

Product Folder Links: TPS389006

8.5.1.59 SEQ_TIME_LSB[5] 寄存器(地址 = 0x99)[默认值 = X]

表 8-64 中显示了 SEQ_TIME_LSB[5]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

Copyright © 2023 Texas Instruments Incorporated

表 8-64. SEQ_TIME_LSB[5] 寄存器字段说明

				- Follow A Management
位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R		该寄存器存储通道 5 的序列时间戳的 LSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[5] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV)时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

8.5.1.60 SEQ_TIME_MSB[6] 寄存器(地址 = 0x9A)[默认值 = X]

表 8-65 中显示了 SEQ_TIME_MSB[6]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

表 8-65. SEQ_TIME_MSB[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R	X	该寄存器存储通道 6 的序列时间戳的 MSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[6] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV) 时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

8.5.1.61 SEQ_TIME_LSB[6] 寄存器(地址 = 0x9B)[默认值 = X]

表 8-66 中显示了 SEQ_TIME_LSB[6]。

返回到汇总表。

通道 N 序列时间戳值 MSB 和 LSB (所有序列)。

表 8-66. SEQ_TIME_LSB[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	CLOCK[7:0]	R	X	该寄存器存储通道 6 的序列时间戳的 LSB。 序列计时器值是在由 ACT 或 SLEEP 触发的序列期间分配给通道的时间。 当电压上升电平超过上电和睡眠退出序列(ACT 01 或 SLEEP 01)的 UV_LF[6] 阈值时,将存储时间戳。 当电压下降电平超过断电和睡眠进入序列(ACT 10 或 SLEEP 10)的 OFF 阈值 (200mV)时,将存储时间戳。 最低有效位对应于 50µs(等于 tSEQ_LSB)。

8.5.1.62 Bank_SEL 寄存器 (地址 = 0xF0) [默认值 = 0x00]

表 8-67 中显示了 BANK_SEL。

返回到汇总表。

组选择 = 0表示组 0, 1表示组 1

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

表 8-67. BANK SEL 寄存器字段说明

位	字段	类型	默认值	说明
7:2	RSVD	R/W	0b	RSVD
1	BANK_SELECT	R/W	0b	不适用
0	BANK	R/W	0b	寄存器组选择编号。

8.5.1.63 PROT1 寄存器 (地址 = 0xF1) [默认值 = 0x00]

表 8-68 中显示了 PROT1。

返回到汇总表。

保护选择寄存器。为了对寄存器组进行写保护,主机必须在两个寄存器中设置相关位。为了安全起见,寄存器 PROT1 和 PROT2 需要将 POR 值设为 0x00,并且一旦设置,将变为只读状态,直到下电上电。一旦设置为 1,主机就不能将它们清除为 0。可以通过以下方式将其清除(并允许写入不同的 VMON 寄存器配置):下电上电;通过在退出序列 2 时执行的 VMON CTL.RESET BIST 进行复位(如果 TEST CFG.AT SHDN=1)。

表 8-68. PROT1 寄存器字段说明

	农 0-00.1 代 11 前 11 部 1 校 加 分						
位	字段	类型	默认值	说明			
7:6	RSVD	R/W	0b	RSVD			
5	WRKC	R/W	0b	0b 0 = 控制工作 (WRKC) 寄存器可写入。 0b 1 = 忽略对控制工作寄存器的写入。			
4	WRKS	R/W	0b	0b 0 = 序列工作 (WRKS) 寄存器可写入。 0b 1 = 忽略对序列工作寄存器的写入。			
3	CFG	R/W	0b	0b 0 = 配置 (CFG) 寄存器可写入。 0b 1 = 忽略对配置寄存器的写入。			
2	IEN	R/W	0b	0b 0 = 中断使能 (IEN) 寄存器可写入。 0b 1 = 忽略对中断使能寄存器的写入。			
1	MON	R/W	0b	0b 0 = 监控 (MON[N]) 寄存器可写入。 0b 1 = 忽略对 PROT_MON1 寄存器中所选监控寄存器的写入。			
0	SEQ	R/W	0b	0b 0 = 序列 (SEQ) 寄存器可写入。 0b 1 = 忽略对序列寄存器的写入。			

8.5.1.64 PROT2 寄存器 (地址 = 0xF2) [默认值 = 0x00]

表 8-69 中显示了 PROT2。

返回到汇总表。

保护选择寄存器。为了对寄存器组进行写保护,主机必须在两个寄存器中设置相关位。为了安全起见,寄存器 PROT1 和 PROT2 需要将 POR 值设为 0x00,并且一旦设置,将变为只读状态,直到下电上电。一旦设置为 1,主机就不能将它们清除为 0。可以通过以下方式将其清除(并允许写入不同的 VMON 寄存器配置):下电上电;通过在退出序列 2 时执行的 VMON_CTL.RESET BIST 进行复位(如果 TEST_CFG.AT_SHDN=1)。

表 8-69. PROT2 寄存器字段说明

位	字段	类型	默认值	说明
_	RSVD	R/W	Ob	RSVD
7:6			-	RSVD
5	WRKC	R/W	0b	0b
				0 = 控制工作 (WRKC) 寄存器可写入。
				Ob
				1 = 忽略对控制工作寄存器的写入。
4	WRKS	R/W	0b	0b
				0 = 序列工作 (WRKS) 寄存器可写入。
				0b
				1 = 忽略对序列工作寄存器的写入。
3	CFG	R/W	0b	0b
				0 = 配置 (CFG) 寄存器可写入。
				0b
				1 = 忽略对配置寄存器的写入。
2	IEN	R/W	0b	0b
				0 = 中断使能 (IEN) 寄存器可写入。
				0b
				1 = 忽略对中断使能寄存器的写入。
1	MON	R/W	0b	0b
				0 = 监控 (MON[N]) 寄存器可写入。
				0b
				1 = 忽略对 PROT_MON1 寄存器中所选监控寄存器的写入。
0	SEQ	R/W	0b	0b
				0 = 序列 (SEQ) 寄存器可写入。
				0b
				1 = 忽略对序列寄存器的写入。

8.5.1.65 PROT_MON2 寄存器(地址 = 0xF3)[默认值 = 0xC1]

表 8-70 中显示了 PROT_MON2。

返回到汇总表。

监控通道配置保护。

表 8-70. PROT_MON2 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	读/写	11b	RSVD
5:0	MON[N]	R/W	1b	该寄存器选择在写入 PROT1、PROT2 寄存器以保护 MON 组后将受到保护的监视器通道配置。 0 = 通道 N 的监控配置寄存器可写入。 1 = 忽略对通道 N 的监控配置寄存器的写入。

8.5.1.66 I2CADDR 寄存器(地址 = 0xF9)[默认值 = X]

表 8-71 中显示了 I2CADDR。

返回到汇总表。

3 个 LSB 位根据电阻值决定,5 个 MSB 位基于 OTP NVM。ADDR_NVM 的默认值为 30 (出厂默认设置)

表 8-71. I2CADDR 寄存器字段说明

位	字段	类型	默认值	说明
7	RSVD	R	X	RSVD
6:3	ADDR_NVM[3:0]	R	Х	I2C 地址的四个最高有效位。 在 NVM 中设置。

Product Folder Links: TPS389006

表 8-71. I2CADDR 寄存器字段说明 (continued)

位	字段	类型	默认值	说明
2:0	ADDR_STRAP[2:0]	R	X	I2C 地址的三个最低有效位。
				由在 ADDR 引脚上检测到的 strap 电平设置,从 000b 到 111b。

8.5.1.67 DEV_CFG 寄存器(地址 = 0xFA)[默认值 = X]

表 8-72 中显示了 DEV_CFG。

返回到汇总表。

I2C 接口电平状态, 0表示 3.3V I/F, 1表示 1.2V/1.8V 接口(出厂默认设置)

表 8-72. DEV_CFG 寄存器字段说明

位	字段	类型	默认值	说明
7:1	RSVD	R	X	RSVD
0	SOC_IF	R		主机 SoC 接口(包括 I2C、ACT、SLEEP 和 SYNC)。 0 = 3.3V 1 = 1.2V/1.8V

8.5.2 BANK1 寄存器

表 8-73 列出了 BANK1 寄存器的存储器映射寄存器。表 8-73 中未列出的所有寄存器偏移地址都应视为保留的位置,并且不应修改寄存器内容。

表 8-73. BANK1 寄存器

表 8-/3. BANK1 奇仔器										
地址	首字母缩写	位7 位6	位 5	位 4	位 3	位 2	位 1	位 0		
0x10	VMON_CTL	DIAG_EN_SCALE	SLP_PW R	RSVD	RESET_P ROT	SYNC_R ST	FORCE_ SYNC	FORCE_ NIRQ		
0x11	VMON_MISC	R	SVD		EN_TS_O W	EN_SEQ_ OW	REQ_PE C	EN_PEC		
0x12	TEST_CFG	R	SVD		AT_SHDN	RESERV ED	AT_I	POR		
0x13	IEN_UVHF	RSVD			МО	N[N]				
0x14	IEN_UVLF	RSVD			MO	N[N]				
0x15	IEN_OVHF	RSVD			MO	N[N]				
0x16	IEN_OVLF	RSVD			MO	N[N]				
0x17	IEN_SEQ_ON	RSVD			MO	N[N]				
0x18	IEN_SEQ_OFF	RSVD			МО	N[N]				
0x19	IEN_SEQ_EXS	RSVD			MO	N[N]				
0x1A	IEN_SEQ_ENS	RSVD			MO	N[N]				
0x1B	IEN_CONTROL	RT_0	CRC Int		RSVD	TSD Int	SYNC Int	PEC Int		
0x1C	IEN_TEST		ECC_SEC			RSVD	BIST_Co mplete_IN T	BIST_Fail _INT		
0x1E	MON_CH_EN	RSVD		MON[N]						
0x1F	VRANGE_MULT	RSVD			MON[N]					
0x20	UV_HF[1]		THRESHOLD[7:0]							
0x21	OV_HF[1]		THRESHOLD[7:0]							
0x22	UV_LF[1]		THRESHOLD[7:0]							
0x23	OV_LF[1]		THRESHOLD[7:0]							
0x24	FLT_HF[1]	VO	DEB[3:0]			UV_D	EB[3:0]			
0x25	FC_LF[1]		RSVD THRES				RESHOLD[2:0]		
0x30	UV_HF[2]		THRESHOLD[7:0]							
0x31	OV_HF[2]		THRESHOLD[7:0]							
0x32	UV_LF[2]		THRESHOLD[7:0]							
0x33	OV_LF[2]		THRESHOLD[7:0]							
0x34	FLT_HF[2]	VO	DEB[3:0]			UV_D	EB[3:0]			
0x35	FC_LF[2]		RSVD			TH	RESHOLD[2:0]		
0x40	UV_HF[3]			THRESI	HOLD[7:0]					
0x41	OV_HF[3]			THRESI	HOLD[7:0]					
0x42	UV_LF[3]			THRESI	HOLD[7:0]					
0x43	OV_LF[3]			THRESI	HOLD[7:0]					
0x44	FLT_HF[3]	VO	OV_DEB[3:0]				EB[3:0]			
0x45	FC_LF[3]		RSVD				RESHOLD[2:0]		
0x50	UV_HF[4]		THRESHOLD[7:0]							
0x51	OV_HF[4]		THRESHOLD[7:0]							
0x52	UV_LF[4]			THRESI	HOLD[7:0]					
0x53	OV_LF[4]		THRESHOLD[7:0]							
0x54	FLT_HF[4]	OV_D	DEB[3:0]			UV_D	EB[3:0]			
		•			•					

表 8-73. BANK1 寄存器 (continued)

		衣 8-73. BANK1 句任裔 (CONTINUEQ)								
地址	首字母缩写	位 7	位 6	位 5	位 4	位 3	位 2	位 1	位 0	
0x55	FC_LF[4]		RSVD THRESHOLD[2:0]				2:0]			
0x60	UV_HF[5]		THRESHOLD[7:0]							
0x61	OV_HF[5]				THRESH	OLD[7:0]				
0x62	UV_LF[5]				THRESH	OLD[7:0]				
0x63	OV_LF[5]				THRESH	OLD[7:0]				
0x64	FLT_HF[5]		OV_D	EB[3:0]			UV_DE	EB[3:0]		
0x65	FC_LF[5]			RSVD			THI	RESHOLD[2:0]	
0x70	UV_HF[6]				THRESH	OLD[7:0]				
0x71	OV_HF[6]				THRESH	OLD[7:0]				
0x72	UV_LF[6]				THRESH	OLD[7:0]				
0x73	OV_LF[6]				THRESH	OLD[7:0]				
0x74	FLT_HF[6]		OV_D	EB[3:0]			UV_DE	EB[3:0]		
0x75	FC_LF[6]			RSVD			THI	RESHOLD[2:0]	
0x9F	TI_CONTROL	ENTER_B IST				RSVD				
0xA0	SEQ_REC_CTL	REC_STA RT	SEC	Q[1:0]	TS_ACK	SEQ_ON _ACK	SEQ_OF F_ACK	SEQ_EX S_ACK	SEQ_EN S_ACK	
0xA1	AMSK_ON	RS	VD			МО	N[N]		1	
0xA2	AMSK_OFF	RS	VD			МО	N[N]			
0xA3	AMSK_EXS	RS	VD	MON[N]						
0xA4	AMSK_ENS	RS	VD	MON[N]						
0xA5	SEQ_TOUT_MSB			MILLISEC[7:0]						
0xA6	SEQ_TOUT_LSB			MILLISEC[7:0]						
0xA7	SEQ_SYNC			PULSE_WIDTH[7:0]						
0xA8	SEQ_UP_THLD	RS	VD	MON[N]						
0xA9	SEQ_DN_THLD	RS	VD	MON[N]						
0xB0	SEQ_ON_EXP[1]			ORDER[7:0]						
0xB1	SEQ_ON_EXP[2]			ORDER[7:0]						
0xB2	SEQ_ON_EXP[3]			ORDER[7:0]						
0xB3	SEQ_ON_EXP[4]			ORDER[7:0]						
0xB4	SEQ_ON_EXP[5]			ORDER[7:0]						
0xB5	SEQ_ON_EXP[6]				ORDE					
0xC0	SEQ_OFF_EXP[1]				ORDE	R[7:0]				
0xC1	SEQ_OFF_EXP[2]				ORDE					
0xC2	SEQ_OFF_EXP[3]				ORDE					
0xC3	SEQ_OFF_EXP[4]				ORDE	R[7:0]				
0xC4	SEQ_OFF_EXP[5]				ORDE					
0xC5	SEQ_OFF_EXP[6]				ORDE					
0xD0	SEQ_EXS_EXP[1]				ORDE					
0xD1	SEQ_EXS_EXP[2]				ORDE					
0xD2	SEQ_EXS_EXP[3]				ORDE					
0xD3	SEQ_EXS_EXP[4]				ORDE					
0xD4	SEQ_EXS_EXP[5]				ORDE					
0xD5	SEQ_EXS_EXP[6]				ORDE					
0xE0	SEQ_ENS_EXP[1]				ORDE	R[7:0]				

表 8-73. BANK1 寄存器 (continued)

地址	首字母缩写	位 7	位 6	位 5	位 4	位 3	位 2	位1	位 0
0xE1	SEQ_ENS_EXP[2]				ORDE	R[7:0]			
0xE2	SEQ_ENS_EXP[3]	ORDER[7:0]							
0xE3	SEQ_ENS_EXP[4]	ORDER[7:0]							
0xE4	SEQ_ENS_EXP[5]				ORDE	R[7:0]			
0xE5	SEQ_ENS_EXP[6]				ORDE	R[7:0]			

复杂的位访问类型经过编码可适应小型表单元。表 8-74 显示了适用于此部分中访问类型的代码。

表 8-74. BANK1 访问类型代码

访问类型	代码	说明
读取类型		
R	R	读取
写入类型		
W	W	写入
复位或默认值		
-n		复位后的值或默认值

8.5.2.1 VMON_CTL 寄存器 (地址 = 0x10)[默认值 = X]

表 8-75 中显示了 VMON_CTL。

返回到汇总表。

电压监控器件控制寄存器。

表 8-75. VMON CTL 寄存器字段说明

	农 0-73. VIIION_OIL 向行册于校记为									
位	字段	类型	默认值	说明						
7:6	DIAG_EN_SCALE	R/W	Ob	诊断 EN 量程 00 = 不强制 SVS 比较器的 GAINSEL 01 = 强制为 1x 10 = 强制为 2x 11 = 强制为 4x						
5	SLP_PWR	R/W	0b	睡眠功率位 0 = 睡眠低功率模式 1 = 睡眠高功率模式						
4	RSVD	R/W	Х	RSVD						
3	RESET_PROT	R/W	0b	复位 0 = 始终读取 0 1 = 完全器件复位						
2	SYNC_RST	R/W	Ob	SYNC 计数器复位 (SEQ_ORD_STAT.SYNC_COUNT)。 0 = 始终读取 0 1 = 复位 SYNC 计数器						
1	FORCE_SYNC	R/W	0b	强制 SYNC 置为有效 0=SYNC 引脚被置为无效并由序列监控逻辑控制。 1=SYNC 引脚被置为有效(强制为低电平)						
0	FORCE_NIRQ	R/W	0b	强制 NIRQ 有效 0 = NIRQ 引脚无效并由中断寄存器故障控制 1 = NIRQ 引脚有效(强制为低电平)						

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

8.5.2.2 VMON_MISC 寄存器 (地址 = 0x11) [默认值 = X]

表 8-76 中显示了 VMON_MISC。

返回到汇总表。

其他电压监控配置。

表 8-76. VMON_MISC 寄存器字段说明

次 0-7 0. VIVIOIA_IVIIOO 向行冊子校 M/7J								
位	字段	类型	默认值	说明				
7:4	RSVD	R/W	X	RSVD				
3	EN_TS_OW	R/W	1b	允许时间戳记录覆盖 0 = 禁用。 如果序列时间戳数据在 SEQ_TIME_xSB[N] 寄存器中可用,并且设置 了 SEQ_REC_STAT.TS_RDY 位(数据尚未读取),则新序列将不会 覆盖现有数据。 1 = 启用(默认设置)。 序列时间戳数据被新序列覆盖,与 SEQ_REC_STAT.TS_RDY 位无 关。				
2	EN_SEQ_OW	R/W	1b	允许序列顺序记录覆盖 0 = 禁用。 如果序列顺序数据在 SEQ_ON_LOG[N]、SEQ_OFF_LOG[N]、 SEQ_EXS_LOG[N] 或 SEQ_ENS_LOG[N] 寄存器中可用,并且设置 了相应的 SEQ_REC_STAT.SEQ_ON_RDY、 SEQ_REC_STAT.SEQ_EXS_RDY 或 SEQ_REC_STAT.SEQ_EXS_RDY 或 SEQ_REC_STAT.SEQ_ENS_RDY 位(数据尚未读取),则新序列不会覆盖现有数据。 1 = 启用(默认设置)。 序列顺序数据被新序列覆盖,与 SEQ_REC_STAT.SEQ_ON_RDY、 SEQ_REC_STAT.SEQ_OFF_RDY、 SEQ_REC_STAT.SEQ_EXS_RDY 或 SEQ_REC_STAT.SEQ_EXS_RDY 或 SEQ_REC_STAT.SEQ_ENS_RDY 位无关。				
1	REQ_PEC	R/W	Ob	需要 PEC 字节(仅当 EN_PEC 为 1 时有效): 0 = 缺失 PEC 字节被视为正常 PEC 1 = 缺失 PEC 字节被视为错误 PEC,从而触发故障				
0	EN_PEC	R/W	Ob	PEC: 0 = 禁用 PEC (默认) 1 = 启用 PEC				

8.5.2.3 TEST_CFG 寄存器 (地址 = 0x12) [默认值 = X]

表 8-77 中显示了 TEST_CFG。

返回到汇总表。

内置自检 BIST 执行配置。

表 8-77. TEST_CFG 寄存器字段说明

位	字段	类型	默认值	说明
7:4	RSVD	R/W	X	RSVD
3	AT_SHDN	R/W	X	由于 ACT 从 1 转换为 0 而退出 ACTIVE 状态时运行 BIST。 tCFG_WB 之后器件准备就绪。 该位不能在 OTP/NVM 中设置。 从 OTP/NVM 加载配置时,始终默认为 0。
2	保留	R	X	

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

表 8-77. TEST_CFG 寄存器字段说明 (continued)

位	字段	类型	默认值	说明
1:0	AT_POR	R/W	X	在 POR 时运行 BIST。
				tCFG_WB 之后器件准备就绪。
				00b = OTP 配置有效,在 POR 时跳过 BIST
				01b = OTP 配置损坏,在 POR 时运行 BIST
				10b = OTP 配置损坏,在 POR 时运行 BIST
				11b = OTP 配置有效,在 POR 时运行 BIST

8.5.2.4 IEN_UVHF 寄存器 (地址 = 0x13) [默认值 = X]

表 8-78 中显示了 IEN UVHF。

返回到汇总表。

高频通道欠压中断使能寄存器。

表 8-78. IEN_UVHF 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	Х	RSVD
5:0	MON[N]	R/W		VIN 通道 N (1至6)的欠压高频故障中断使能。 0 = 中断被禁用 1 = 中断被启用

8.5.2.5 IEN_UVLF 寄存器 (地址 = 0x14) [默认值 = X]

表 8-79 中显示了 IEN_UVLF。

返回到汇总表。

低频通道欠压中断使能寄存器。

表 8-79. IEN_UVLF 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD
5:0	MON[N]	R/W		VIN 通道 N (1 至 6) 的欠压低频故障中断使能。 0 = 中断被禁用 1 = 中断被启用

8.5.2.6 IEN_OVHF 寄存器(地址 = 0x15)[默认值 = X]

表 8-80 中显示了 IEN_OVHF。

返回到汇总表。

高频通道过压中断使能寄存器。

Submit Document Feedback

表 8-80. IEN_OVHF 寄存器字段说明

			_	
位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD
5:0	MON[N]	R/W		VIN 通道 N (1 至 6)的过压高频故障中断使能。 0 = 中断被禁用 1 = 中断被启用

English Data Sheet: SNVSC50

8.5.2.7 IEN_OVLF 寄存器 (地址 = 0x16) [默认值 = X]

表 8-81 中显示了 IEN_OVLF。

返回到汇总表。

低频通道过压中断使能寄存器。

表 8-81. IEN_OVLF 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD
5:0	MON[N]	R/W		VIN 通道 N (1至6)的过压低频故障中断使能。 0 = 中断被禁用 1 = 中断被启用

8.5.2.8 IEN_SEQ_ON 寄存器 (地址 = 0x17) [默认值 = X]

表 8-82 中显示了 IEN_SEQ_ON。

返回到汇总表。

上电序列 ACT 从 0 转换到 1 中断使能寄存器。

表 8-82. IEN_SEQ_ON 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD
5:0	MON[N]	R/W	0b	VIN 通道 N (1至6)的上电序列故障中断使能。 0=中断被禁用 1=中断被启用

8.5.2.9 IEN_SEQ_OFF 寄存器 (地址 = 0x18) [默认值 = X]

表 8-83 中显示了 IEN_SEQ_OFF。

返回到汇总表。

断电序列 ACT 从 1 转换到 0 中断使能寄存器。

表 8-83. IEN_SEQ_OFF 寄存器字段说明

	位	字段	类型	默认值	说明
ľ	7:6	RSVD	R/W	X	RSVD
	5:0	MON[N]	R/W		VIN 通道 N (1至6)的断电序列故障中断使能。 0=中断被禁用 1=中断被启用

8.5.2.10 IEN_SEQ_EXS 寄存器 (地址 = 0x19) [默认值 = X]

表 8-84 中显示了 IEN_SEQ_EXS。

返回到汇总表。

退出睡眠序列 SLEEP 从 0 转换到 1 中断使能寄存器。

表 8-84. IEN_SEQ_EXS 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD

Copyright © 2023 Texas Instruments Incorporated

表 8-84. IEN_SEQ_EXS 寄存器字段说明 (continued)

位	字段	类型	默认值	说明
5:0	MON[N]	R/W		VIN 通道 N (1至6)的退出睡眠序列故障中断使能。 0=中断被禁用 1=中断被启用

8.5.2.11 IEN_SEQ_ENS 寄存器 (地址 = 0x1A) [默认值 = X]

表 8-85 中显示了 IEN_SEQ_ENS。

返回到汇总表。

进入睡眠序列 SLEEP 从 1 转换到 0 中断使能寄存器。

表 8-85. IEN_SEQ_ENS 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD
5:0	MON[N]	R/W	Ob	VIN 通道 N (1至6)的进入睡眠序列故障中断使能。 0 = 中断被禁用 1 = 中断被启用

8.5.2.12 IEN_CONTROL 寄存器 (地址 = 0x1B) [默认值 = X]

表 8-86 中显示了 IEN_CONTROL。

返回到汇总表。

控制和通信故障中断使能寄存器。

表 8-86. IEN CONTROL 寄存器字段说明

		AX 0-0	0. ILI_COI\	ITKUL 可行命于权见为
位	字段	类型	默认值	说明
7:5	RSVD	R/W	Х	RSVD
4	RT_CRC Int	R/W	0b	运行时寄存器循环冗余校验 (CRC) 故障中断使能: 0 = 中断被禁用 1 = 中断被启用
3	RSVD	R/W	Х	RSVD
2	TSD Int	R/W	0b	热关断故障中断使能: 0 = 中断被禁用 1 = 中断被启用
1	SYNC Int	R/W	Ob	SYNC 引脚故障(在 SYNC 引脚上检测到电源短路或接地)中断使能: 0 = 中断被禁用 1 = 中断被启用
0	PEC Int	R/W	0b	PEC 故障(不匹配)中断使能: 0 = 中断被禁用 1 = 中断被启用

8.5.2.13 IEN_TEST 寄存器 (地址 = 0x1C) [默认值 = X]

表 8-87 中显示了 IEN_TEST。

返回到汇总表。

内部测试和配置加载故障中断使能寄存器。

表 8-87. IEN TEST 寄存器字段说明

		, , , ,	· · · · · <u></u> · ·	- 14 14 44 4 120024
位	字段	类型	默认值	说明
7:4	RSVD	R/W	X	RSVD
3	ECC_SEC	R/W	Ob	ECC 单比特错误更正故障(在 OTP 负载上)中断使能: 0 = 中断被禁用 1 = 中断被启用
2	RSVD	R/W	X	RSVD
1	BIST_Complete_INT	R/W	Ob	内置自检完成中断使能: 0 = 中断被禁用 1 = 中断被启用
0	BIST_Fail_INT	R/W	Ob	内置自检故障中断使能: 0 = 中断被禁用 1 = 中断被启用。尽管应该始终被启用,但最好有禁用选项。

8.5.2.14 MON_CH_EN 寄存器 (地址 = 0x1E) [默认值 = X]

表 8-88 中显示了 MON_CH_EN。

返回到汇总表。

通道 1-6 电压监控使能寄存器。

表 8-88. MON_CH_EN 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD
5:0	MON[N]	R/W		VIN 通道 N (1至6)的电压监控使能。 0 = 禁用通道监控器 1 = 启用通道监控器

8.5.2.15 VRANGE_MULT 寄存器 (地址 = 0x1F) [默认值 = X]

表 8-89 中显示了 VRANGE_MULT。

返回到汇总表。

通道 1-6 电压监控范围/调节寄存器。

表 8-89. VRANGE_MULT 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	Х	RSVD
5:0	MON[N]	R/W		VIN 通道 N (1 至 6)的电压监测范围/调节。
				0 = 1x 调节 (0.2V 至 1.475V , 步长为 5mV)
				1 = 4x 调节 (0.8V 至 5.9V,步长为 20mV)

Product Folder Links: TPS389006

8.5.2.16 UV_HF[1] 寄存器 (地址 = 0x20) [默认值 = 0x00]

表 8-90 中显示了 UV_HF[1]。

返回到汇总表。

通道1高频通道欠压阈值。

表 8-90. UV HF[1] 寄存器字段说明

				• • • • • • • • • • • • • • • • • • • •
位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.17 OV_HF[1] 寄存器 (地址 = 0x21) [默认值 = 0xFF]

表 8-91 中显示了 OV_HF[1]。

返回到汇总表。

通道1高频通道过压阈值。

表 8-91. OV HF[1] 寄存器字段说明

				• • • • • • • • • • • • • • • • • • • •
位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.18 UV_LF[1] 寄存器 (地址 = 0x22) [默认值 = 0x00]

表 8-92 中显示了 UV_LF[1]。

返回到汇总表。

通道1低频通道欠压阈值。

表 8-92. UV_LF[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.19 OV_LF[1] 寄存器(地址 = 0x23)[默认值 = 0xFF]

表 8-93 中显示了 OV_LF[1]。

返回到汇总表。

通道1低频通道过压阈值。

表 8-93. OV_LF[1] 寄存器字段说明

,	位	字段	类型	默认值	说明
7	7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

Product Folder Links: TPS389006

8.5.2.20 FLT_HF[1] 寄存器 (地址 = 0x24) [默认值 = 0x00]

表 8-94 中显示了 FLT_HF[1]。

返回到汇总表。

针对高频故障的通道 1 去抖滤波器。支持的最小值为 0.4 μ s、最大值为 102.4 μ s。

表 8-94. FLT_HF[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:4	OV_DEB[3:0]	R/W	0b	高频监控路径的过压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1 μs 1000b = 25.6 μs 0001b = 0.2 μs 1001b = 51.2 μs 0010b = 0.4 μs 1010b = 102.4 μs 0011b = 0.8 μs 1011b = 102.4 μs 0100b = 1.6 μs 1100b = 102.4 μs 0101b = 3.2 μs 1101b = 102.4 μs 0110b = 6.4 μs 1111b = 102.4 μs 0111b = 12.8 μs 1111b = 102.4 μs
3:0	UV_DEB[3:0]	R/W	Ob	高频监控路径的欠压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1 μs 1000b = 25.6 μs 0001b = 0.2 μs 1001b = 51.2 μs 0010b = 0.4 μs 1010b = 102.4 μs 0011b = 0.8 μs 1011b = 102.4 μs 0100b = 1.6 μs 1100b = 102.4 μs 0101b = 3.2 μs 1101b = 102.4 μs 0110b = 6.4 μs 1110b = 102.4 μs 0111b = 12.8 μs 1111b = 102.4 μs

8.5.2.21 FC_LF[1] 寄存器(地址 = 0x25)[默认值 = X]

表 8-95 中显示了 FC LF[1]。

返回到汇总表。

通道 1 低频路径截止频率 3dB 点。该寄存器更改可编程 LPF 的滤波器属性,使总频率响应满足这些截止频率。

表 8-95. FC_LF[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:3	RSVD	R/W	Х	RSVD
2:0	THRESHOLD[2:0]	R/W	100ь	低截止频率。 000b = 无效 001b = 无效 001b = 250Hz 011b = 500Hz 100b = 1kHz (默认值) 101b = 2kHz 110b = 4kHz 111b = 无效

Product Folder Links: TPS389006

8.5.2.22 UV_HF[2] 寄存器 (地址 = 0x30) [默认值 = 0x00]

表 8-96 中显示了 UV_HF[2]。

返回到汇总表。

通道2高频通道欠压阈值。

Copyright © 2023 Texas Instruments Incorporated

表 8-96. UV_HF[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.23 OV_HF[2] 寄存器 (地址 = 0x31) [默认值 = 0xFF]

表 8-97 中显示了 OV_HF[2]。

返回到汇总表。

通道2高频通道过压阈值。

表 8-97. OV_HF[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.24 UV_LF[2] 寄存器 (地址 = 0x32) [默认值 = 0x00]

表 8-98 中显示了 UV_LF[2]。

返回到汇总表。

通道2低频通道欠压阈值。

表 8-98. UV_LF[2] 寄存器字段说明

				• • • • • • • • • • • • • • • • • • • •
位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.25 OV_LF[2] 寄存器(地址 = 0x33)[默认值 = 0xFF]

表 8-99 中显示了 OV_LF[2]。

返回到汇总表。

通道2低频通道过压阈值。

表 8-99. OV_LF[2] 寄存器字段说明

,	位	字段	类型	默认值	说明
7	7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

Product Folder Links: TPS389006

8.5.2.26 FLT_HF[2] 寄存器 (地址 = 0x34) [默认值 = 0x00]

表 8-100 中显示了 FLT_HF[2]。

返回到汇总表。

针对 HF 故障的通道 2 去抖滤波器。支持的最小值为 0.4 μs、最大值为 102.4 μs。

表 8-100. FLT_HF[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:4	OV_DEB[3:0]	R/W	Ob	高频监控路径的过压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1 μs 1000b = 25.6 μs 0001b = 0.2 μs 1001b = 51.2 μs 0010b = 0.4 μs 1010b = 102.4 μs 0011b = 0.8 μs 1011b = 102.4 μs 0100b = 1.6 μs 1100b = 102.4 μs 0101b = 3.2 μs 1101b = 102.4 μs 0110b = 6.4 μs 1111b = 102.4 μs 0111b = 12.8 μs 1111b = 102.4 μs
3:0	UV_DEB[3:0]	R/W	0b	高频监控路径的欠压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1 μs 1000b = 25.6 μs 0001b = 0.2 μs 1001b = 51.2 μs 0010b = 0.4 μs 1010b = 102.4 μs 0011b = 0.8 μs 1011b = 102.4 μs 0100b = 1.6 μs 1100b = 102.4 μs 0101b = 3.2 μs 1101b = 102.4 μs 0110b = 6.4 μs 1110b = 102.4 μs 0111b = 12.8 μs 1111b = 102.4 μs

8.5.2.27 FC_LF[2] 寄存器(地址 = 0x35)[默认值 = X]

表 8-101 中显示了 FC LF[2]。

返回到汇总表。

通道 2 低频路径截止频率 3dB 点。该寄存器更改可编程 LPF 的滤波器属性,使总频率响应满足这些截止频率。

表 8-101. FC LF[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:3	RSVD	R/W	Х	RSVD
2:0	THRESHOLD[2:0]	R/W		000b = 无效 001b = 无效 010b = 250Hz 011b = 500Hz 100b = 1kHz (默认值) 101b = 2kHz 110b = 4kHz 111b = 无效

8.5.2.28 UV_HF[3] 寄存器(地址 = 0x40)[默认值 = 0x00]

表 8-102 中显示了 UV_HF[3]。

返回到汇总表。

通道3高频通道欠压阈值。

表 8-102. UV_HF[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

8.5.2.29 OV_HF[3] 寄存器 (地址 = 0x41) [默认值 = 0xFF]

表 8-103 中显示了 OV_HF[3]。

返回到汇总表。

通道3高频通道过压阈值。

表 8-103. OV HF[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.30 UV_LF[3] 寄存器(地址 = 0x42)[默认值 = 0x00]

表 8-104 中显示了 UV_LF[3]。

返回到汇总表。

通道3低频通道欠压阈值。

表 8-104. UV_LF[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.31 OV_LF[3] 寄存器(地址 = 0x43)[默认值 = 0xFF]

表 8-105 中显示了 OV_LF[3]。

返回到汇总表。

通道3低频通道过压阈值。

表 8-105. OV_LF[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.32 FLT_HF[3] 寄存器 (地址 = 0x44) [默认值 = 0x00]

表 8-106 中显示了 FLT_HF[3]。

返回到汇总表。

针对 HF 故障的通道 3 去抖滤波器。支持的最小值为 0.4 μ s、最大值为 102.4 μ s。

Copyright © 2023 Texas Instruments Incorporated

Product Folder Links: *TPS389006*

表 8-106. FLT HF[3] 寄存器字段说明

	% o 1001 i zi _in [o] hi ii ii i i i i i i i i i i i i i i i					
位	字段	类型	默认值	说明		
7:4	OV_DEB[3:0]	R/W	0b	高频监控路径的过压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1 μs 1000b = 25.6 μs 0001b = 0.2 μs 1001b = 51.2 μs 0010b = 0.4 μs 1010b = 102.4 μs 0011b = 0.8 μs 1011b = 102.4 μs 0100b = 1.6 μs 1100b = 102.4 μs 0101b = 3.2 μs 1101b = 102.4 μs 0110b = 6.4 μs 1111b = 102.4 μs 0111b = 12.8 μs 1111b = 102.4 μs		
3:0	UV_DEB[3:0]	R/W	Ob	高频监控路径的欠压比较器输出去抖时间(在输出处于稳定状态达到去抖时间之前不要置为有效)。 0000b = $0.1\mu s$ 1000b = $25.6\mu s$ 0001b = $0.2\mu s$ 1001b = $51.2\mu s$ 0010b = $0.4\mu s$ 1010b = $102.4\mu s$ 0011b = $0.8\mu s$ 1011b = $102.4\mu s$ 0100b = $102.4\mu s$ 0101b = $3.2\mu s$ 1101b = $102.4\mu s$ 0110b = $6.4\mu s$ 1110b = $102.4\mu s$ 0111b = $12.8\mu s$ 1111b = $102.4\mu s$		

8.5.2.33 FC_LF[3] 寄存器 (地址 = 0x45) [默认值 = X]

表 8-107 中显示了 FC_LF[3]。

返回到汇总表。

通道 3 低频路径截止频率 3dB 点。该寄存器更改可编程 LPF 的滤波器属性, 使总频率响应满足这些截止频率。

表 8-107. FC LF[3] 寄存器字段说明

		700.1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
位	字段	类型	默认值	说明
7:3	RSVD	R/W	Х	RSVD
2:0	THRESHOLD[2:0]	R/W	100Ь	000b = 无效 001b = 无效 010b = 250Hz 011b = 500Hz 100b = 1kHz (默认值) 101b = 2kHz 110b = 4kHz 111b = 无效

8.5.2.34 UV_HF[4] 寄存器 (地址 = 0x50) [默认值 = 0x00]

表 8-108 中显示了 UV_HF[4]。

返回到汇总表。

通道4高频通道欠压阈值。

表 8-108. UV HF[4] 寄存器字段说明

				• • • • • • • • • • • • • • • • • • • •
位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

Product Folder Links: TPS389006

8.5.2.35 OV_HF[4] 寄存器 (地址 = 0x51) [默认值 = 0xFF]

表 8-109 中显示了 OV_HF[4]。

返回到汇总表。

通道4高频通道过压阈值。

表 8-109. OV_HF[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.36 UV_LF[4] 寄存器(地址 = 0x52)[默认值 = 0x00]

表 8-110 中显示了 UV_LF[4]。

返回到汇总表。

通道4低频通道欠压阈值。

表 8-110. UV_LF[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.37 OV_LF[4] 寄存器 (地址 = 0x53) [默认值 = 0xFF]

表 8-111 中显示了 OV_LF[4]。

返回到汇总表。

通道4低频通道过压阈值。

表 8-111. OV_LF[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.38 FLT_HF[4] 寄存器 (地址 = 0x54) [默认值 = 0x00]

表 8-112 中显示了 FLT HF[4]。

Submit Document Feedback

返回到汇总表。

针对 HF 故障的通道 4 去抖滤波器。支持的最小值为 0.4 μ s、最大值为 102.4 μ s。

表 8-112. FLT_HF[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:4	OV_DEB[3:0]	R/W		高频监控路径的过压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1μs 1000b = 25.6μs 0001b = 0.2μs 1001b = 51.2μs 0010b = 0.4μs 1010b = 102.4μs 0011b = 0.8μs 1011b = 102.4μs 0100b = 1.6μs 1100b = 102.4μs 0101b = 3.2μs 1101b = 102.4μs 0110b = 6.4μs 1110b = 102.4μs 0111b = 12.8μs 1111b = 102.4μs

Product Folder Links: TPS389006

English Data Sheet: SNVSC50

表 8-112. FLT_HF[4] 寄存器字段说明 (continued)

				, HI 3 1200 /3 (GOTTETT GOT)
位	字段	类型	默认值	说明
3:0	UV_DEB[3:0]	R/W		高频监控路径的欠压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1µs 1000b = 25.6µs 0001b = 0.2µs 1001b = 51.2µs 0010b = 0.4µs 1010b = 102.4µs 0011b = 0.8µs 1011b = 102.4µs 0100b = 1.6µs 1100b = 102.4µs 0101b = 3.2µs 1101b = 102.4µs 0110b = 6.4µs 1111b = 102.4µs 0111b = 12.8µs 1111b = 102.4µs

8.5.2.39 FC_LF[4] 寄存器(地址 = 0x55)[默认值 = X]

表 8-113 中显示了 FC_LF[4]。

返回到汇总表。

通道 4 低频路径截止频率 3dB 点。该寄存器更改可编程 LPF 的滤波器属性,使总频率响应满足这些截止频率。

表 8-113. FC LF[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:3	RSVD	R/W	X	RSVD
2:0	THRESHOLD[2:0]	R/W		000b = 无效 001b = 无效 010b = 250Hz 011b = 500Hz 100b = 1kHz (默认值) 101b = 2kHz 110b = 4kHz 111b = 无效

8.5.2.40 UV_HF[5] 寄存器(地址 = 0x60)[默认值 = 0x00]

表 8-114 中显示了 UV_HF[5]。

返回到汇总表。

通道5高频通道欠压阈值。

表 8-114. UV_HF[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W	Ob	受监控通道的高频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.41 OV_HF[5] 寄存器 (地址 = 0x61) [默认值 = 0xFF]

表 8-115 中显示了 OV_HF[5]。

返回到汇总表。

通道5高频通道过压阈值。

English Data Sheet: SNVSC50

表 8-115. OV_HF[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.42 UV_LF[5] 寄存器 (地址 = 0x62) [默认值 = 0x00]

表 8-116 中显示了 UV LF[5]。

返回到汇总表。

通道5低频通道欠压阈值。

表 8-116. UV_LF[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.43 OV_LF[5] 寄存器 (地址 = 0x63) [默认值 = 0xFF]

表 8-117 中显示了 OV_LF[5]。

返回到汇总表。

通道5低频通道过压阈值。

表 8-117. OV_LF[5] 寄存器字段说明

		•		• • • • • • • • • • • • • • • • • • • •
位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.44 FLT_HF[5] 寄存器 (地址 = 0x64) [默认值 = 0x00]

表 8-118 中显示了 FLT_HF[5]。

返回到汇总表。

针对 HF 故障的通道 5 去抖滤波器。支持的最小值为 0.4 μ s、最大值为 102.4 μ s。

表 8-118. FLT_HF[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:4	OV_DEB[3:0]	R/W	Ob	高频监控路径的过压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1μs 1000b = 25.6μs 0001b = 0.2μs 1001b = 51.2μs 0010b = 0.4μs 1010b = 102.4μs 0011b = 0.8μs 1011b = 102.4μs 0100b = 1.6μs 1100b = 102.4μs 0101b = 3.2μs 1101b = 102.4μs 0110b = 6.4μs 11110b = 102.4μs 0111b = 12.8μs 1111b = 102.4μs

Product Folder Links: TPS389006

表 8-118. FLT HF[5] 寄存器字段说明 (continued)

位	字段	类型	默认值	说明
3:0	UV_DEB[3:0]	R/W		高频监控路径的欠压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1µs 1000b = 25.6µs 0001b = 0.2µs 1001b = 51.2µs 0010b = 0.4µs 1010b = 102.4µs 0011b = 0.8µs 1011b = 102.4µs 0100b = 1.6µs 1100b = 102.4µs 0101b = 3.2µs 1101b = 102.4µs 0110b = 6.4µs 1110b = 102.4µs 0111b = 12.8µs 1111b = 102.4µs

8.5.2.45 FC_LF[5] 寄存器 (地址 = 0x65) [默认值 = X]

表 8-119 中显示了 FC_LF[5]。

返回到汇总表。

通道 5 低频路径截止频率 3dB 点。该寄存器更改可编程 LPF 的滤波器属性,使总频率响应满足这些截止频率。

表 8-119. FC_LF[5] 寄存器字段说明

_					- · · · · · · · · · · · · · · · · · · ·
	位	字段	类型	默认值	说明
	7:3	RSVD	R/W	X	RSVD
	2:0	THRESHOLD[2:0]	R/W		000b = 无效 001b = 无效 010b = 250Hz 011b = 500Hz 100b = 1kHz (默认值) 101b = 2kHz 110b = 4kHz 111b = 无效

8.5.2.46 UV_HF[6] 寄存器 (地址 = 0x70) [默认值 = 0x00]

表 8-120 中显示了 UV HF[6]。

返回到汇总表。

通道6高频通道欠压阈值。

表 8-120. UV_HF[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

Product Folder Links: TPS389006

8.5.2.47 OV_HF[6] 寄存器 (地址 = 0x71) [默认值 = 0xFF]

表 8-121 中显示了 OV_HF[6]。

返回到汇总表。

通道6高频通道过压阈值。

Copyright © 2023 Texas Instruments Incorporated

表 8-121. OV_HF[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的高频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.48 UV_LF[6] 寄存器(地址 = 0x72)[默认值 = 0x00]

表 8-122 中显示了 UV LF[6]。

返回到汇总表。

通道6低频通道欠压阈值。

表 8-122. UV_LF[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的欠压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.49 OV_LF[6] 寄存器(地址 = 0x73)[默认值 = 0xFF]

表 8-123 中显示了 OV_LF[6]。

返回到汇总表。

通道6低频通道过压阈值。

表 8-123. OV_LF[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	THRESHOLD[7:0]	R/W		受监控通道的低频分量的过压阈值。 8 位值的解释取决于寄存器 VRANGE_MULT 中的调节设置。 当调节 = 1x 时,8 位值代表 0.2V 至 1.475V 的范围,1 LSB = 5mV。 当调节 = 4x 时,8 位值代表 0.8V 至 5.9V 的范围,1 LSB = 20mV。

8.5.2.50 FLT_HF[6] 寄存器 (地址 = 0x74) [默认值 = 0x00]

表 8-124 中显示了 FLT_HF[6]。

Submit Document Feedback

返回到汇总表。

针对 HF 故障的通道 6 去抖滤波器。支持的最小值为 0.4 μ s、最大值为 102.4 μ s。

表 8-124. FLT_HF[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:4	OV_DEB[3:0]	R/W	Ob	高频监控路径的过压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1μs 1000b = 25.6μs 0001b = 0.2μs 1001b = 51.2μs 0010b = 0.4μs 1010b = 102.4μs 0011b = 0.8μs 1011b = 102.4μs 0100b = 1.6μs 1100b = 102.4μs 0101b = 3.2μs 1101b = 102.4μs 0110b = 6.4μs 11110b = 102.4μs 0111b = 12.8μs 1111b = 102.4μs

Product Folder Links: TPS389006

English Data Sheet: SNVSC50

表 8-124. FLT_HF[6] 寄存器字段说明 (continued)

位	字段	类型	默认值	说明
3:0	UV_DEB[3:0]	R/W		高频监控路径的欠压比较器输出去抖时间(在输出处于稳定状态达到 去抖时间之前不要置为有效)。 0000b = 0.1µs 1000b = 25.6µs 0001b = 0.2µs 1001b = 51.2µs 0010b = 0.4µs 1010b = 102.4µs 0011b = 0.8µs 1011b = 102.4µs 0100b = 1.6µs 1100b = 102.4µs 0101b = 3.2µs 1101b = 102.4µs 0110b = 6.4µs 1110b = 102.4µs 0111b = 12.8µs 1111b = 102.4µs

8.5.2.51 FC_LF[6] 寄存器 (地址 = 0x75) [默认值 = X]

表 8-125 中显示了 FC_LF[6]。

返回到汇总表。

通道 6 低频路径截止频率 3dB 点。该寄存器更改可编程 LPF 的滤波器属性,使总频率响应满足这些截止频率。

表 8-125. FC_LF[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:3	RSVD	R/W	X	RSVD
2:0	THRESHOLD[2:0]	R/W		000b = 无效 001b = 无效 010b = 250Hz 011b = 500Hz 100b = 1kHz (默认值) 101b = 2kHz 110b = 4kHz 111b = 无效

8.5.2.52 TI_CONTROL 寄存器 (地址 = 0x9F) [默认值 = X]

表 8-126 中显示了 TS_CONTROL。

返回到汇总表。

手动进入 BIST 寄存器。

表 8-126. TS CONTROL 寄存器字段说明

		• .	_	* ** *** * ** ** ** * **
位	字段	类型	默认值	说明
7	ENTER_BIST	R/W	X	进入 BIST:
				0 = 默认
				1 = 进入 BIST
6:0	RSVD	R/W	Х	RSVD

8.5.2.53 SEQ_REC_CTL 寄存器 (地址 = 0xA0) [默认值 = 0x00]

表 8-127 中显示了 SEQ_REC_CTL。

返回到汇总表。

顺序控制寄存器。

表 8-127. SEQ REC CTL 寄存器字段说明

位	字段	类型	默认值	说明	
7	REC_START	R/W	0b	软件启动序列记录: 0 = 始终读取 0 1 = 启动电源序列(由 SEQ[1:0] 选择)记录。	

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

表 8-127. SEQ REC CTL 寄存器字段说明 (continued)

	表 8-127. SEQ_REC_CTL 奇仔器子校说明 (continued)							
位	字段	类型	默认值	说明				
6:5	SEQ[1:0]	R/W	Ob	要记录的序列(并将故障与相应的预期序列顺序寄存器进行比较): 00b = 上电(ACT从0变为1) 01b = 断电(ACT从1变为0) 10b = 退出睡眠状态(SLEEP从0变为1) 11b = 进入睡眠状态(SLEEP从1变为0)				
4	TS_ACK	R/W	Ob	时间戳数据可以覆盖。 仅当 VMON_MISC.EN_TS_OW=0 时才有效并使用。 00b = 始终读取 0 01b = 确认时间戳数据可以覆盖。 清除 SEQ_REC_STAT.TS_RDY 和 SEQ_OW_STAT.TS_OW。				
3	SEQ_ON_ACK	R/W	Ob	加电序列数据可以覆盖。 仅当 VMON_MISC.EN_SEQ_OW=0 时才有效并使用。 00b = 始终读取 0 01b = 确认加电序列数据可以覆盖。 清除 SEQ_REC_STAT.SEQ_ON_RDY 和 SEQ_OW_STAT.SEQ_ON_OW。				
2	SEQ_OFF_ACK	R/W	Ob	断电序列数据可以覆盖。 仅当 VMON_MISC.EN_SEQ_OW=0 时才有效并使用。 00b = 始终读取 0 01b = 确认断电序列数据可以覆盖。 清除 SEQ_REC_STAT.SEQ_OFF_RDY 和 SEQ_OW_STAT.SEQ_OFF_OW。				
1	SEQ_EXS_ACK	R/W	Ob	睡眠退出序列数据可以覆盖。 仅当 VMON_MISC.EN_SEQ_OW=0 时才有效并使用。 00b = 始终读取 0 01b = 确认睡眠退出序列数据可以覆盖。 清除 SEQ_REC_STAT.SEQ_EXS_RDY 和 SEQ_OW_STAT.SEQ_EXS_OW。				
0	SEQ_ENS_ACK	R/W	Ob	睡眠进入序列数据可以覆盖。 仅当 VMON_MISC.EN_SEQ_OW=0 时才有效并使用。 00b = 始终读取 0 01b = 确认睡眠进入序列数据可以覆盖。 清除 SEQ_REC_STAT.SEQ_ENS_RDY 和 SEQ_OW_STAT.SEQ_ENS_OW。				

8.5.2.54 AMSK_ON 寄存器 (地址 = 0xA1) [默认值 = X]

表 8-128 中显示了 AMSK_ON。

返回到汇总表。

自动屏蔽开启寄存器。该寄存器用于屏蔽 ACT 从 0 转换到 1 时的 UVLF、UVHF 和 OVHF 中断。

表 8-128. AMSK_ON 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD
5:0	MON[N]	R/W		VIN 通道 N (1 到 6) 的 IEN_UVLF、IEN_UVHF 和 IEN_OVHF 的 ACT 0 到 1 转换的自动屏蔽。 00b = 通道中断未自动屏蔽 01b = 通道中断自动屏蔽

8.5.2.55 AMSK_OFF 寄存器 (地址 = 0xA2) [默认值 = X]

表 8-129 中显示了 AMSK_OFF。

Submit Document Feedback

English Data Sheet: SNVSC50

返回到汇总表。

自动屏蔽关闭寄存器。该寄存器用于屏蔽 ACT 从 1 转换到 0 时的 UVLF、UVHF 和 OVHF 中断。

表 8-129. AMSK_OFF 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD
5:0	MON[N]	R/W		VIN 通道 N (1 到 6) 的 IEN_UVLF、IEN_UVHF 和 IEN_OVHF 的 ACT 1 到 0 转换的自动屏蔽。 00b = 通道中断未自动屏蔽 01b = 通道中断自动屏蔽

8.5.2.56 AMSK_EXS 寄存器(地址 = 0xA3)[默认值 = X]

表 8-130 中显示了 AMSK EXS。

返回到汇总表。

自动屏蔽退出寄存器。该寄存器用于屏蔽 SLEEP 从 0 转换到 1 时的 UVLF、UVHF 和 OVHF 中断。

表 8-130. AMSK_EXS 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD
5:0	MON[N]	R/W		VIN 通道 N (1 到 6) 的 IEN_UVLF、IEN_UVHF 和 IEN_OVHF 的 SLEEP 0 到 1 转换的自动屏蔽。 00b = 通道中断未自动屏蔽 01b = 通道中断自动屏蔽

8.5.2.57 AMSK_ENS 寄存器 (地址 = 0xA4) [默认值 = X]

表 8-131 中显示了 AMSK ENS。

返回到汇总表。

自动屏蔽进入寄存器。该寄存器用于屏蔽 SLEEP 从 1 转换到 0 时的 UVLF、UVHF 和 OVHF 中断。

表 8-131. AMSK_ENS 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	X	RSVD
5:0	MON[N]	R/W		VIN 通道 N (1 到 6) 的 IEN_UVLF、IEN_UVHF 和 IEN_OVHF 的 SLEEP 1 到 0 转换的自动屏蔽。 00b = 通道中断未自动屏蔽 01b = 通道中断自动屏蔽

Product Folder Links: TPS389006

8.5.2.58 SEQ_TOUT_MSB 寄存器(地址 = 0xA5)[默认值 = 0x00]

表 8-132 中显示了 SEQ_TOUT_MSB。

返回到汇总表。

序列超时最高有效位寄存器。

Copyright © 2023 Texas Instruments Incorporated

表 8-132. SEQ TOUT MSB 寄存器字段说明

			_	
位	字段	类型	默认值	说明
	MILLISEC[7:0]	R/W	Ob	ACT 和 SLEEP 转换序列超时。 超时后,自动屏蔽 (AMSK_xxx) 被释放,IEN_xVxF 中断变为活动状态。 0x 0000 = 1ms 0x 0001 = 2ms
				当未指定最大值时,最好能够将该超时设置为最长 4s、最短 256ms (只使用地址 0xA6 上的低位字节)。

8.5.2.59 SEQ_TOUT_LSB 寄存器 (地址 = 0xA6) [默认值 = 0x00]

表 8-133 中显示了 SEQ TOUT LSB。

返回到汇总表。

序列超时最低有效位寄存器。

表 8-133. SEQ_TOUT_LSB 寄存器字段说明

位	字段	类型	默认值	说明
7:0	MILLISEC[7:0]	R/W	0b	ACT 和 SLEEP 转换序列超时。
				超时后,自动屏蔽 (AMSK_xxx) 被释放,IEN_xVxF 中断变为活动状
				态。
				0x
				0000 = 1ms
				0x
				0001 = 2ms
				当未指定最大值时,最好能够将该超时设置为最长 4s、最短 256ms
				(只使用地址 0xA6 上的低位字节)。

8.5.2.60 SEQ_SYNC 寄存器 (地址 = 0xA7) [默认值 = 0x00]

表 8-134 中显示了 SEQ_SYNC。

返回到汇总表。

序列 SYNC 脉冲持续时间从 50 μs 到 2600 μs。

表 8-134. SEQ_SYNC 寄存器字段说明

位	字段	类型	默认值	说明
7:0	PULSE_WIDTH[7:0]	R/W		SYNC 脉冲的脉冲宽度。 00000000b = 50μs 00000001b = 60μs 00000010b = 70μs 1111110b = 2580μs 11111111b = 2590μs 11111111b = 2600μs

8.5.2.61 SEQ_UP_THLD 寄存器 (地址 = 0xA8) [默认值 = 0xDF]

表 8-135 中显示了 SEQ_UP_THLD。

返回到汇总表。

用于上电序列标记 ACT 和 SLEEP 从 0 转换到 1 的阈值选择寄存器。

Copyright © 2023 Texas Instruments Incorporated

Product Folder Links: *TPS389006*

表 8-135. SEQ UP THLD 寄存器字段说明

			-	
位	字段	类型	默认值	说明
7:6	RSVD	读/写	11b	RSVD
5:0	MON[N]	读/写		针对上电和退出睡眠序列标记的 OFF (200mV) 或 UV (UV_LF[N] 寄存器) 阈值选择: 00b = 使用 OFF 阈值 (200mV) 01b = 使用 UV 阈值 (UV_LF[N] 寄存器) 0b = OFF 1b = UVLF

8.5.2.62 SEQ_DN_THLD 寄存器 (地址 = 0xA9) [默认值 = 0x00]

表 8-136 中显示了 SEQ_DN_THLD。

返回到汇总表。

用于断电序列标记 ACT 和 SLEEP 从 1 转换到 0 的阈值选择寄存器。

表 8-136. SEQ_DN_THLD 寄存器字段说明

位	字段	类型	默认值	说明
7:6	RSVD	R/W	0b	RSVD
5:0	MON[N]	R/W		针对断电和进入睡眠序列标记的 OFF (200mV) 或 UV (UV_LF[N] 寄存器) 阈值选择: 00b = 使用 OFF 阈值 (200mV) 01b = 使用 UV 阈值 (UV_LF[N] 寄存器) 0b = OFF 1b = UVLF

8.5.2.63 SEQ_ON_EXP[1] 寄存器(地址 = 0xB0)[默认值 = 0x00]

表 8-137 中显示了 SEQ_ON_EXP[1]。

返回到汇总表。

通道 1 上电序列顺序预期值寄存器。该寄存器用于设置通道 1 的预期上电序列顺序的值。

表 8-137. SEQ_ON_EXP[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道 1 预期的上电序列顺序值。
				该序列顺序值将与在 ACT 触发的序列期间分配给通道的
				SEQ_ON_LOG[1] 寄存器进行比较。

8.5.2.64 SEQ_ON_EXP[2] 寄存器(地址 = 0xB1)[默认值 = 0x00]

表 8-138 中显示了 SEQ_ON_EXP[2]。

返回到汇总表。

通道 2 上电序列顺序预期值寄存器。该寄存器用于设置通道 2 的预期上电序列顺序的值。

表 8-138. SEQ ON EXP[2] 寄存器字段说明

_					1 1 1 1 1 1 1 1 1 1
	位	字段	类型	默认值	说明
	7:0	ORDER[7:0]	R/W	0b	通道 2 预期的上电序列顺序值。 该序列顺序值将与在 ACT 触发的序列期间分配给通道的 SEQ_ON_LOG[2] 寄存器进行比较。

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

8.5.2.65 SEQ_ON_EXP[3] 寄存器(地址 = 0xB2)[默认值 = 0x00]

表 8-139 中显示了 SEQ_ON_EXP[3]。

返回到汇总表。

通道 3 上电序列顺序预期值寄存器。该寄存器用于设置通道 3 的预期上电序列顺序的值。

表 8-139. SEQ_ON_EXP[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 3 预期的上电序列顺序值。 该序列顺序值将与在 ACT 触发的序列期间分配给通道的 SEQ_ON_LOG[3] 寄存器进行比较。

8.5.2.66 SEQ_ON_EXP[4] 寄存器(地址 = 0xB3)[默认值 = 0x00]

表 8-140 中显示了 SEQ_ON_EXP[4]。

返回到汇总表。

通道 4 上电序列顺序预期值寄存器。该寄存器用于设置通道 4 的预期上电序列顺序的值。

表 8-140. SEQ_ON_EXP[4] 寄存器字段说明

位	4	字段	类型	默认值	说明
7:0	C	ORDER[7:0]	R/W		通道 4 预期的上电序列顺序值。 该序列顺序值将与在 ACT 触发的序列期间分配给通道的 SEQ_ON_LOG[4] 寄存器进行比较。

8.5.2.67 SEQ_ON_EXP[5] 寄存器(地址 = 0xB4)[默认值 = 0x00]

表 8-141 中显示了 SEQ ON EXP[5]。

返回到汇总表。

通道 5 上电序列顺序预期值寄存器。该寄存器用于设置通道 5 的预期上电序列顺序的值。

表 8-141. SEQ_ON_EXP[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 5 预期的上电序列顺序值。 该序列顺序值将与在 ACT 触发的序列期间分配给通道的 SEQ_ON_LOG[5] 寄存器进行比较。

8.5.2.68 SEQ_ON_EXP[6] 寄存器(地址 = 0xB5)[默认值 = 0x00]

表 8-142 中显示了 SEQ_ON_EXP[6]。

返回到汇总表。

通道6上电序列顺序预期值寄存器。该寄存器用于设置通道6的预期上电序列顺序的值。

表 8-142. SEQ_ON_EXP[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道 6 预期的上电序列顺序值。
				该序列顺序值将与在 ACT 触发的序列期间分配给通道的
				SEQ_ON_LOG[6] 寄存器进行比较。

Product Folder Links: TPS389006

8.5.2.69 SEQ_OFF_EXP[1] 寄存器 (地址 = 0xC0) [默认值 = 0x00]

表 8-143 中显示了 SEQ_OFF_EXP[1]。

返回到汇总表。

通道 1 断电序列顺序预期值寄存器。该寄存器用于设置通道 1 的预期断电序列顺序的值。

表 8-143. SEQ_OFF_EXP[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道 1 预期的断电序列顺序值。 该序列顺序值将与 ACT 触发的序列期间分配给通道的 SEQ_OFF_LOG[1] 寄存器进行比较

8.5.2.70 SEQ_OFF_EXP[2] 寄存器 (地址 = 0xC1) [默认值 = 0x00]

表 8-144 中显示了 SEQ_OFF_EXP[2]。

返回到汇总表。

通道2断电序列顺序预期值寄存器。该寄存器用于设置通道2的预期断电序列顺序的值。

表 8-144. SEQ_OFF_EXP[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道 2 预期的断电序列顺序值。 该序列顺序值将与 ACT 触发的序列期间分配给通道的 SEQ_OFF_LOG[2] 寄存器进行比较

8.5.2.71 SEQ_OFF_EXP[3] 寄存器 (地址 = 0xC2) [默认值 = 0x00]

表 8-145 中显示了 SEQ OFF EXP[3]。

返回到汇总表。

通道 3 断电序列顺序预期值寄存器。该寄存器用于设置通道 3 的预期断电序列顺序的值。

表 8-145. SEQ_OFF_EXP[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 3 预期的断电序列顺序值。 该序列顺序值将与 ACT 触发的序列期间分配给通道的 SEQ_OFF_LOG[3] 寄存器进行比较

8.5.2.72 SEQ_OFF_EXP[4] 寄存器 (地址 = 0xC3) [默认值 = 0x00]

表 8-146 中显示了 SEQ_OFF_EXP[4]。

返回到汇总表。

通道 4 断电序列顺序预期值寄存器。该寄存器用于设置通道 4 的预期断电序列顺序的值。

表 8-146. SEQ_OFF_EXP[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道 4 预期的断电序列顺序值。
				该序列顺序值将与 ACT 触发的序列期间分配给通道的
				SEQ_OFF_LOG[4] 寄存器进行比较

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

8.5.2.73 SEQ OFF EXP[5] 寄存器 (地址 = 0xC4) [默认值 = 0x00]

表 8-147 中显示了 SEQ_OFF_EXP[5]。

返回到汇总表。

通道 5 断电序列顺序预期值寄存器。该寄存器用于设置通道 5 的预期断电序列顺序的值。

表 8-147. SEQ_OFF_EXP[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道 5 预期的断电序列顺序值。 该序列顺序值将与 ACT 触发的序列期间分配给通道的 SEQ_OFF_LOG[5] 寄存器进行比较

8.5.2.74 SEQ_OFF_EXP[6] 寄存器 (地址 = 0xC5) [默认值 = 0x00]

表 8-148 中显示了 SEQ_OFF_EXP[6]。

返回到汇总表。

通道 6 断电序列顺序预期值寄存器。该寄存器用于设置通道 6 的预期断电序列顺序的值。

表 8-148. SEQ_OFF_EXP[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道 6 预期的断电序列顺序值。 该序列顺序值将与 ACT 触发的序列期间分配给通道的 SEQ_OFF_LOG[6] 寄存器进行比较

8.5.2.75 SEQ_EXS_EXP[1] 寄存器 (地址 = 0xD0) [默认值 = 0x00]

表 8-149 中显示了 SEQ EXS EXP[1]。

返回到汇总表。

通道 1 睡眠退出序列顺序预期值寄存器。该寄存器用于设置通道 1 的预期睡眠退出序列顺序的值

表 8-149. SEQ_EXS_EXP[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 1 的预期睡眠退出序列顺序值。 该序列顺序值将与在 ACT/ SLEEP 触发的序列期间分配给通道的 SEQ_EXS_LOG[1] 寄存器进行比较。

8.5.2.76 SEQ_EXS_EXP[2] 寄存器 (地址 = 0xD1) [默认值 = 0x00]

表 8-150 中显示了 SEQ_EXS_EXP[2]。

返回到汇总表。

通道2睡眠退出序列顺序预期值寄存器。该寄存器用于设置通道2的预期睡眠退出序列顺序的值

表 8-150. SEQ_EXS_EXP[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 2 的预期睡眠退出序列顺序值。 该序列顺序值将与在 ACT/ SLEEP 触发的序列期间分配给通道的 SEQ_EXS_LOG[2] 寄存器进行比较。

8.5.2.77 SEQ_EXS_EXP[3] 寄存器 (地址 = 0xD2) [默认值 = 0x00]

表 8-151 中显示了 SEQ_EXS_EXP[3]。

返回到汇总表。

通道 3 睡眠退出序列顺序预期值寄存器。该寄存器用于设置通道 3 的预期睡眠退出序列顺序的值

表 8-151. SEQ_EXS_EXP[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 3 的预期睡眠退出序列顺序值。 该序列顺序值将与在 ACT/ SLEEP 触发的序列期间分配给通道的 SEQ_EXS_LOG[3] 寄存器进行比较。

8.5.2.78 SEQ_EXS_EXP[4] 寄存器 (地址 = 0xD3) [默认值 = 0x00]

表 8-152 中显示了 SEQ_EXS_EXP[4]。

返回到汇总表。

通道 4 睡眠退出序列顺序预期值寄存器。该寄存器用于设置通道 4 的预期睡眠退出序列顺序的值

表 8-152. SEQ_EXS_EXP[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道 4 的预期睡眠退出序列顺序值。 该序列顺序值将与在 ACT/ SLEEP 触发的序列期间分配给通道的
				SEQ_EXS_LOG[4] 寄存器进行比较。

8.5.2.79 SEQ_EXS_EXP[5] 寄存器 (地址 = 0xD4) [默认值 = 0x00]

表 8-153 中显示了 SEQ EXS EXP[5]。

返回到汇总表。

通道5睡眠退出序列顺序预期值寄存器。该寄存器用于设置通道5的预期睡眠退出序列顺序的值

表 8-153. SEQ_EXS_EXP[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 5 的预期睡眠退出序列顺序值。 该序列顺序值将与在 ACT/ SLEEP 触发的序列期间分配给通道的 SEQ_EXS_LOG[5] 寄存器进行比较。

8.5.2.80 SEQ_EXS_EXP[6] 寄存器 (地址 = 0xD5) [默认值 = 0x00]

表 8-154 中显示了 SEQ_EXS_EXP[6]。

返回到汇总表。

通道 6 睡眠退出序列顺序预期值寄存器。该寄存器用于设置通道 6 的预期睡眠退出序列顺序的值

表 8-154. SEQ_EXS_EXP[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道6的预期睡眠退出序列顺序值。
				该序列顺序值将与在 ACT/ SLEEP 触发的序列期间分配给通道的
				SEQ_EXS_LOG[6] 寄存器进行比较。

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

8.5.2.81 SEQ ENS EXP[1] 寄存器(地址 = 0xE0)[默认值 = 0x00]

表 8-155 中显示了 SEQ_ENS_EXP[1]。

返回到汇总表。

通道 1 睡眠进入序列顺序预期值寄存器。该寄存器用于设置通道 1 的预期睡眠进入序列顺序的值

表 8-155. SEQ_ENS_EXP[1] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 1 的预期睡眠进入序列顺序值。 该序列顺序值将与 SLEEP 触发的序列期间分配给通道的 SEQ_ENS_LOG[1] 寄存器进行比较。

8.5.2.82 SEQ_ENS_EXP[2] 寄存器 (地址 = 0xE1) [默认值 = 0x00]

表 8-156 中显示了 SEQ_ENS_EXP[2]。

返回到汇总表。

通道2睡眠进入序列顺序预期值寄存器。该寄存器用于设置通道2的预期睡眠进入序列顺序的值

表 8-156. SEQ_ENS_EXP[2] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道 2 的预期睡眠进入序列顺序值。 该序列顺序值将与 SLEEP 触发的序列期间分配给通道的 SEQ_ENS_LOG[2] 寄存器进行比较。

8.5.2.83 SEQ_ENS_EXP[3] 寄存器 (地址 = 0xE2) [默认值 = 0x00]

表 8-157 中显示了 SEQ ENS EXP[3]。

返回到汇总表。

通道3睡眠进入序列顺序预期值寄存器。该寄存器用于设置通道3的预期睡眠进入序列顺序的值

表 8-157. SEQ_ENS_EXP[3] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 3 的预期睡眠进入序列顺序值。 该序列顺序值将与 SLEEP 触发的序列期间分配给通道的 SEQ_ENS_LOG[3] 寄存器进行比较。

8.5.2.84 SEQ_ENS_EXP[4] 寄存器 (地址 = 0xE3) [默认值 = 0x00]

表 8-158 中显示了 SEQ_ENS_EXP[4]。

Submit Document Feedback

返回到汇总表。

通道 4 睡眠进入序列顺序预期值寄存器。该寄存器用于设置通道 4 的预期睡眠进入序列顺序的值

表 8-158. SEQ_ENS_EXP[4] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 4 的预期睡眠进入序列顺序值。 该序列顺序值将与 SLEEP 触发的序列期间分配给通道的 SEQ_ENS_LOG[4] 寄存器进行比较。

Product Folder Links: TPS389006

8.5.2.85 SEQ_ENS_EXP[5] 寄存器 (地址 = 0xE4) [默认值 = 0x00]

表 8-159 中显示了 SEQ_ENS_EXP[5]。

返回到汇总表。

通道 5 睡眠进入序列顺序预期值寄存器。该寄存器用于设置通道 5 的预期睡眠进入序列顺序的值

表 8-159. SEQ_ENS_EXP[5] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W		通道 5 的预期睡眠进入序列顺序值。 该序列顺序值将与 SLEEP 触发的序列期间分配给通道的 SEQ_ENS_LOG[5] 寄存器进行比较。

8.5.2.86 SEQ_ENS_EXP[6] 寄存器 (地址 = 0xE5)[默认值 = 0x00]

表 8-160 中显示了 SEQ_ENS_EXP[6]。

返回到汇总表。

通道6睡眠进入序列顺序预期值寄存器。该寄存器用于设置通道6的预期睡眠进入序列顺序的值

表 8-160. SEQ_ENS_EXP[6] 寄存器字段说明

位	字段	类型	默认值	说明
7:0	ORDER[7:0]	R/W	0b	通道 6 的预期睡眠进入序列顺序值。 该序列顺序值将与 SLEEP 触发的序列期间分配给通道的 SEQ_ENS_LOG[6] 寄存器进行比较。

Product Folder Links: TPS389006

Copyright © 2023 Texas Instruments Incorporated

9应用和实施

备注

以下应用部分中的信息不属于 TI 元件规范, TI 不担保其准确性和完整性。TI 的客户应负责确定各元件是否适用于其应用。客户应验证并测试其设计实现,以确认系统功能。

9.1 应用信息

现代 SOC 和 FPGA 器件通常具有多个电源轨,可为 IC 内的不同模块供电。准确的电压电平和时序要求很常见,必须满足这些要求才能确保此类器件正常运行。通过结合使用 TPS389006 和多通道电压序列发生器,可以满足目标 SOC 或 FPGA 器件的加电和断电时序控制要求以及内核电压要求。此设计侧重于使用 TPS389006 来满足 SOC 的时序要求。

Product Folder Links: TPS389006

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

9.2 典型应用

9.2.1 多通道序列发生器和监视器

图 9-1 显示了 TPS389006 的典型应用。TPS389006 用于为目标 SOC 器件提供适当的电压监控。多通道电压监控器 TPS389006 用于在电压轨加电和断电时监控电压轨,以确保两种情况下都发生了正确的序列。安全微控制器还用于为 TPS389006 提供 ACT、SLEEP 和 I²C 命令,以监控 NIRQ 引脚是否存在活动故障。来自安全微控制器的 ACT 信号会确定 TPS389006 何时进入 IDLE 或 ACTIVE 状态,而 TPS389006 的 NIRQ 引脚充当锁存中断引脚,该引脚在发生故障时置位。主机微控制器可以通过向受影响的寄存器写入 1 来清除故障。为简单起见,图 9-1 未显示安全微控制器的电源轨。

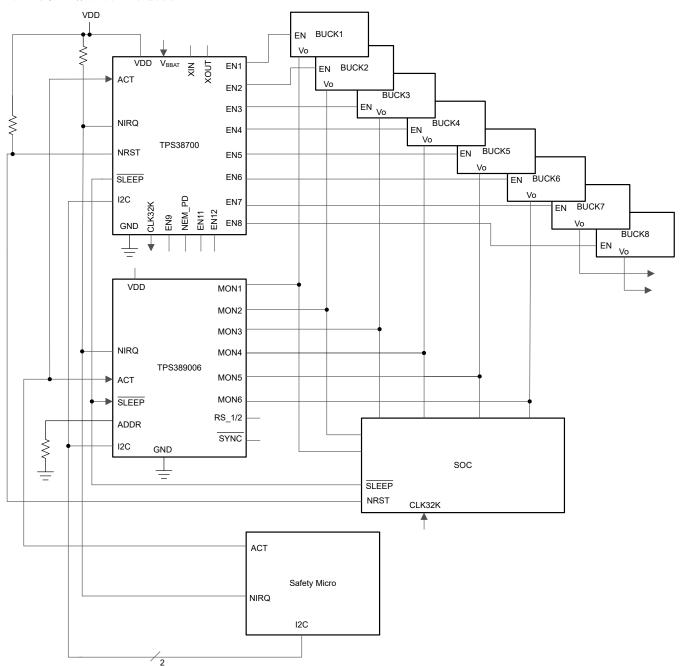


图 9-1. TPS389006 电压监控器设计方框图

9.2.2 设计要求

在此设计中,需要正确监控由直流/直流转换器提供的六个不同电压轨。应通过一个外部硬件中断信号来报告时序控制中检测到的所有故障。所有检测到的故障应记录在内部寄存器中,并可通过 I²C 访问外部处理器。

9.2.3 详细设计过程

TPS389006 器件选项使用过压、欠压、预期上电和断电序列的默认值进行了预编程。请遵循下面概述的设计要求。

- NIRQ 引脚需要一个 $10k\Omega$ 至 $100k\Omega$ 范围内的上拉电阻。
- SDA 和 SCL 线路需要 $10k\Omega$ 范围内的上拉电阻。
- ACT 引脚由外部安全微控制器驱动。当 ACT 引脚被驱动为高电平时,器件将进入运行模式。当 ACT 引脚被驱动为低电平时,器件处于睡眠模式。
- 安全微控制器用于清除通过 NIRQ 中断引脚以及 INT_SCR1 和 INT_SCR2 寄存器报告的故障中断。中断标志只能由主机微控制器通过 write-1-to-clear 操作清零;如果故障条件不再存在,中断标志不会自动清除。

9.2.4 应用曲线

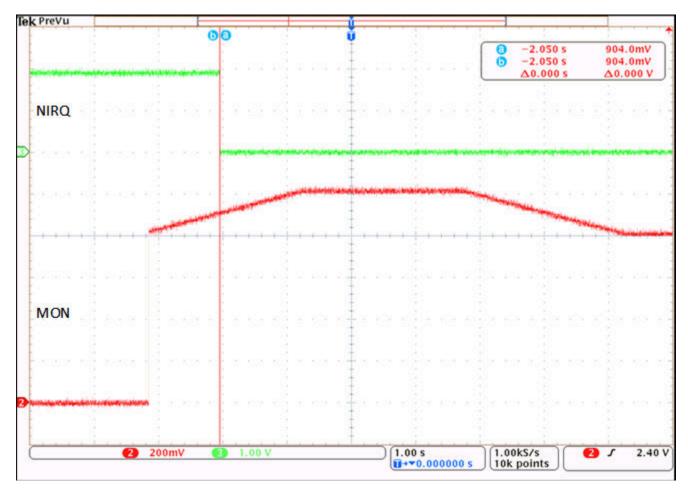


图 9-2. 发生过压故障后触发 NIRQ

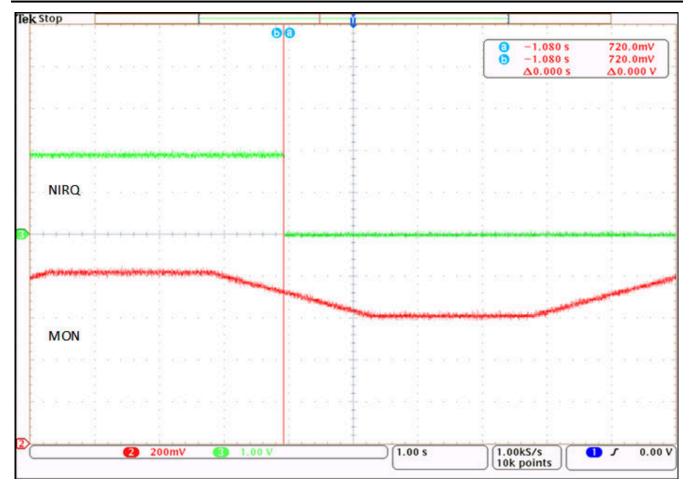


图 9-3. 发生欠压故障后触发 NIRQ

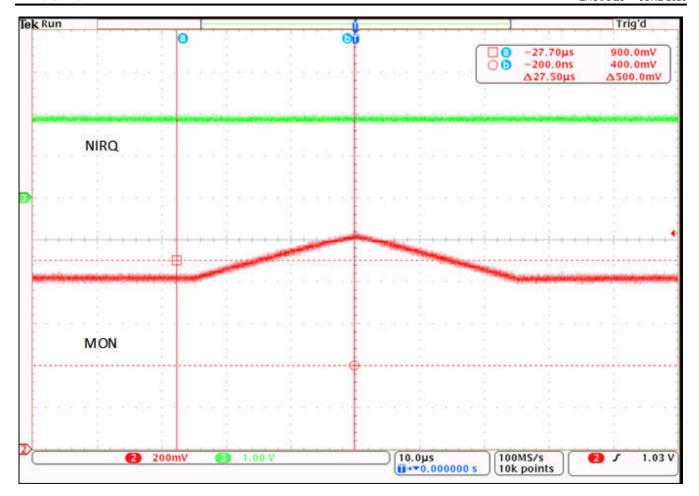


图 9-4. 使用 51.2 µ s OV 去抖滤波器时,发生过压故障时不触发 NIRQ



图 9-5. 使用 12.8 u s UV 去抖滤波器时,发生欠压故障时触发 NIRQ

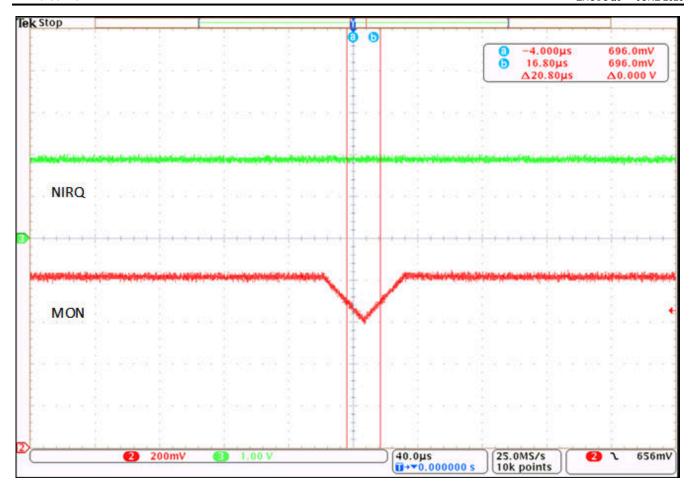


图 9-6. 使用 25 µ s UV 去抖滤波器时,发生欠压故障时不触发 NIRQ

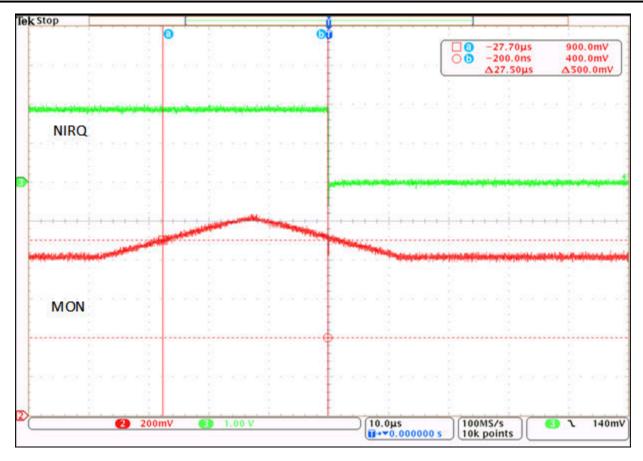


图 9-7. 使用 $25\,\mu\,s$ OV 去抖滤波器时,发生过压故障时触发 NIRQ

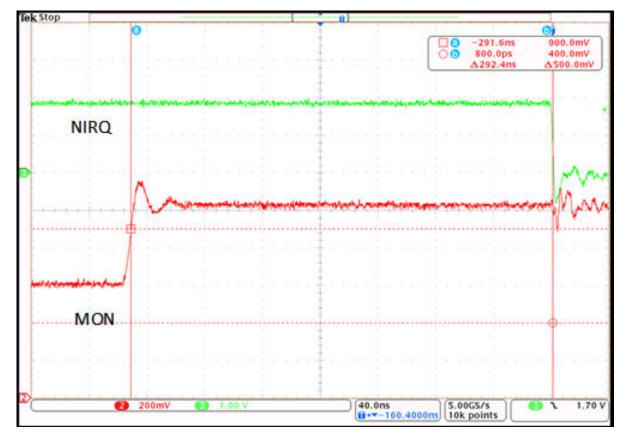


图 9-8. 过压故障导致的 NIRQ 传播延迟

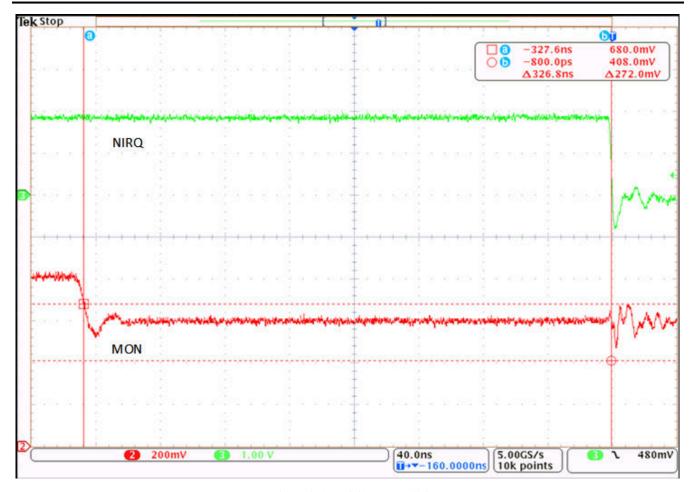


图 9-9. 欠压故障导致的 NIRQ 传播延迟

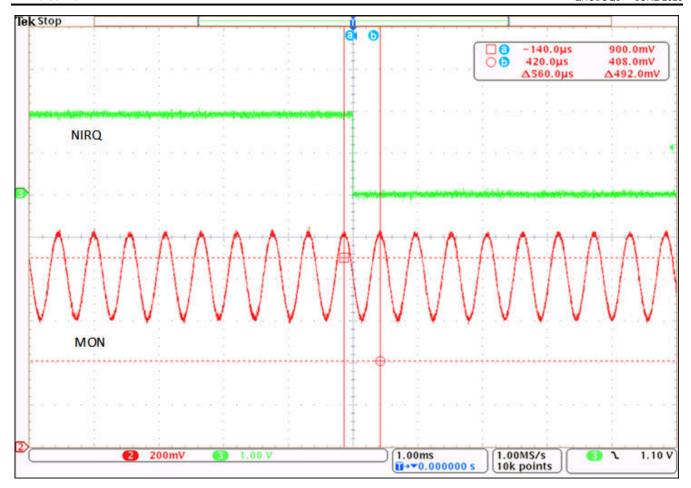


图 9-10. 1kHz 低通滤波器设置。使用具有 0.8V 直流分量的 1.8kHz 信号和 200mVp-p 交流信号时触发 NIRQ。 OV 和 UV 阈值设置为 0.9V 和 0.7V。从 2kHz 开始降低频率,直到 NIRQ 引脚变为低电平。

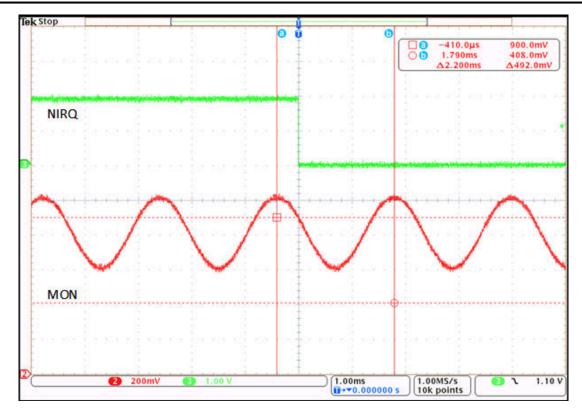


图 9-11. 250Hz 低通滤波器设置。使用具有 0.8V 直流分量的 455Hz 信号和 200mVp-p 交流信号时触发 NIRQ。 OV 和 UV 阈值设置为 0.9V 和 0.7V。从 500Hz 开始降低频率,直到 NIRQ 引脚变为低电平。

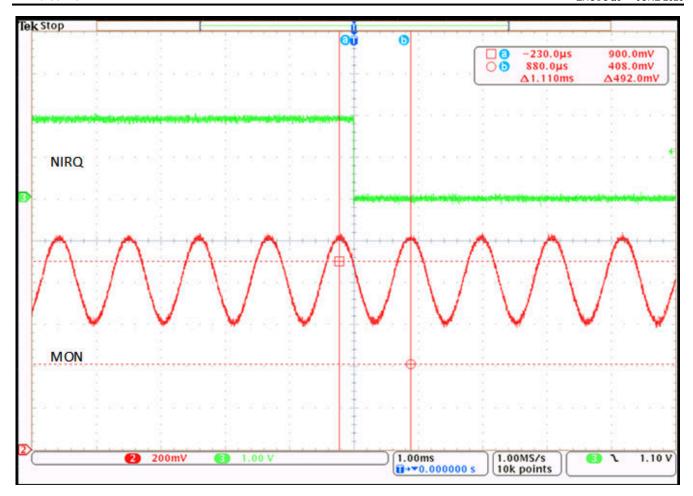


图 9-12. 500Hz 低通滤波器设置。使用具有 0.8V 直流分量的 0.9kHz 信号和 200mVp-p 交流信号时触发 NIRQ。 OV 和 UV 阈值设置为 0.9V 和 0.7V。从 1kHz 开始降低频率,直到 NIRQ 引脚变为低电平。

10 电源相关建议

10.1 电源指南

该器件可由电压范围介于 2.5V 至 5.5V 之间的输入电源供电。该器件在 VDD 引脚上具有 6V 的绝对最大额定值。 良好的模拟实践是根据输入电压电源噪声,在 VDD 引脚和 GND 引脚之间放置一个 0.1μF 至 1μF 的电容器。如 果为 VDD 供电的电压电源易受任何超过最大规格的大电压瞬变的影响,则必须采取额外的预防措施。有关详情, 请参阅 SNVA849。

Product Folder Links: TPS389006

11 布局

11.1 布局指南

- 外部元件应尽量靠近器件放置。该配置可防止发生寄生误差。
- 避免对 VDD 电源节点使用长布线。VDD 电容器以及从电源到电容器的寄生电感可以形成 LC 电路,并产生峰值电压高于最大 VDD 电压的振铃。
- 避免使用较长的布线将电压输入到 MON 引脚。长布线会增加寄生电感并导致监控和诊断不准确。
- 如果 MON1 和/或 MON2 需要差分电压检测,则将 RS 1/2 引脚连接到测量点
- 模拟布线敏感,不能与数字布线平行。尽可能避免数字布线与模拟布线交叉,仅在绝对必要时可垂直交叉布线。

11.2 布局示例

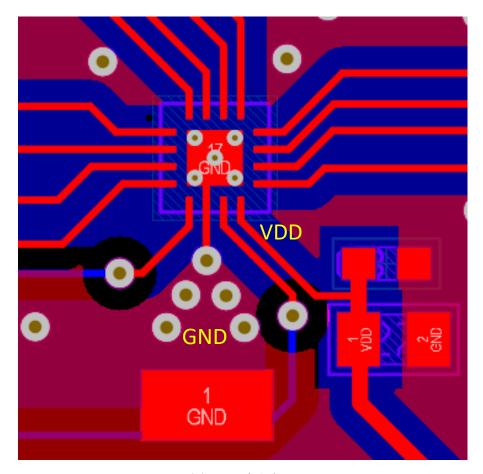


图 11-1. 建议布局

English Data Sheet: SNVSC50

12 器件和文档支持

12.1 器件命名规则

表 12-1 和表 12-2 显示了如何根据器件型号来解码器件的功能。

表 12-1. 器件阈值

订购代码	阈值	VMON1 (V)	VMON2 (V)	VMON3 (V)	VMON4 (V)	VMON5 (V)	VMON6 (V)
TPS389006ADJRTER	UV_HF/OV_HF	0.47/0.53	0.47/0.53	0.66/0.74	0.66/0.74	0.66/0.74	0.66/0.74
	UV_LF/OV_LF	0.5/0.7	0.5/0.7	0.5/0.7	0.5/0.7	0.5/0.7	0.5/0.7
TPS389006007RTER	UV_HF/OV_HF	1.4/2.1	1.4/2.1	1.4/2.1	1.4/2.1	1.4/2.1	1.4/2.1
	UV_LF/OV_LF	1.4/2.1	1.4/2.1	1.4/2.1	1.4/2.1	1.4/2.1	1.4/2.1

表 12-2. 器件配置表

订购代码	功能	调节	OV/UV 去抖	LF 截止 频率	I ² C 地址	BIST	SEQ 超时	PEC ⁽¹⁾	I ² C 上拉电压 (V)	ACT/SLEEP
TPS389006ADJRTER	监控 LF/HF	1/1/1/1/1/1	102.4 µ s	1kHz	电阻器 Strap 配置	POR 时	25ms	禁用	3.3	电平
TPS389006007RTER	监控 LF/HF	4/4/4/4/4	25.6 µ s	1kH	电阻器 Strap 配置	POR 时	100ms	禁用	3.3	电平

(1) 对于启用了 PEC 的器件:

- a. PEC 计算基于初始化为 0x00。
- b. 如果出现 PEC 违规,则需要在 NIRQ 被置为有效之前进行下一个 I²C 事务。
- c. 如果给出了不正确的 PEC, 它将使 NIRQ 有效。
- d. 如果成功写入正确的 PEC 字节后有额外的字节,则 NIRQ 将被置为有效,写入将失败。

104 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated

Product Folder Links: TPS389006

12.2 文档支持

12.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.4 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.5 商标

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.6 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.7 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

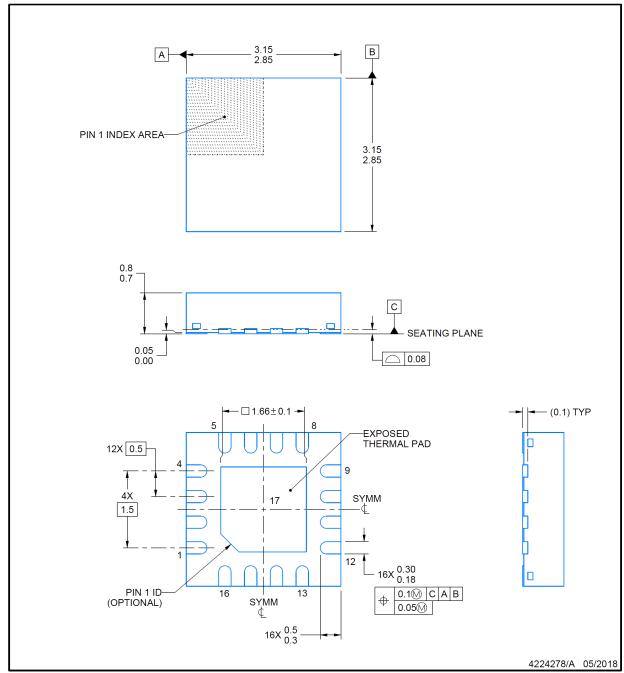
13 机械、封装和可订购信息

下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

105


RTE0016J

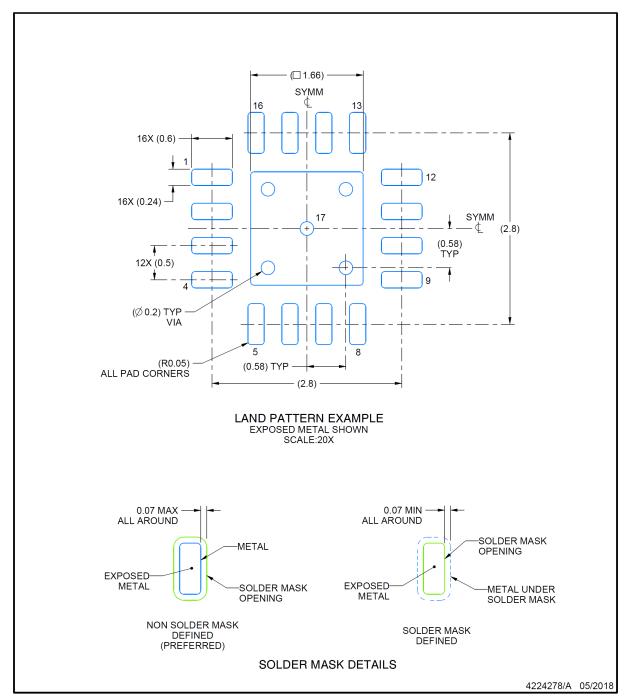
PACKAGE OUTLINE

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



EXAMPLE BOARD LAYOUT

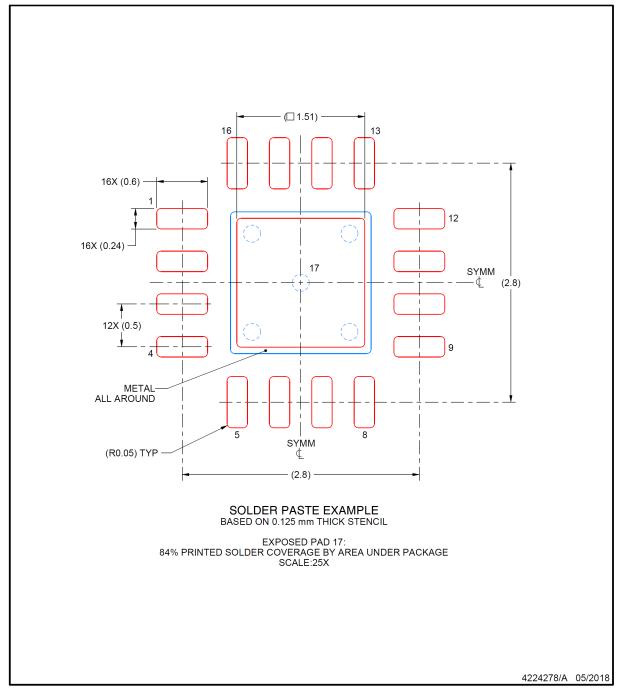
RTE0016J

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

RTE0016J

WQFN - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate

www.ti.com 9-Nov-2023

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS389006007RTER	ACTIVE	WQFN	RTE	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	6007R	Samples
TPS389006ADJRTER	ACTIVE	WQFN	RTE	16	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	06ADJ	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

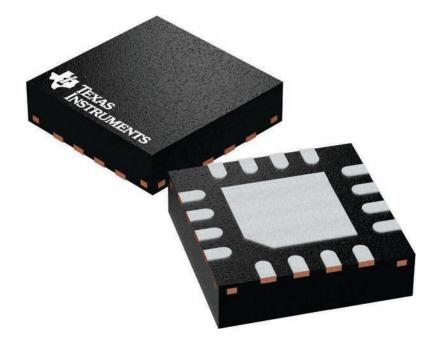
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

www.ti.com 9-Nov-2023

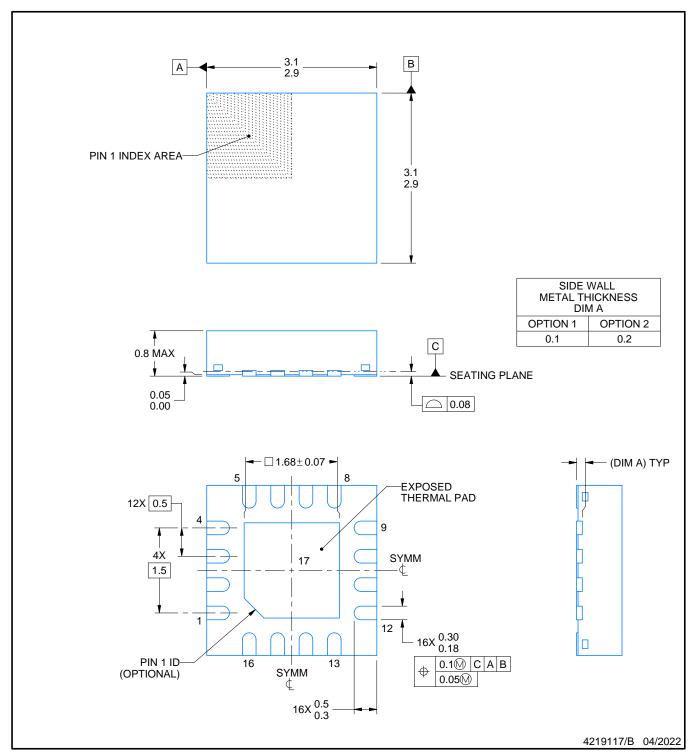
OTHER QUALIFIED VERSIONS OF TPS389006:

Automotive: TPS389006-Q1


NOTE: Qualified Version Definitions:

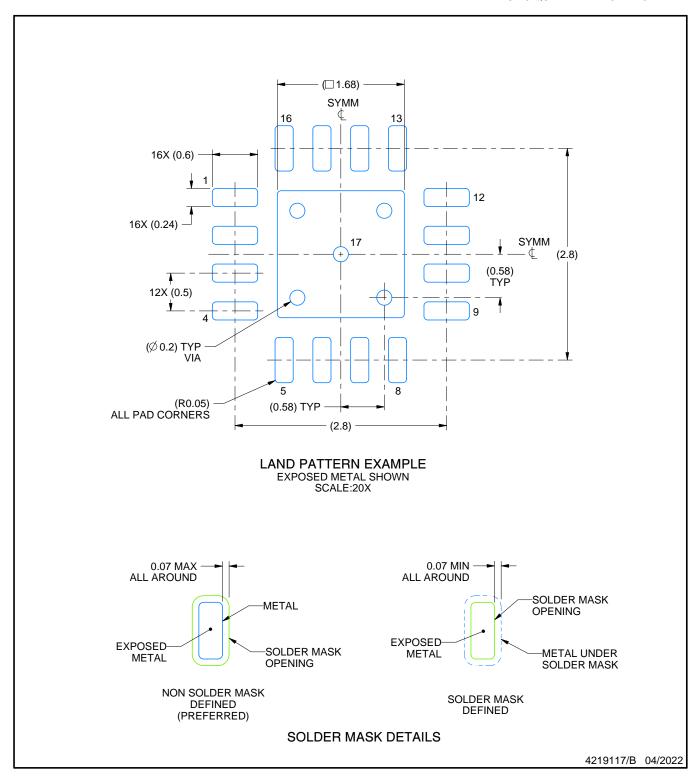
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

3 x 3, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

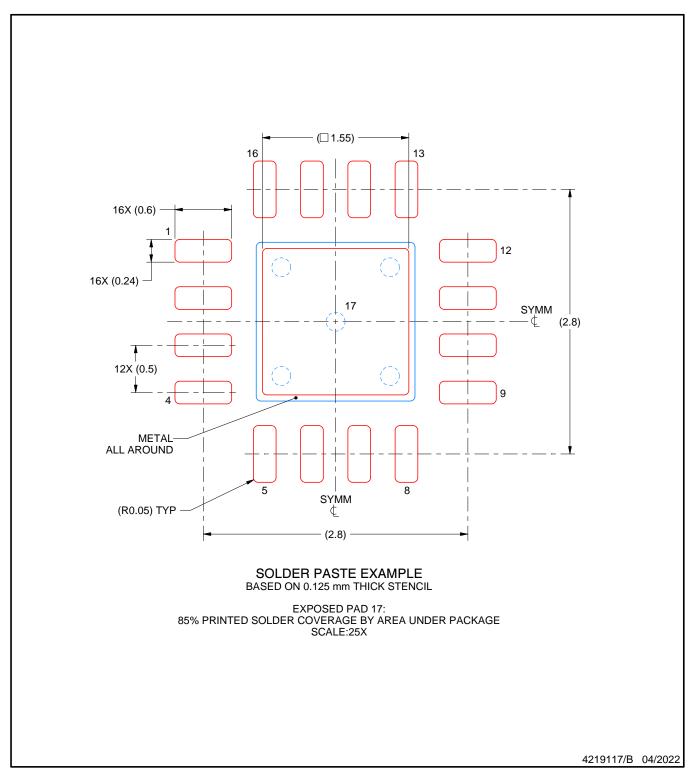
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司