

Technical documentation

Support & training

TPS25762-Q1

ZHCSP88A – DECEMBER 2022 – REVISED SEPTEMBER 2023

TPS25762-Q1 具有降压/升压稳压器的汽车类 USB Type-C[®] 电力输送控制器

1 特性

TEXAS

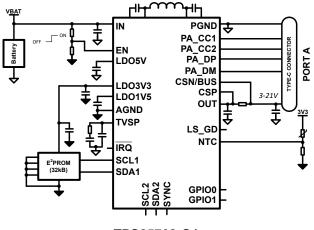
INSTRUMENTS

- 具有符合 AEC-Q100 标准的下列特性:
 - 器件温度等级 1 : -40℃ 至 +125℃ 环境工作温 度范围
 - 器件 HBM ESD 分类等级 2
 - 器件 CDM ESD 分类等级 C2B
 - 增强型连接器引脚 ESD 保护功能
- 具有可编程电源 (PPS) 支持的 USB 电力输送 (PD) 控制器
 - 宽 V_{IN}: 5.5V 至 18V(最大 40V)
 - 集成降压/升压 4 个电源开关,支持高达 65W 的
 USB PD 输出功率
 - V_{BUS} 输出:3V 至 21V,步长为 ±20mV
 - ─ I_{BUS} 输出:0A 至 3A,电流限值步长为 ±50mA
 - V_{BUS} 短接 V_{BAT} 和接地保护
 - V_{BUS} 电缆压降补偿
 - MFi 过流保护
 - 开关频率:300kHz、400kHz、450kHz
 - 具有抖动的直流/直流同步输入/输出
- USB 端口配置选项
 - 1 USB-PD 端口 (TPS25762-Q1)
 - 2 USB-PD 端口 (TPS25772-Q1)
- 符合 USB 要求
 - USB Type-C[®] 电力输送 3.1 版
 - TPS25762-Q1:通过 USB-IF PPS 认证, TID:9509
 - TPS25772-Q1:通过 USB-IF PPS 认证, TID:9161
 - CC 逻辑、V_{CONN} 拉电流和放电电流
 - USB 电缆极性检测
 - 电池充电规范 1.2 版
 - DCP:专用充电端口
- 传统快速充电
 - 2.7V 分压器 3 模式
 - 1.2V 分压器模式
 - 高压 DCP 协议
- 微控制器内核允许
 - 固件更新
 - 根据电源电压和温度提供电源管理
- 短接 V_{BUS} 和 V_{BAT} 保护
 - V_{BUS}
 - Px_DP和Px_DM
 - Px CC1 和 Px CC2
- 具有可湿性侧面的 HotRod[™] QFN 封装

2 应用

- 汽车类 USB 充电
- 汽车媒体中心
- 汽车音响主机
- 汽车后座娱乐系统

3 说明


TPS25762-Q1 是一款完全集成的 USB Type-C® 电力 输送 (PD) 解决方案,具有集成的降压/升压转换器,适 用于汽车单 USB 端口应用。功能包括:带 4 个电源 开关的集成式降压/升压转换器;一个 ARM[®] Cortex[®]-M0;带 Type-C 电缆插拔和方向检测的 USB 端口控制 器;USB 电池充电规范版本 1.2 (BC1.2) 检测;USB 端点 PHY;器件电源管理和监控电路;连接器引脚过 压和短路保护。

一个智能的系统策略管理器有效地增加了传输的 USB 电力,同时保护系统免受汽车电池瞬态和过热情况的影 响。

器件配置设置通过一个直观的图形用户界面 (GUI) 进行选择。

器件信息

器件型号	封装	封装尺寸			
TPS25762-Q1	RQL (QFN-29)	6.00mm × 5.00mm			

TPS25762-Q1

Table of Contents

1 特性	1
2 应用	1
3 说明	
4 Revision History	2
5 Device Comparison Table	3
6 Pin Configuration and Functions	4
7 Specifications	
7.1 Absolute Maximum Ratings	6
7.2 ESD Ratings	
7.3 Recommended Operating Conditions	7
7.4 Recommended Components	<mark>8</mark>
7.5 Thermal Information	9
7.6 Buck-Boost Regulator	9
7.7 CC Cable Detection Parameters	13
7.8 CC VCONN Parameters	
7.9 CC PHY Parameters	14
7.10 Thermal Shutdown Characteristics	15
7.11 Oscillator Characteristics	15
7.12 ADC Characteristics	16
7.13 TVS Parameters	16
7.14 Input/Output (I/O) Characteristics	17
7.15 BC1.2 Characteristics	
7.16 I2C Requirements and Characteristics	18

7.17 Typical Characteristics	<mark>21</mark>
8 Parameter Measurement Information	<mark>29</mark>
9 Detailed Description	<mark>31</mark>
9.1 Overview	<mark>31</mark>
9.2 Functional Block Diagram	<mark>32</mark>
9.3 Feature Description	32
9.4 Device Functional Modes	64
10 Application and Implementation	65
10.1 Application Information	65
10.2 Typical Application	65
11 Power Supply Recommendations	80
12 Layout	<mark>81</mark>
12.1 Layout Guidelines	81
12.2 Layout Example	82
13 Device and Documentation Support	<mark>83</mark>
13.1 Documentation Support	83
13.2 接收文档更新通知	<mark>83</mark>
13.3 支持资源	<mark>83</mark>
13.4 Trademarks	<mark>83</mark>
13.5 静电放电警告	
13.6 术语表	83
14 Mechanical, Packaging, and Orderable	
Information	84

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

CI	hanges from Revision * (December 2022) to Revision A (September 2023)	Page
•	添加了 TPS25762-Q1 和 TPS25772-Q1 USB-IF 认证 TID	1
•	添加了可湿侧面封装信息	1
	Added TPS25762CAQRQLRQ1, TPS25772CAQRQLRQ1, TPS25762CQRQLRQ1, TPS25772CQRQL	
	comparison in Device Comparison Table	3
•	Added TPS25762CAQRQLRQ1 and TPS25762CAQRQLRQ1 R _{TVSP} configuration settings	35
•	Added R _{TVSP} Circuit Configuration for applications requiring a configuration other than TVSP Index 0 (R	RTVSP
	open)	35

5 Device Comparison Table

PART NUMBER	Orderable Device	Port A	Port B	Port A Output Power			Configurable Boot Mode ⁽²⁾
TPS25762-Q1	TPS25762CQRQLRQ1	USB-PD		n/a	VIN-dependent ⁽¹⁾	Yes	
1P325/62-Q1	TPS25762CAQRQLRQ1			65 W	11/a	Yes	No
TPS25772-Q1	TPS25772CQRQLRQ1	030-FD			65 W	VIN-dependent ⁽¹⁾	Yes
	TPS25772CAQRQLRQ1		USB-PD		05 W	Yes	No

1. Assured device boot up during astable VIN (e.g. cold crank) conditions when VIN oscillation minimum voltage is ≧7.6V until boot is completed. Refer to application brief TPS257x2-Q1 Startup with an Astable Supply Voltage.

2. Refer to **†** 9.3.2.

6 Pin Configuration and Functions

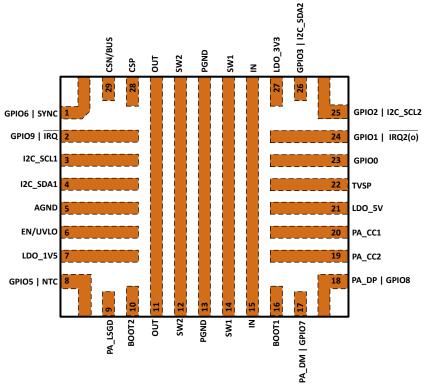


图 6-1. RQL Package 29-Pin (VQFN) Top View

表 6-1. Pin Descriptions

PIN		DESCRIPTION		
NAME	NO.	DESCRIPTION		
EN/UVLO	6	Enable pin. For EN/UVLO < 0.3 V, the TPS25762-Q1 is in a low current shutdown mode. For EN/UVLO > 1.3 V, the full functionality is enabled, provided LDO_5V exceeds the LDO_5V UVLO threshold.		
IN	15	The input supply pin to the IC. Connect $V_{\rm IN}$ to a supply voltage between 5.5 V and 18 V (40-V ABS MAX transient).		
PGND	13	Power ground of the IC. The high current ground connection to the low-side gate drivers.		
SW1	14	The buck side switching node.		
SW2	12	The boost side switching node.		
BOOT1	16	An external capacitor is required between the BOOT1 and the SW1 pins to provide bias to the high-side MOSFET gate drivers.		
BOOT2	10	An external capacitor is required between the BOOT2 and the SW2 pins to provide bias to the high-side MOSFET gate drivers.		
AGND	5	Analog ground of the IC.		
OUT	11	Output of the buck-boost regulator. Connect to bulk capacitance.		
CSP	28	Positive input of the current sense amplifier.		
CSN/BUS	29	Negative input of the current sense amplifier. This is the PA_VBUS supply.		
LDO_5V	21	Output of internal 5 V LDO for buck-boost low-side FET drivers, and Px_VCONN supply. Connect bypass capacitor to PGND. May be overdriven from external 5-V supply.		
LDO_3V3	27	Output of internal 3.3-V LDO for analog circuitry and GPIO drivers. Connect bypass capacitor to AGND.		
LDO_1V5	7	Output of internal 1.5-V LDO for digital circuitry. Connect bypass capacitor to AGND.		
I2C_SCL1	3	Controller I2C Clock Input/Output.		
I2C_SDA1	4	Controller I2C Data Input/Output.		
GPIO2 (I2C_SCL2)	25	Multifunction pin. GPIO; or target I2C Clock Input.		
GPIO3 (I2C_SDA2)	26	Multifunction pin. GPIO; or target I2C Data Input.		
IRQ (GPIO9)	2	Multifunction pin. Interrupt I/O and fault flag for I2C1 or I2C2; or GPIO depending upon firmware configuration. Reports fault conditions set by application configuration firmware.		
PA_CC1	20	Analog input/output. Port A Type-C current advertisement, VCONN, and USB PD modem. Connect to Port A Type-C connector CC1 pin.		
PA_CC2	19	Analog input/output. Port A Type-C current advertisement, VCONN, and USB PD modem. Connect to Port A Type-C connector CC2 pin.		
PA_DP (GPIO8)	18	Multifunction pin. BC1.2 USB 2.0 D+ data line input/output. Connect to Port A Type-C USB data line DP connector pins. May also be used as GPIO depending upon firmware configuration.		
PA_DM (GPIO7)	17	Multifunction pin. BC1.2 USB 2.0 D- data line input/output. Connect to Port A Type-C USB data line DM connector pins. May also be used as GPIO depending upon firmware configuration.		
GPIO0	23	GPIO		
GPIO1 or IRQ2(o)	24	Multifunction pin. GPIO or Interrupt I/O depending upon firmware configuration.		
GPIO5 (NTC)	8	Multifunction pin. GPIO; thermistor input (can use either negative temperature coefficient resistor or positive temperature coefficient resistor).		
GPIO6 (SYNC)	1	Multifunction pin. GPIO; SYNC(o) - clock out to synchronize slave DC/DC regulators to internal DC/DC switching frequency; SYNC(i) - clock input to synchronize internal DC/DC to an external clock.		
PA_LSGD	9	Charge pump output for external NFET for V _{BUS} bulk capacitance blocking.		
TVSP	22	Transient voltage protection and firmware setting pin. See $\underline{\mathcal{F}}$ 9-3 for boot configuration. See $\underline{\mathcal{F}}$ 9-2 for R-C network component values.		

7 Specifications

7.1 Absolute Maximum Ratings

Over the recommended operating junction temperature range of -40°C to 150°C and AGND = PGND (unless otherwise noted)⁽¹⁾ (2)

		MIN	MAX	UNIT
Input voltage range	IN ^{(3) (4)} to PGND	-0.3	40	V
Input voltage range	IN with respect to SW1	-0.3	25	V
Input voltage range	EN/UVLO ⁽⁵⁾ to AGND	-0.3	internally limited	V
Input voltage range	BOOT1 with respect to SW1	-0.3	6	V
Input voltage range	BOOT2 with respect to SW2 ⁽⁶⁾	-0.3	6	V
Input voltage range	SW1 ⁽⁷⁾ to PGND	-0.3	24	V
Input voltage range	SW2 ⁽⁸⁾ to PGND	-0.3	24	V
Input voltage range	SW2 to OUT		17.5	V
Input voltage range	CSP to PGND	-0.3	24	V
nput voltage range	CSN/BUS to PGND	-0.3	24	V
nput voltage range	CSP to CSN	-0.3	0.3	V
nput voltage range	AGND to PGND	-0.3	0.3	V
Output voltage range	OUT to PGND	-0.3	24	V
Output voltage range	LDO_5V to PGND	-0.3	6	V
Output voltage range	LDO_3V3 to AGND	-0.3	6	V
Output voltage range	LDO_1V5 to AGND	-0.3	2	V
/O voltage range	TVSP to PGND	-0.3	30	V
/O voltage range	I2C_SCL1 to AGND	-0.3	6	V
/O voltage range	I2C_SDA1 to AGND	-0.3	6	V
/O voltage range	GPIO9, IRQ1 to AGND	-0.3	6	V
/O voltage range	PA_CC1 to AGND	-0.3	30	V
/O voltage range	PA_CC2 to AGND	-0.3	30	V
/O voltage range	PA_DM to AGND	-0.3	30	V
/O voltage range	GPIO7 to AGND	-0.3	6	V
/O voltage range	PA_DP to AGND	-0.3	30	V
/O voltage range	GPIO8 to AGND	-0.3	6	V
/O voltage range	GPIO0 to AGND	-0.3	6	V
/O voltage range	GPIO1, IRQ2 to AGND	-0.3	6	V
/O voltage range	GPIO2, I2C_SCL2 to AGND	-0.3	6	V
/O voltage range	GPIO3, I2C_SDA2 to AGND	-0.3	6	V
/O voltage range	PA_LSGD to PGND	-0.3	30	V
/O voltage range	GPIO5, NTC to AGND	-0.3	6	V
/O voltage range	GPIO6, SYNC to AGND	-0.3	6	V
/O voltage range	PA_LSGD to CSN/BUS	-0.3	10	V

7.1 Absolute Maximum Ratings (continued)

Over the recommended operating junction temperature range of -40°C to 150° C and AGND = PGND (unless otherwise noted)⁽¹⁾ (2)

		MIN	MAX	UNIT
Input current	EN/UVLO	0	2	mA
Output current	Positive source current on PA_CC1, PA_CC2	inte	ernally limited	А
Output current	GPIO 2, 3, 5, 6, 7, 8		0.0010	А
Output current	GPIO 0, 1, 4, 9	0.005		А
Output current	positive sink current for I2C_SDA1, I2C_SCL1, I2C_SDA2, I2C2_SCL2	internally limited		А
Output current	positive source current for LDO_5V, LDO_3V3, LDO_1V5	internally limited		А
T _A Operating ambient temperature		-40	125	°C
T _J Operating junction temperature -40		150	°C	
T _{STG} Storage temperature		-55	150	°C

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values are with respect to PGND or AGND. Connect the PGND pin directly to the Ground plane of the board. The PGND and AGND traces can be connected near the AGND pin.
- (3) When the buck-boost is operating and V_{IN} exceeds 18 V, the positive slew rate dV_{IN}/dt must not exceed 200V/ms.

(4) When applying V_{IN}, the time from V_{IN} exceeding 5 V to V_{IN} exceeding 25 V must not be less than 2 μs. This is normally achieved by properly sizing the input EMI filter.

- (5) EN/UVLO pin is internally clamped to 10V. Ensure input current rating is not exceeded by connecting current limit resistor.
- (6) BOOT2 with respect to SW2 during OUT overvoltage conditions can be -15 V due to internal clamp.
- (7) SW1 can undershoot PGND by -1 V during negative switching transients as up to 10A (peak) may flow through the body diode. Typical duration ~20 ns. SW1 can overshoot OUT by 1 V during positive transients. Typical duration ~ 20 ns.
- (8) SW2 can undershoot PGND by -2 V during switching transients as up to 10A (peak) may flow through the body diode. Typical duration ~20 ns. SW2 can overshoot OUT by 1 V during positive transients. Typical duration ~20 ns.

7.2 ESD Ratings

				VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per AEC Q100-002		±2000 ⁽¹⁾	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per AEC Q100-011		±750 ⁽²⁾	V
V _(ESD)	Electrostatic discharge	IEC61000-4-2 Contact discharge 150 pF, 330 Ω.	OUT, CSP, CSN/BUS, PA_CC1, PA_CC2, PA_DP, PA_DM	±2000 ⁽⁴⁾	V
V _(ESD)	Electrostatic discharge	IEC61000-4-2 Contact discharge 150 pF, 330 Ω.	OUT, CSP, CSN/BUS, PA_CC1, PA_CC2, PA_DP, PA_DM	±2000 ⁽⁴⁾	V
V _(ESD)	Electrostatic discharge	ISO 10605 Contact discharge 330 pF, 330 Ω .	OUT, CSP, CSN/BUS, PA_CC1, PA_CC2, PA_DP, PA_DM	±2000 ⁽³⁾	V
V _(ESD)	Electrostatic discharge	ISO 10605 Air-gap discharge 330 pF, 330 Ω .	OUT, CSP, CSN/BUS, PA_CC1, PA_CC2, PA_DP, PA_DM	±2000 ⁽³⁾	V

(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.

(2) The passing level per AEC-Q100 Classification C2b.

(3) Test conducted on Texas Instruments evaluation board.

7.3 Recommended Operating Conditions

Over the recommended operating junction temperature range of -40°C to 150°C (unless otherwise noted)

			MIN	MAX	UNIT
VI	Input voltage range (up to 65W output)	IN	6.8	18	V

7.3 Recommended Operating Conditions (continued)

Over the recommended operating junction temperature range of -40°C to 150°C (unless otherwise noted)

			MIN	MAX	UNIT
VI	Input voltage range (up to 30W output)	IN	5.5	18	V
VI	Input voltage range	EN/UVLO	0	7 (2)	V
lı	Input current	EN/UVLO	0	1	mA
VI	Input voltage range	LDO_5V when overdriven by external supply	4.75	5.5	V
VI	Input voltage range	CSP, CSN/BUS	0	22	V
VI	Input voltage range	PB_VBUS (GPIO4 when configured as PB_VBUS)	3	22	V
Vo	Output voltage range	OUT	0	21	V
V _{IO}	I/O voltage range	PA_CC1, PA_CC2, PB_CC1, PB_CC2	0	5.5	V
V _{IO}	I/O voltage range	PA_DP, PA_DM, PB_DP, PB_DM	0	3.6	V
V _{IO}	I/O voltage range	I2C_SDAn, I2C_SCLn, IRQn (n=1 or 2)	0	5.5	V
V _{IO}	I/O voltage range	GPIOn (n = 0 - 9)	0	3.6	V
V _{IO}	I/O voltage range	NTC monitor (GPIO5), SYNC (GPIO6)	0	3.6	V
I _O	Output current ⁽¹⁾	IOUT		5	А
Io	Output current	PA_CC1, PA_CC2, PB_CC1, PB_CC2		225	mA
I _O	Output current (from LDO_3V3)	GPIOn (n = 0 - 9)		10	mA
fsw	Buck-boost converter switching frequency driven from SYNC pin		250	500	kHz
T _A	Ambient operating temperature		-40	125	°C
TJ	Operating junction temperature		-40	150	°C

 Average LC filtered output current from buck-boost power stage. Operation with I_{OUT} > 3A with V_{OUT} > 10 V may result in thermal shutdown.

(2) EN/UVLO MAX specification specification applies when current into pin is not externally limited.

7.4 Recommended Components

over operating free-air temperature range (unless otherwise noted)

PARAMETER (1)		VOLTAGE RATING	MIN	TYP	MAX	UNIT
C _{IN}	Capacitance on VIN	40 V	22	47		μF
C _{LDO_5V}	Capacitance on LDO_5V (supplied internally)	10 V	4.7		10	μF
C _{LDO_5V}	Capacitance on LDO_5V (supplied externally)	10 V	10	47	100	μF
C _{LDO_3V3}	Capacitance on LDO_3V3	6.3 V	4.7		10	μF
C _{LDO_1V5}	Capacitance on LDO_1V5	6.3 V	4.7		10	μF
C _{Px_CCy}	Capacitance on Px_CCy pins ⁽²⁾	6.3 V	200	330	480	pF
C _{BOOT1} , C _{BOOT2}	Boot charge capacitance	10 V	0.08	0.1	0.3	μF
R _{Snubber_SW1}	RC snubber resistor on SW1	35 V, 0.25 W		1.1		Ω
C _{Snubber_SW1}	RC snubber capacitor on SW1	35 V		1		nF
R _{Snubber_SW2}	RC snubber resistor on SW2	35 V, 0.25 W		1.1		Ω
C _{Snubber_SW2}	RC snubber capacitor on SW2	35 V		3.3		nF
C _{OUT}	Capacitance on OUT ⁽⁴⁾	35 V	30	33	40	μF

over operating free-air temperature range (unless otherwise noted)

PA	RAMETER ⁽¹⁾	VOLTAGE RATING	MIN	TYP	MAX	UNIT
C _{BUS}	Capacitance on PA_VBUS	35 V	100	120	150	μF
L	Inductor ⁽⁴⁾		3.3	4.7	5.6	μH
NTC	Thermistor		47		100	kΩ
R _{EN/UVLO}	Enable/UVLO pull up resistance		47			kΩ
TVPS pin components (C _{TVSP} (Damper _{R + C}))	C _{TVSP} Capacitance on TVSP pin	40 V	0.08	0.1	0.12	μF
TVPS pin components (C _{TVSP} (Damper _{R + C}))	Damper resistor R of R + C network in Parallel with C_{TVSP}	0.25W	8	10	12	Ω
TVPS pin components (C _{TVSP} (Damper _{R + C}))	Damper capacitor C of R + C network in Parallel with C _{TVSP}	40 V	0.376	0.47	0.564	μF
ESR _{CTVSP}	TVSP Capacitor ESR (eq series resistance)			10		mΩ
ESL _{CTVSP}	TVSP Capacitor ESL (eq series inductance)			1		nH

(1) Capacitance values do not include any derating factors. For example, if 5.0 μF is required and the external capacitor value reduces by 50% at the required operating voltage, then the required external capacitor value would be 10 μF.

(2) This includes all capacitance to the Type-C receptacle.

(3) Maximum capacitance allowed on TVSP pin to ensure proper decode of device configuration during boot.

(4) See applications section for recommended L and C_{OUT} combinations.

7.5 Thermal Information

		TPS25762-Q1	
	THERMAL METRIC ⁽¹⁾	Hot Rod	UNIT
		29 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	33.3	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	13.1	
R _{0JB}	Junction-to-board thermal resistance	7.3	°C/W
ΨJT	Junction-to-top characterization parameter	0.3	
Ψјв	Junction-to-board characterization parameter	7.2	

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.6 Buck-Boost Regulator

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over the -40°C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, V_{EN/UVLO} = 2V unless otherwise stated. ⁽¹⁾

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
SUPPLY VOLTA	GE (VIN)					
l _Q	V _{IN} shutdown current	V _{EN/UVLO} = 0 V			130	μA
I _Q	V _{IN} operating current	$V_{EN/UVLO} = 2V, V_{OUT} = 5 V, I_{OUT} = 0$		8		mA
Ι _Q	V _{IN} operating current	V _{EN/UVLO} = 1V, V _{OUT} = 0 V, I _{OUT} = 0 A			4.5	mA
I _Q	V _{IN} operating current	V _{EN/UVLO} = 2V, V _{OUT} = 0 V, I _{OUT} = 0 A			8	mA
V _{IN(OVP_R)}	V _{IN} rising overvoltage threshold	V _{IN} rising.	18.4	19.2	20	V
V _{IN(OVP_F)}	V _{IN} falling overvoltage threshold	V _{IN} falling.	18.0	18.8	19.6	V
	hysteresis			0.4		V
V _{IN(UVLO_R)}	V _{IN} undervoltage lockout rising	V _{IN} rising.	5.14	5.30	5.46	V
V _{IN(UVLO_F)}	V _{IN} undervoltage lockout falling	V _{IN} falling.	5.04	5.20	5.36	V
	hysteresis			0.1		V

Copyright © 2023 Texas Instruments Incorporated

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over the -40° C to 150° C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, V_{EN/UVLO} = 2V unless otherwise stated. ⁽¹⁾

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
LDO_5V OUTPUT						
V _{LDO_5V}	LDO_5V Output Regulation voltage	$7V \le V_{IN} \le 18 V, 0 < I_{LDO_{5V}} < 125mA, V_{EN} = 2 V.$	4.5	4.63	4.75	V
V _{LDO_5V(UVLO_R)}	LDO_5V Undervoltage lockout rising		4.29	4.4	4.51	V
V _{LDO_5V(UVLO_F)}	LDO_5V Undervoltage lockout falling		4.09	4.2	4.31	V
	Undervoltage hysteresis			200		mV
V _{LDO_5V_DO}	drop out voltage	V _{IN} = 5.5 V; I _{LDO_5V} = 125mA	4.3			V
I _{LDO_5V(ILIMIT)}	LDO_5V current limit	$V_{LDO_V5V} = 0 \text{ to } 3.5 \text{ V},$ $R_{LDO_V5V_LOAD} = 1 \Omega$	125	200	400	mA
LDO_3V3 OUTPUT						
V _{LDO_3V3}	LDO_3V3 Output regulation voltage	$ \begin{array}{l} 7V \leq V_{IN} \leq 18 \ V, \ V_{EN} = 2 \ V, \\ V_{LDO_SV(UVLO)} < V_{LDO_5V} < 5.5 \ V, \ 0 \\ < I_{LDO_3V3} < 25 mA \end{array} $	3.4	3.5	3.6	V
V _{LDO_3V3} (UVLO_R)	LDO_3V3 Undervoltage lockout rising		3.2	3.3	3.4	V
V _{LDO_3V3} (UVLO_F)	LDO_3V3 Undervoltage lockout falling		3.05	3.15	3.25	V
	Undervoltage hysteresis			150		mV
V _{LDO_3V3_DO}	drop out voltage	VIN = 4.5 V, I _{LDO_3V3} = 30mA	3.3			V
ILDO_3V3(ILIMIT)	LDO_3V3 current limit	$V_{LDO_{3V3}} = 0$ to 2.5 V, $R_{LDO_{3V3}LOAD}$ = 1 Ω	35	50	80	mA
LDO_1V5 OUTPUT						
V _{LDO_1V5}	LDO_1V5 Output Regulation voltage	4.5 < V _{LDO_5V} < 5.5V, 0 < I _{LDO_1V5} < 10 mA	1.49	1.55	1.65	V
V _{LDO_1V5(UVLO_R)}	LDO_1V5 Undervoltage lockout rising		1.44	1.49	1.54	V
VLDO_1V5(UVLO_F)	LDO_1V5 Undervoltage lockout falling		1.37	1.42	1.47	V
	Undervoltage hysteresis			70		mV
ILDO_1V5(ILIMIT)	LDO_1V5 current limit	$V_{LDO_{1V5}} = 0$ to 1.2 V, $R_{LDO_{1V5}LOAD}$ = 1 Ω	15	20	28	mA
EN/UVLO						
V _{EN(LDO_V5V_R)}	EN input level required to turn on internal LDOs	EN/UVLO rising			1.05	V
V _{EN(LDO_V5V_F)}	EN input level required to turn off internal LDOs	EN/UVLO falling	0.3			V
V _{EN(OPER)}	EN input level required to start operation	EN/UVLO rising Precision EN	1.2	1.25	1.3	V
V _{EN(STBY)}	EN input level required to stop operation	EN/UVLO falling	1.1	1.15	1.2	V
V _{EN(HYS)}	Hysteresis			100		mV
V _{EN(CLAMP)}	EN input clamp voltage	$V_{EN/UVLO} > V_{EN(CLAMP)}$, 10 µA < I _{EN/} _{UVLO} < 1 mA	6	9	12	V
I _{EN(LEAK)}	Leakage current into EN pin	0 V < V _{EN} < 6 V			1	μA
OUTPUT VOLTAGE					,	
V _{CSN/BUS(3V)}	V _{CNS/BUS} regulation accuracy at 3V	$0 \le I_{OUT} \le 3A$	2.9	3	3.1	V
V _{CSN/BUS(5V)}	V _{CNS/BUS} regulation accuracy at 5V	0 ≤ I _{OUT} ≤ 3A	4.85	5	5.15	V
V _{CSN/BUS(21V)}	V _{CNS/BUS} regulation accuracy at 21V	0 ≤ I _{OUT} ≤ 3A	20.48	21	21.53	V
V _{CSN/BUS_STP}	Output voltage step size (12-bit DAC)			10		mV
VDAC Resolution	Resolution of V _{BUS} DAC			12		Bits
I _{DISCHG}	CSN/BUS discharge current when transitioning to VSafe0V	$V_{CSP} = V_{CSN/BUS}$. $V_{CSN/BUS} = 3V$. Measure current into BUS.	40			mA

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over the -40°C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, V_{EN/UVLO} = 2V unless otherwise stated. ⁽¹⁾

	therwise stated.V _{IN} = 13.5 V, V _{EI} PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
t _{DISCHG}	CSN/BUS discharge time when transitioning to VSafe5V	V _{BUS} = 21 V (max), CBULK = 220 μF, time to discharge BUS to < 5.5 V (per USB PD specification)			275	ms
t _{DISCHG}	CSN/BUS discharge time when transitioning to VSafe0V	$\label{eq:VBUS} \begin{array}{l} V_{BUS} = 21 \ V \ (max), \ CBULK = \\ 220 \ \mu\text{F}, \ time \ to \ discharge \ BUS \ to < \\ 0.8 \ V \ (per \ USB \ PD \ specification) \end{array}$			650	ms
R _{DISCHG}	Weak discharge resistance on BUS pin when not sourcing VBUS	EN = 2V; measure BUS to PGND resistance.	60		135	kΩ
R _{BUS-GND(PWR)}	BUS to GND resistance, R _{DISCH} disabled, not sourcing VBUS	EN = 2V measure BUS to PGND resistance.	120		500	kΩ
R _{BUS-GND} (UNPWR)	BUS to GND resistance, unpowered	VIN = EN = 0V measure BUS to PGND resistance.		2		kΩ
CABLE VOLTAGE	DROP COMPENSATION					
V _{OUT_CDC}	ΔV_{OUT} increase vs I _{OUT}	Gain setting = 0.1V/A: V_{CSP} - $V_{CSN/BUS}$ = 50 mV	465	500	535	mV
V _{OUT_CDC}	ΔV_{OUT} increase vs I _{OUT}	Gain setting = 0.1V/A: V_{CSP} - $V_{CSN/BUS}$ = 10 mV	85	100	115	mV
V _{OUT_CDC}	ΔV_{OUT} increase vs I _{OUT}	Gain stetting = 0.075V/A: V_{CSP} - $V_{CSN/BUS}$ = 50 mV	346	375	404	mV
V _{OUT_CDC}	ΔV_{OUT} increase vs I _{OUT}	Gain setting = 0.075V/A: V _{CSP} - V _{CSN/BUS} = 10 mV	61	75	89	mV
V _{OUT_CDC}	ΔV_{OUT} increase vs I _{OUT}	Gain setting = 0.05V/A: V _{CSP} - V _{CSN/BUS} = 50 mV	227	250	273	mV
V _{OUT_CDC}	ΔV_{OUT} increase vs I _{OUT}	Gain setting = 0.05V/A: V_{CSP} - $V_{CSN/BUS}$ = 10 mV	37	50	63	mV
V _{OUT_CDC}	ΔV_{OUT} increase vs I _{OUT}	Gain setting = 0.025V/A: V_{CSP} - $V_{CSN/BUS}$ = 50 mV	109	125	141	mV
V _{OUT_CDC}	ΔV_{OUT} increase vs I _{OUT}	Gain setting = 0.025V/A: V_{CSP} - $V_{CSN/BUS}$ = 10 mV	14	25	36	mV
V _{OUT_CDC}	ΔV_{OUT} increase vs I _{OUT}	Gain setting = 0V/A: 0 mV \leq V _{CSP} - V _{CSN/BUS} \leq 50 mV	-5		20	mV
BUCK-BOOST PE	AK CURRENT LIMITS					
I _{PEAK(BOOST)}	Boost peak current limit (in boost mode)		12.3	14.5	16.7	А
I _{PEAK(BOOST)}	Boost peak current limit (in boost mode)		10.8	12.8	14.7	А
I _{PEAK(BOOST)}	Boost peak current limit (in boost mode)		9.3	11.0	12.6	А
I _{PEAK(BOOST)}	Boost peak current limit (in boost mode)		7.9	9.3	10.6	А
I _{PEAK(BOOST)}	Boost peak current limit (in boost mode)		6.3	7.5	8.6	А
I _{PEAK(BOOST)}	Boost peak current limit (in boost mode)		4.8	5.7	6.5	А
PEAK(BUCK)	Buck peak current limit (in buck mode)		8.2	9.7	11.2	А
I _{PEAK(BUCK)}	Buck peak current limit (in buck mode)		9.0	10.6	12.1	А
I _{PEAK(BUCK)}	Buck peak current limit (in buck mode)		9.7	11.4	13.1	А
IPEAK(BUCK)	Buck peak current limit (in buck mode)		10.4	12.3	14.1	А
I _{PEAK(BUCK)}	Buck peak current limit (in buck mode)		5.3	6.2	7.2	А
I _{PEAK(BUCK)}	Buck peak current limit (in buck mode)		6	7.1	8.2	А
I _{PEAK(BUCK)}	Buck peak current limit (in buck mode)		6.8	8.0	9.1	А

TPS25762-Q1 ZHCSP88A – DECEMBER 2022 – REVISED SEPTEMBER 2023

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over the -40° C to 150° C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, V_{EN/UVLO} = 2V unless otherwise stated. ⁽¹⁾

	herwise stated.V _{IN} = 13.5 V, V _{EN} PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
IPEAK(BUCK)	Buck peak current limit (in buck mode)		7.5	8.8	10.1	A
NEG(BUCK)	Buck negative current limit (in buck mode)		-4.6	- 3.8	-3	А
OUT CURRENT DA	AC					
IDAC_Resolution				8		Bits
CURRENT LIMIT						
I _{LIMIT_LO}	Current limit accuracy	$1 \text{ A} \le I_{\text{OUT}} \le 3 \text{ A}, \text{ V}_{\text{CSN/BUS}} < 2.5 \text{ V}; \\ \text{R}_{\text{S}} = 10 \text{ m}\Omega.$	-250		250	mA
I _{LIMIT_LO}	Current limit accuracy < 1 A	1 A \leq I _{OUT} \leq 3 A, V _{CSN/BUS} \geq 2.5 V; R _S = 10 mΩ	-150		150	mA
I _{LIMIT_HI}	Current limit accuracy > 3 A	I_{OUT} > 3 A, $V_{CSN/BUS}$ < 2.5 V; R _S = 10 m Ω	-20		20	%
I _{LIMIT_HI}	Current limit accuracy > 3 A	$I_{OUT} > 3 \text{ A}, V_{CSN/BUS} \ge 2.5 \text{ V}; \text{ R}_{S} = 10 \text{ m}\Omega$	-5		5	%
I _{LIMIT_MIN}	Minimum programmable current limit		1			А
I _{CL_STEP}	Current limit step size	$1 \text{ A} \le I_{\text{OUT}} \le 5 \text{ A}; \text{ R}_{\text{S}} = 10 \text{ m}\Omega$		50		mA
FREQUENCY		· · · · ·				
f _{SW(1)}	Switching Frequency 1		285	300	315	kHz
f _{SW(2)}	Switching Frequency 2		380	400	420	kHz
f _{SW(3)}	Switching Frequency 3		428	450	473	kHz
FREQUENCY DITH	IER	1				
FS _{SS}	Positive frequency deviation during dither		8	10	12	%
	Negative frequency deviation during dither		-12	-10	-8	%
FS _{SS_MOD}	Modulation frequency of dither	DITHER_FREQ = 0	9	10	11	kHz
FS _{SS MOD}	Modulation frequency of dither	DITHER_FREQ = 1	22.5	25	27.5	kHz
OVERVOLTAGE P	ROTECTION				I	
V _{CSN/BUS_OVP_R}	Fixed output overvoltage threshold at CSN/BUS pin		22.0	23	24	V
V _{CSN/BUS_OVP_F}	Falling		20.5	21.5	22.5	V
	Hysteresis			1.5		V
POWER SWITCHE	S					
R _{DS(ON)}	M1	V _{IN} = 12V; (V _{BOOT1} - V _{SW1}) = 4.5V; I _{SW1} = -1 A		4.5		mΩ
R _{DS(ON)}	M2	V _{IN} = 12V; I _{SW1} = 1 A		20		mΩ
R _{DS(ON)}	M4	V _{IN} = 12V; I _{SW2} = 1 A		6		mΩ
R _{DS(ON)}	M3 + M5	$V_{IN} = V_{OUT} = 12V$: $(V_{BOOT2} - V_{SW2}) = 4.5V$, $I_{SW2} = -1$ A		18		mΩ
V _{UV_BOOT1_R}	BOOT1 to SW1 rising UVLO threshold		3.5	4	4.4	V
V _{UV_BOOT1_F}	BOOT1 to SW1 falling UVLO threshold		2.9	3.4	3.7	V
	BOOT1 to SW1 UVLO hysteresis			680		mV
V _{OV_BOOT1_R}	BOOT1 to SW1 rising OVP threshold		4.6	5.3	5.9	V
V _{OV_BOOT1_F}	BOOT1 to SW1 falling OVP threshold		4.3	5	5.6	V
	BOOT 1 OVP hysteresis		250	300	350	mV
V _{UV_BOOT2_R}	BOOT2 to SW2 rising UVLO threshold		3.5	4	4.4	V
V _{UV BOOT2 F}	BOOT2 to SW2 falling UVLO threshold		2.9	3.4	3.7	V

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over the -40°C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, V_{EN/UVLO} = 2V unless otherwise stated. ⁽¹⁾

ange aneee ea		0120				
	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
	BOOT2 to SW2 UVLO hysteresis			680		mV
V _{OV_BOOT2_R}	BOOT2 to SW2 rising OVP threshold		4.6	5.3	5.9	V
V _{OV_BOOT2_F}	BOOT2 to SW2 falling OVP threshold		4.3	5	5.6	V
	BOOT2 OVP hysteresis		250	300	350	mV
BUCK-BOOST CH	ARACTERISTICS		•			
t _{SS}	Soft-start time			6		ms

(1) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and applying statistical process control.

7.7 CC Cable Detection Parameters

Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the -40° C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN = 2 V, unless otherwise stated.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Type-C Source (R	p pull-up)					
V _{OC_3.3}	Unattached Px_CCy open circuit voltage while Rp enabled, no load	R _{CC} = 47 kΩ	1.85			V
V _{OC_5}	Attached Px_CCy open circuit voltage while Rp enabled, no load	R _{CC} = 47 kΩ	2.95			V
I _{Rev}	Unattached reverse current on Px_CCy	V_{CCy} = 5.5V, V_{CCx} = 0V, measure current into CCy			10	μA
I _{RpStd}	current source - Standard	$0 < V_{CCy} < 1.0$ V, measure I _{CCy}	64	80	96	μA
I _{Rp1.5}	current source - 1.5A	$0 < V_{CCy} < 1.5$ V, measure I _{CCy}	166	180	194	μA
I _{Rp3.0}	current source - 3.0A	$0 < V_{CCy} < 2.45$ V, measure I_{CCy}	304	330	356	μA
Type-C Sink (Rd p	oull-down)					
R _{SNK}	Rd pulldown resistance	$0V \le V_{Px_CCy} \le 2.1 V$, measure resistance on Px_CCy	4.6		5.6	kΩ
R _{VCONN_DIS}	VCONN discharge resistance	$0V \le V_{Px_CCy} \le 5.5 V$, measure resistance on Px_CCy	4.0		6.6	kΩ
Common (Source	and Sink)					
t _{cc}	deglitch time for comparators on Px_CCy, this applies for V _{SRC1} , V _{SRC2} , V _{SRC3} , V _{SNK1} , V _{SNK2} , V _{SNK3} , and V _{SNK4} .			2.56		ms

7.8 CC VCONN Parameters

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over the -40°C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN = 2 V unless otherwise stated.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{PP_CABLE}	Rdson of the VCONN path	$V_{LDO_{5V}} = 5V$, $I_L = 200$ mA, measure resistance from LDO_5V to Px_CCy			1.2	Ω
	short circuit current limit	setting 0, V_{LDO_5V} = 5V, R _L =10m Ω , measure I _{Px_CCy}	30	50	70	mA
LIMVC	short circuit current limit	setting 1, V_{LDO_5V} = 5V, R _L =10m Ω , measure I _{Px_CCy}	235	275	315	
I _{CCyLKG}	Leakage current into Px_Cy pins	VCONN disabled, $T_J \le$ 125 °C, $V_{Px_CCy} = 5.5 V$, measure I_{Px_CCy}	-1	0	10	μA

Copyright © 2023 Texas Instruments Incorporated

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over the -40° C to 150° C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN = 2 V unless otherwise stated.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{VC_OVP}	Over-voltage protection threshold for Px_CCy	$V_{LDO_{5V}}$ rising	5.6	5.9	6.2	V
V _{VC_RCP}	Reverse current protection threshold for Px_CCy, sourcing VCONN through CCx	V _{LDO_5V} = 5 V, V _{CCx} rising, setting 1.	230	310	390	mV
V _{VC_RCP}	Reverse current protection threshold for Px_CCy, sourcing VCONN through CCx	$V_{LDO_{5V}}$ = 5 V, V_{CCx} rising, setting 2.	60	155	250	mV
tpp_cable_fsd	Time to disable Px_Cy VCONN after V _{LDO_5V} > V _{VC_OVP} or V _{CCx} - V _{LDO_5V} > V _{VC_RCP}	C _L =0		1.5		μs
t _{PP_CABLE_off}	from disable signal to Px_CCy at 10% of final value	I _L = 200 mA, V _{LDO_5V} = 5V, C _L =0	100	225	300	μs
$t_{iOS_PP_CABLE}$	response time to short circuit	External $V_{LDO_5V} = 5V$, for short circuit $R_L = 10m\Omega$. Set VCONILIM = 1.			2	μs
t _{iOS_PP_CABLE}	response time to short circuit	Internal $V_{LDO_{5V}} = 5V$, for short circuit $R_L = 10m\Omega$. Set VCONILIM = 0.			0.3	μs

7.9 CC PHY Parameters

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over the -40° C to 150° C junction temperature range unless otherwise stated. $V_{IN} = 13.5$ V, EN = 2V unless otherwise stated.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Transmitter		1			L. L	
V _{TXHI}	Transmit high voltage on Px_CCy	Standard External load	1.05	1.125	1.2	V
V _{TXLO}	Transmit low voltage on Px_CCy	Standard External load	-75		75	mV
Z _{DRIVER}	Transmit output impedance while driving the CC line using Px_CCy	measured at 750 kHz	33		75	Ω
t _{Rise}	Rise time. 10 % to 90 % amplitude points on Px_CCy, minimum is under an unloaded condition. Maximum set by TX mask	C _{Px_CCy} = 520 pF	300			ns
t _{Fall}	Fall time. 90 % to 10 % amplitude points on Px_CCy, minimum is under an unloaded condition. Maximum set by TX mask	C _{Px_CCy} = 520 pF	300			ns
V _{PHY_OVP}	OVP detection threshold for USB PD PHY.	Initially $V_{CC1} \le 5.5$ V and $V_{CC2} \le 5.5$ V, then V_{CCx} rises.	5.5		8.5	V
Receiver	·					
Z _{BMCRX} ⁽²⁾	Receiver input impedance on Px_CCy	Does not include pull-up or pulldown resistance from cable detect. Transmitter is Hi-Z.	1			MΩ

Typical values correspond to $T_J = 25^{\circ}$ C. Minimum and maximum limits apply over the -40° C to 150° C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN = 2V unless otherwise stated.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{CC}	Receiver capacitance on Px_CCy ⁽¹⁾	Capacitance looking into the CC pin when in receiver mode			120	pF
V _{RX_SNK_R}	Rising threshold on Px_CCy for receiver comparator	sink mode (rising)	499	525	551	mV
V _{RX_SRC_R}	Rising threshold on Px_CCy for receiver comparator	source mode (rising)	784	825	866	mV
V _{RX_SNK_F}	Falling threshold on Px_CCy for receiver comparator	sink mode (falling)	230	250	270	mV
V _{RX_SRC_F}	Falling threshold on Px_CCy for receiver comparator	source mode (falling)	523	550	578	mV

C_{CC} includes only the internal capacitance on a Px_CCy pin when the pin is configured to be receiving BMC data. External capacitance is needed to meet the required minimum capacitance per the USB-PD Specifications (cReceiver). Therefore, TI recommends adding C_{Px CCy} externally.

(2) Guaranteed, but not production tested.

7.10 Thermal Shutdown Characteristics

over operating free-air temperature range (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{SD_BB}	Temperature shutdown threshold	Temperature rising	160	167	175	°C
T _{SD_HYS}	Temperature shutdown hysteresis	hysteresis		18		°C
T _{SD_PA_VCONN}	Temperature shutdown threshold	Temperature rising	152	166	179	°C
T _{SD_HYS}	Temperature shutdown hysteresis	hysteresis		20		°C
T _{SD_PA_VBUS_DISCH}	Temperature shutdown threshold	Temperature rising	155	166	177	°C
T _{SD_HYS}	Temperature shutdown hysteresis	hysteresis		20		°C
T _{SD_LDO5V}	Temperature shutdown threshold	Temperature rising	165	177	188	°C
T _{SD_HYS}	Temperature shutdown hysteresis	hysteresis		15		°C

7.11 Oscillator Characteristics

Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the -40° C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN = 2 V, unless otherwise stated.

P	ARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
F _{OSC(100K)}	100KHz oscillator	Trimmed.	89	103	111	kHz
F _{OSC(24M)}	24MHz oscillator	Trimmed. 0 °C ≤ T _A ≤ 70 °C	23.64	24.2	24.36	MHz
F _{OSC(24M)}	24MHz oscillator	Trimmed40 °C ≤ T _A ≤ 150 °C	23.3	24.2	24.5	MHz

7.12 ADC Characteristics

Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the -40°C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN = 2 V, unless otherwise stated.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
LSB	least significant bit	3.6V max scaling, voltage divider of 3		14		mV
LSB	least significant bit	25.2V max scaling, voltage divider of 21		98		mV
LSB	least significant bit	(V _{CSP} - V _{CSN/BUS})= 10 mV, 30 mV		27		mA
E _G	Gain error	$0 \text{ A} \le I_{\text{TVSP}} \le 0.9 \text{ mA}$	-2.7		2.7	%
E _G	Gain error	$0.05V \le V_{GPIOx} \le$ 3.6V, $V_{GPIOx} \le V_{LDO_{3V3}}$	-2.7		2.7	%
E _G	Gain error	$2.7V \le V_{\text{LDO}_{3V3}} \le 3.6V$	-2.4		2.4	%
E _G	Gain error	$0.6V \le V_{Px_VBUS} \le 22V$	-2.4		2.4	%
E _G	Gain error, current sense	(V _{CSP} - V _{CSN/BUS})= 10 mV, 30 mV	-2.4		2.4	%
E _G	Gain error	V _{IN}	-2.4		2.4	%
E _G	Gain error	$4.3 \text{ V} \leq \text{V}_{\text{LDO}_{5V}} \leq 5.5 \text{V}$	-2.4		2.4	%
V _{OS(E)}	Offset error ⁽¹⁾	$0 \text{ A} \le I_{\text{TVSP}} \le 0.9 \text{ mA}$	-4.1		15	mV
V _{OS(E)}	Offset error ⁽¹⁾	$\begin{array}{l} 0.05 V \leq V_{\text{GPIOx}} \leq \\ 3.6 V, V_{\text{GPIOx}} \leq V_{\text{LDO}_3 V 3} \end{array}$	-4.1		4.1	mV
V _{OS(E)}	Offset error ⁽¹⁾	$2.7V \le V_{LDO_{3V3}} \le 3.6V$	-4.1		4.1	mV
V _{OS(E)}	Offset error ⁽¹⁾	$0.6V \le V_{Px_VBUS} \le 22V$	-4.1		4.1	mV
V _{OS(E)}	Offset error ⁽¹⁾	(V _{CSP} - V _{CSN/BUS})= 10 mV, 30 mV	-4.5		4.5	mA
V _{OS(E)}	Offset error ⁽¹⁾	V _{IN}	-4.1		4.1	mV
V _{OS(E)}	Offset error ⁽¹⁾	$4.3 \text{ V} \leq \text{V}_{\text{LDO}_{5V}} \leq 5.5 \text{V}$	-4.1		4.1	mV

(1) The offset error is specified after the voltage divider.

7.13 TVS Parameters

VIN = 13.5V, EN = 2V. over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
TVSP						
V _{TVSP_PU}	Pull up voltage for configuration ⁽¹⁾	0 < I _{TVSP} < 1 mA	5.3	5.5	5.7	V
Decode 0	Device configuration decode	R _{TVS} = Open			1	μA
Decode 1	Device configuration decode	R _{TVS} = 93.1 kΩ	56.9		61.2	μA
Decode 2	Device configuration decode	R _{TVS} = 47.5 kΩ	111.6		120	μA
Decode 3	Device configuration decode	R _{TVS} = 29.4 kΩ	180.3		193.9	μA
Decode 4	Device configuration decode	R _{TVS} = 20.0 kΩ	265		285	μA
Decode 5	Device configuration decode	R _{TVS} = 14.7 kΩ	360.5		387.8	μA
Decode 6	Device configuration decode	R _{TVS} = 11.0 kΩ	481.8		518.2	μA
Decode 7	Device configuration decode	R _{TVS} = 8.45 kΩ	627.2		674.6	μA
Decode 8	Device configuration decode	R _{TVS} = 6.65 kΩ	797		857.1	μA

VIN = 13.5V, EN = 2V. over operating free-air temperature range (unless otherwise noted)

l	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{TVSP(ILIMIT)}	Current limit when TVSP is sourcing.	$\label{eq:transform} \begin{array}{l} C_{TVSP} = \text{open}; \ R_{TVSP} = \text{open}. \\ \text{All } Px_Dy = 0 \ V \ \text{and } Px_CCy \\ = 0 \ V. \ V_{TVSP} = 0 \ V. \ \text{Measure} \\ \text{current flowing out of TVSP}. \end{array}$		1.44	1.83	mA

(1) For proper device configuration, V_{IN} must be \ge 7.6 V at time of configuration read.

7.14 Input/Output (I/O) Characteristics

Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the -40°C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN = 2 V, unless otherwise stated.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
GPIO0-9 (Inputs)	(1)					
V _{IH}	GPIOx high-Level input voltage		1.3			V
V _{IL}	GPIOx low-level input voltage				0.54	V
	GPIOx input hysteresis voltage		0.09			V
I _{I(LEAKAGE)}	GPIOx leakage current	V _{GPIOx} = 5.5 V	-8		8	μA
R _{PU}	GPIOx internal pull-up	pull-up enabled	50	100	150	kΩ
R _{PD}	GPIOx internal pull-down	pull-down enabled	50	100	150	kΩ
t _{DG}	GPIOx input deglitch			20		ns
GPIO 2, 3, 5, 6 (C	Dutputs)	-				
V _{OH}	GPIOx output high voltage	I _{GPIOx} = -5mA	2.9			V
V _{OL}	GPIOx output low voltage	I _{GPIOx} =5mA			0.4	V
GPIO 0, 1, 4, 7, 8	s, 9 (Outputs) ⁽²⁾		1			
V _{OH}	GPIOx output high voltage	I _{GPIOx} = -2mA	2.9			V
V _{OL}	GPIOx output low voltage	I _{GPIOx} =2mA			0.4	V
SYNC OUT						
φ shift_00	GPIOx when configured as phase shifted DC/DC fsw clock output	Phase difference between fsw and GPIO6 when configured as SYNC(O).		0		degrees
φ shift_90	GPIOx when configured as phase shifted DC/DC fsw clock output	Phase difference between fsw and GPIO6 when configured as SYNC(O).		90		degrees
φ shift_120	GPIOx when configured as phase shifted DC/DC fsw clock output	Phase difference between fsw and GPIO6 when configured as SYNC(O).		120		degrees
φ shift_180	GPIOx when configured as phase shifted DC/DC fsw clock output	Phase difference between fsw and GPIO6 when configured as SYNC(O).		180		degrees
SYNC IN	·	-				
f _{SYNC(300kHz)}	Valid external clock frequency (f _{SW_internal} = 300kHz)		250		353	kHz
f _{SYNC(400kHz)}	Valid external clock frequency (f _{SW_internal} = 400kHz)		334		470	kHz
f _{SYNC(450kHz)}	Valid external clock frequency (f _{SW_internal} = 450kHz)		376		530	kHz
LSGD						
I _{LSGD_ON}	NFET driver sourcing current	$\begin{array}{l} 0 \ V \leq V_{CSN/BUS} \leq 21 \ V; \ 0 \ V \leq \\ (V_{LSGD} - V_{CSN/BUS}) \leq 4 \ V \end{array}$	10	13	16	μA
V _{LSGD_ON}	Sourcing voltage while enabled (V _{LSGD} - V _{CSN/BUS})	$0 V \le V_{CSN/BUS} \le 21 V; I_{LSGD} \le 4 \mu A.$ Measure voltage between LSGD and CSN/BUS.	6		8	V

Copyright © 2023 Texas Instruments Incorporated

Typical values correspond to $TJ = 25^{\circ}C$. Minimum and maximum limits apply over the $-40^{\circ}C$ to $150^{\circ}C$ junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN = 2 V, unless otherwise stated.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{LSGD_OFF}	Sinking resistance when disabled	$V_{LSGD} = V_{CSN/BUS} = 5 V$		160	300	kΩ

(1) GPIO9 is normally configured as I2C_IRQ1m (master): input pin. I2C specification requires use of external pullup resistor. Input thresholds (V_{IH}; V_{IL}) leakage current (I_{I(LEAKAGE)})and deglitch timing (t_{DG}) specifications are apply when used as I2C_IRQ1m. Internal pullup and pulldown resistors are not used during this mode of operation.

(2) GPIO9 or GPIO1 may be configured as I2C_IRQ2s (slave): open-drain output pin. I2C specification requires use of external pullup resistor. Output threshold (V_{OL}) applies. Internal pullup and pulldown resistors are not used during this mode of operation.

7.15 BC1.2 Characteristics

Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the -40°C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN = 2 V, unless otherwise stated.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BC1.2 RESIS	TANCES					
R _{DCP_DAT}	Dedicated Charging Port Resistance between Px_DP and Px_DM	$V_{Px_DP} = 0.6 V$, $V_{Px_DM} = 0V$, measure DP to DM shorted resistance			200	Ω
R _{DM_DWN_15k}	Px_DM line pulldown resistance	V _{Px_DM} = 3.6V	12	15	18	kΩ
R _{DM_DWN_20k}	Px_DM line pulldown resistance	V _{Px_DM} = 3.6V	14.25	19.53	24.8	kΩ
DIVIDER MOI	DES				·	
V _{2.7V}	Output Voltage on DPy pin	No load on DPy pin	2.57	2.7	2.83	V
V _{2.7V}	Output Voltage on DMy pin	No load on DMy pin	2.57	2.7	2.83	V
R _{2.7V}	Output Impedance on DPy	5µA pulled from DPy pin	24	30	36	kΩ
R _{2.7V}	Output Impedance on DMy	5µA pulled from DMy pin	24	30	36	kΩ
V _{1.2V}	Output Voltage on DMy	No load on DMy	1.12	1.2	1.28	V
R _{1.2V}	Output Impedance on DMy	5µA pulled from DMy	80	102	130	kΩ
HVDCP THRE	SHOLD VOLTAGES	· · · · · ·				
V _{DAT_REF}	Data detection voltage on DP or DM pin		0.25	0.325	0.4	V
V _{SEL_REF}	Output selection voltage DP or DM pin		1.8	2	2.2	V
	OVERVOLTAGE PROTECTION	· !			1	
V _{Dy_OVP}	OVP detection threshold for USB Px_DP and Px_DM pins	Initially $V_{PxDy} \le 3.6 \text{ V}$, then V_{Px_Dy} rises.	5.5		8.5	V

7.16 I2C Requirements and Characteristics

Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the -40°C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN =2 V, unless otherwise stated. V_{DD} = I2C pullup voltage (3.3 V or 1.8 V)

	PARAMETER	TEST CONDITIONS	MIN TYP	P MAX	UNIT
12C_IRQ1s, 12C_	IRQ2				
I2C_IRQ1m					
SDA and SCL C	haracteristics (Standard, Fast, Fast-mo	de Plus)			
V _{IL}	Input low signal			0.54	V
V _{IH}	Input high signal		1.3		V
V _{DD} = 3.3 V INPL	JT LOGIC THRESHOLDS				
V _{IL}	Input low signal			0.9	V
V _{IH}	Input high signal		2.31		V
V _{HYS}	Input hysteresis		0.165		V
V _{OL}	Output low voltage	V _{DD} = 1.8V, I _{OL} =2 mA		0.36	
V _{OL}	Output low voltage	V _{DD} = 3.3V, I _{OL} =3 mA		0.4	V
I _{OL}	Max output low current	V _{OL} =0.4 V	12		mA

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
λK	Input leakage current	Voltage on pin = 3.3V	-5	5	μA
	pin capacitance (internal)			10	pF
	Capacitive load for each bus line (external). Applies in Standard- mode and Fast-mode.			400	pF
	Capacitive load for each bus line (external). Applies in Fast-mode Plus.			550	pF
MMON TIMING	I			I	
	I2C pulse width suppressed			50	ns
A and SCL Cha	racteristics (Standard Mode)			· · ·	
LS	Clock frequency (slave)	V _{DD} = 1.8V or 3.3V		100	kHz
;STA	Start or repeated start condition hold time	V _{DD} = 1.8V or 3.3V	4		μs
N	SCL Clock low time	V _{DD} = 1.8V or 3.3V	4.7		μs
θH	SCL Clock high time	V _{DD} = 1.8V or 3.3V	4		μs
STA	Start or repeated start condition setup time	V _{DD} = 1.8V or 3.3V	4.7		μs
;DAT	Serial data hold time ⁽¹⁾	V _{DD} = 1.8V or 3.3V	0 (2)	_ (3)	ns
;DAT	Serial data setup time	V _{DD} = 1.8V or 3.3V	250		ns
	Rise time of SCL and SDA signals	$\label{eq:VDD} \begin{array}{l} V_{DD} = 1.8 V \text{ or } 3.3 V; \ R_{PU} = 2.8 \ k\Omega; \\ Cb = 400 pF; \ measure \ 0.3 \times V_{DD} \ to \\ 0.7 \times V_{DD} \end{array}$		1000	ns
	Output fall time from $V_{IH(MIN)}$ to $V_{IL(MAX)}$	V_{DD} = 1.8V or 3.3V; measure 0.3 × V_{DD} to 0.7 × V_{DD}		250 (4)	ns
	Fall time of SCL and SDA signals (2) (4) (5)	V_{DD} = 1.8V, R_{PU} = 2.8 kΩ; 10 pF ≤ C_b ≤ 400 pF		300	ns
	Fall time of SCL and SDA signals (2) (4) (5)	V_{DD} = 3.3V, R _{PU} = 2.8 kΩ; 10 pF ≤ C _b ≤ 400 pF		300	ns
STO	Stop condition setup time	V _{DD} = 1.8V or 3.3V	4		μs
F	Bus free time between stop and start	V _{DD} = 1.8V or 3.3V	4.7		μs
DAT	Valid data time ⁽⁶⁾	Transmitting Data; V_{DD} = 1.8V or 3.3V, SCL low to SDA output valid		3.45 ⁽³⁾	μs
ACK	Valid data time of ACK condition	Transmitting Data; V _{DD} = 1.8V or 3.3V, ACK signal from SCL low to SDA valid		3.45 ⁽³⁾	μs
A and SCL Cha	racteristics (Fast Mode)				
LS	Clock frequency (slave)	V _{DD} = 1.8V or 3.3V		400	kHz
;STA	Start or repeated start condition hold time	V _{DD} = 1.8V or 3.3V	0.6		μs
N	SCL Clock low time	V _{DD} = 1.8V or 3.3V	1.3		μs
θH	SCL Clock high time	V _{DD} = 1.8V or 3.3V	0.6		μs
STA	Start or repeated start condition setup time	V _{DD} = 1.8V or 3.3V	0.6		μs
;DAT	Serial data hold time ⁽¹⁾	V _{DD} = 1.8V or 3.3V	0 (2)	_ (3)	ns
DAT	Serial data setup time	V _{DD} = 1.8V or 3.3V	100 (7)		ns
	Rise time of SCL and SDA signals	V_{DD} = 1.8V or 3.3V; R_{PU} = 850 Ω ; C_b = 400 pF; measure 0.3 × V_{DD} to 0.7 × V_{DD}	20	300	ns
STA	Start or repeated start condition setup time Serial data hold time ⁽¹⁾ Serial data setup time	V _{DD} = 1.8V or 3.3V V _{DD} = 1.8V or 3.3V V _{DD} = 1.8V or 3.3V V _{DD} = 1.8V or 3.3V; R _{PU} = 850 Ω;	0.6 0 ⁽²⁾ 100 ⁽⁷⁾		-

Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over the -40°C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V. EN =2 V. unless otherwise stated. V_{IN} = 12C pullup voltage (3.3 V or 1.8 V)

Typical values correspond to TJ = 25°C. Minimum and maximumlimits apply over the -40°C to 150°C junction temperature range unless otherwise stated. V_{IN} = 13.5 V, EN = 2 V, unless otherwise stated. V_{DD} = I2C pullup voltage (3.3 V or 1.8 V)

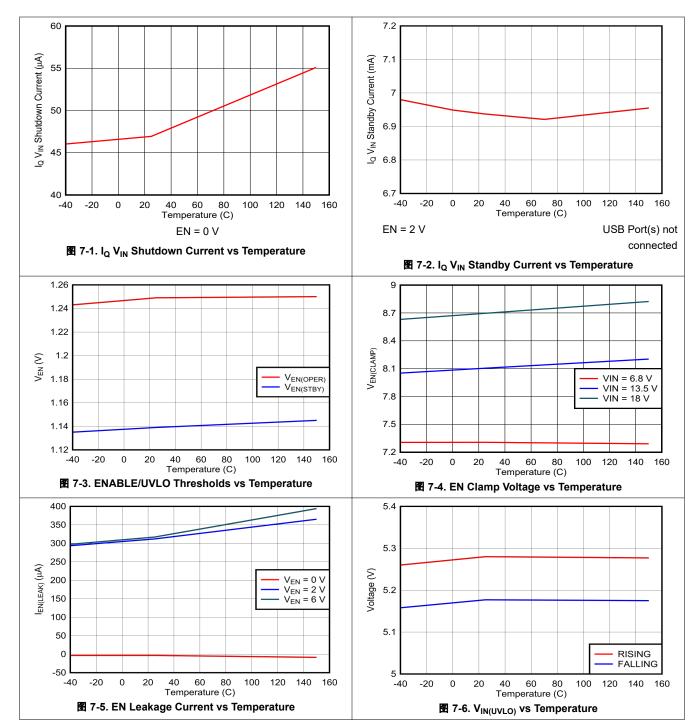
	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
t _{of}	Output fall time from $V_{\text{IH}(\text{MIN})}$ to $V_{\text{IL}(\text{MAX})}$	V_{DD} = 1.8V; measure 0.3 × V_{DD} to 0.7 × V_{DD}	6.55	250 ⁽⁴⁾	ns
t _{of}	Output fall time from $V_{IH(MIN)}$ to $V_{IL(MAX)}$	V_{DD} = 3.3V; measure 0.3 × V_{DD} to 0.7 × V_{DD}	12	250 (4)	ns
t _f	Fall time of SCL and SDA signals (2) (4) (5)	V_{DD} = 1.8V; R_{PU} = 850 Ω; 10 pF ≤ C_b ≤ 400 pF	6.55	300	ns
t _f	Fall time of SCL and SDA signals (2) (4) (5)	V_{DD} = 3.3V; R _{PU} = 850 Ω; 10 pF ≤ C_b ≤ 400 pF	12	300	ns
t _{su;sто}	Stop condition setup time	V _{DD} = 1.8V or 3.3V	0.6		μs
t _{BUF}	Bus free time between stop and start	V _{DD} = 1.8V or 3.3V	1.3		μs
t _{VD;DAT}	Valid data time ⁽⁶⁾	Transmitting Data; V _{DD} = 1.8V or 3.3V, SCL low to SDA output valid		0.9 (3)	μs
t _{VD;ACK}	Valid data time of ACK condition	Transmitting Data; V _{DD} = 1.8V or 3.3V, ACK signal from SCL low to SDA (out) low		0.9 ⁽³⁾	μs

(1) t_{HD:DAT} = the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge.

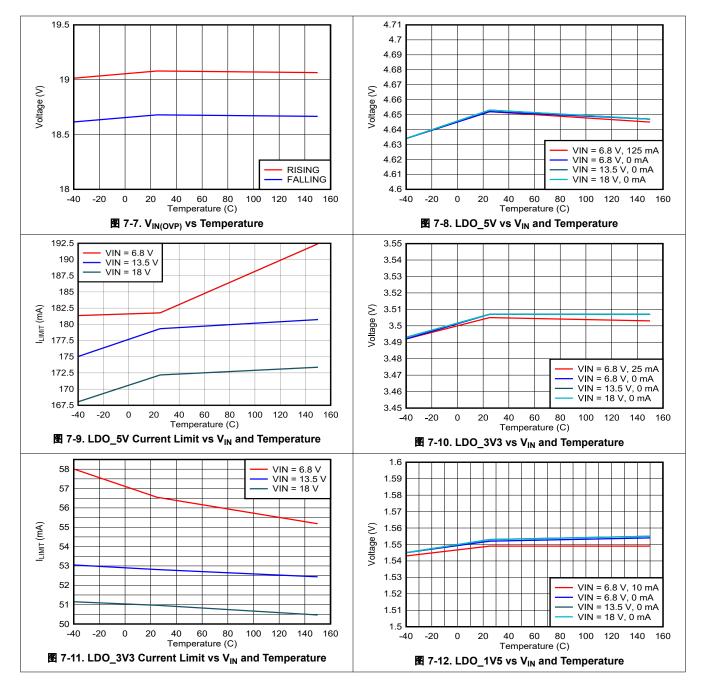
(2) A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V_{IH(MIN)} of the SCL signal) to bridge the undefined region of the falling edge of SCL.

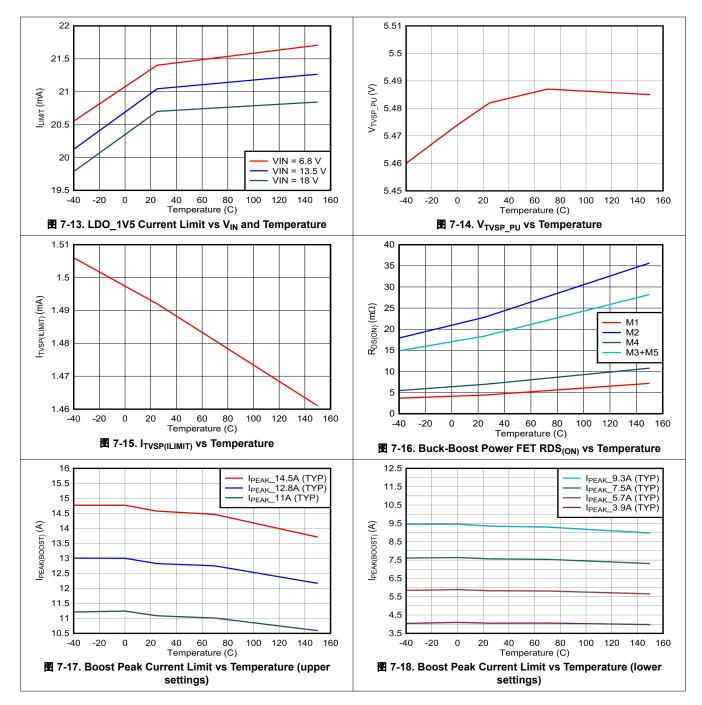
(3) The maximum t_{HD:DAT} could be 3.45 µs and 0.9 µs for Standard-mode and Fast-mode, but must be less than the maximum t_{VD:DAT} or t_{VD:ACK} by a transition time. This maximum must only be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal. If the clock stretches the SCL, the data must be valid by the setup time before it releases the clock.

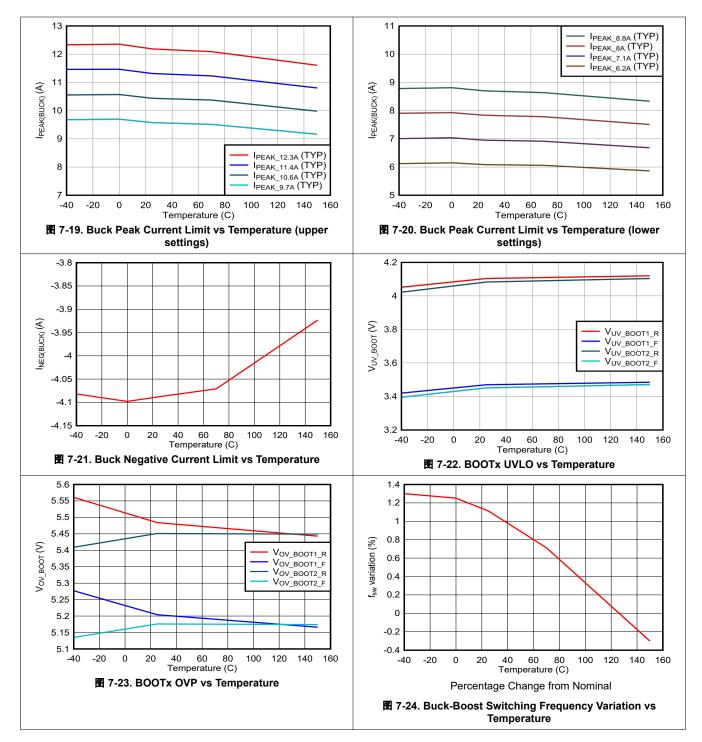
(4) The maximum t_f for the SDA and SCL bus lines is stated in these tables as 300 ns is longer than the specified maximum t_{of} for the output stages (250 ns). This allows series protection resistors (R_S) to be connected between the SDA and SCL pins and the SDA and SCL bus lines without exceeding the maximum specified t_f.

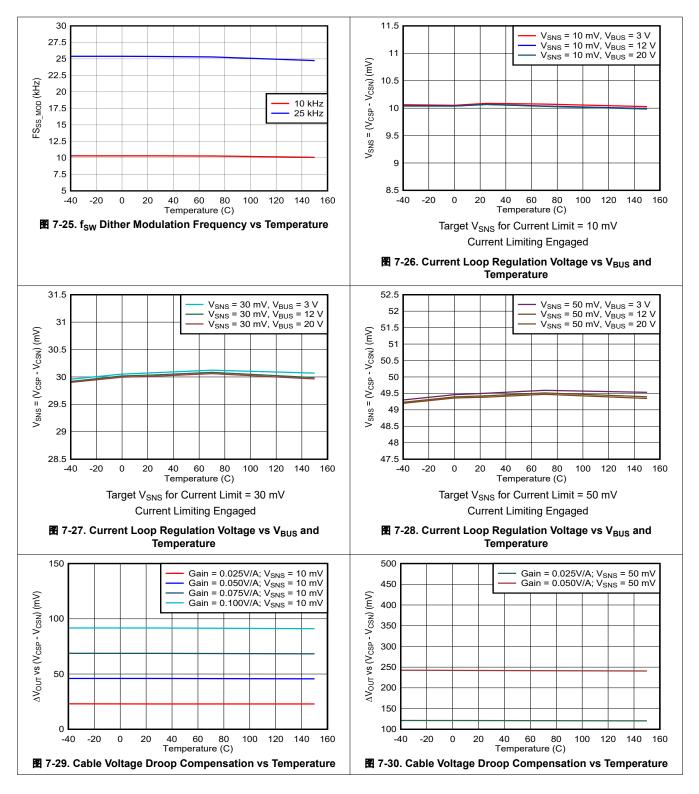

(5) In Fast-mode Plus, fall time is specified the same for both ouput stage and bus timing. If series resistors (R_S) are used, designers should allow for this when considering bus timing.

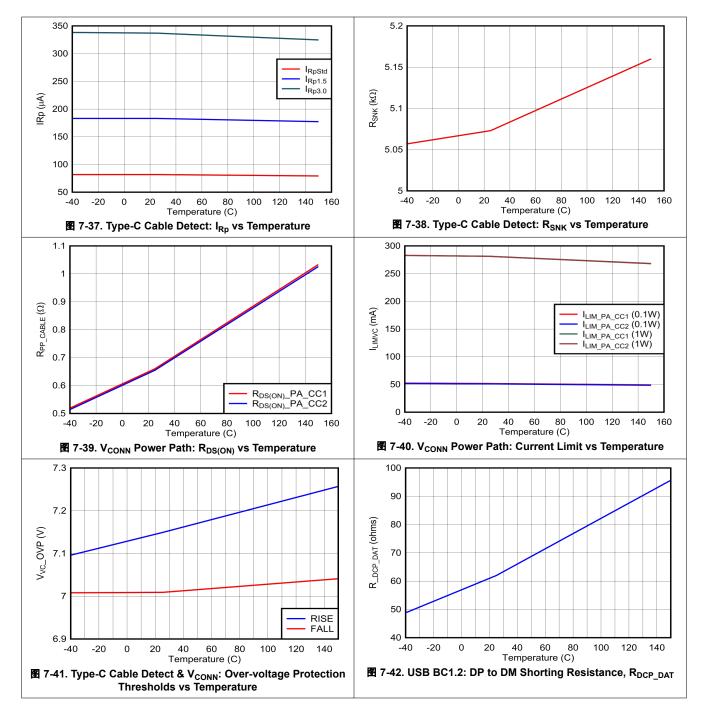
(6) t_{VD:DAT} = time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).

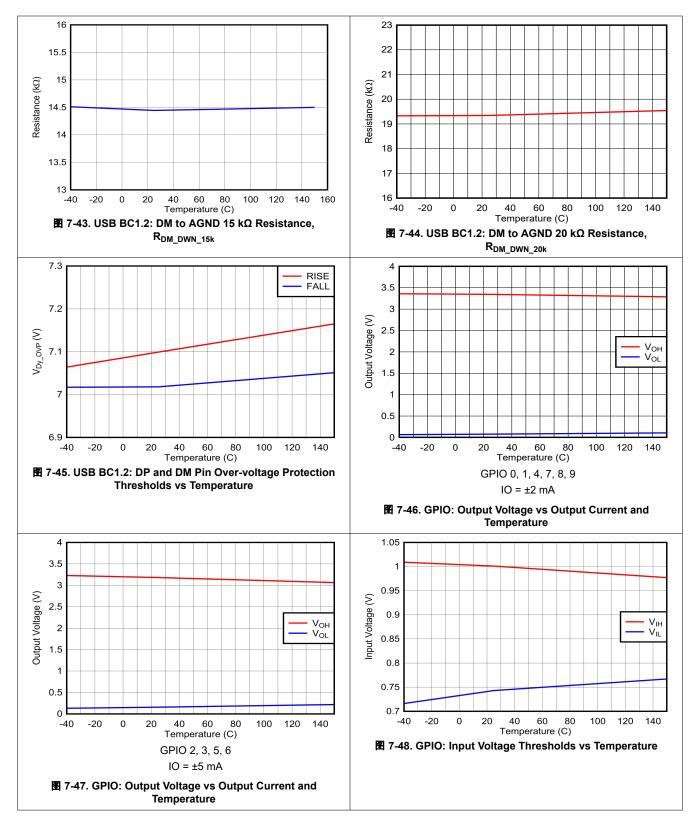

(7) A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement $t_{SU;DAT}$ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line $t_{r(max)} + t_{SU;DAT} = 1000 + 250 = 1250$ ns (according to the Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.

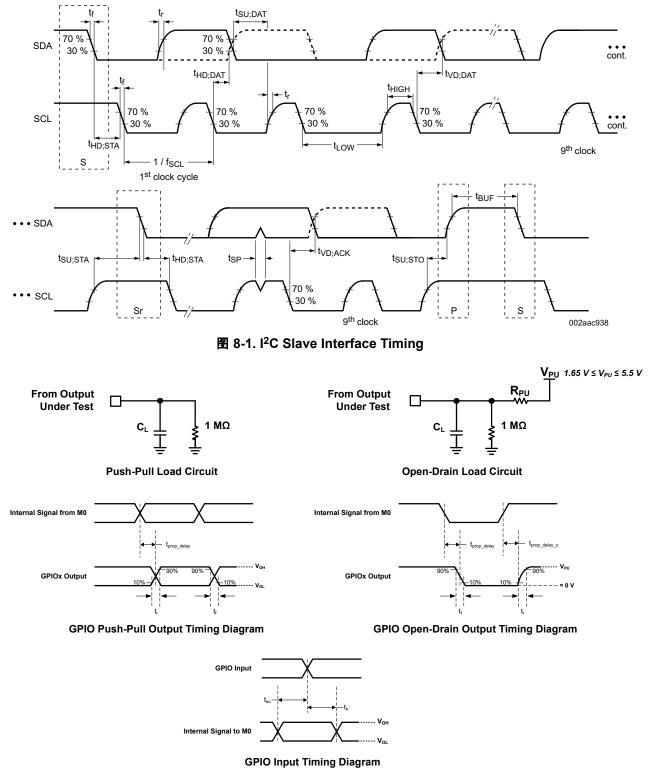

7.17 Typical Characteristics

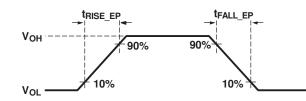












8 Parameter Measurement Information

图 8-3. USB Endpoint Transmitter Rise and Fall Time

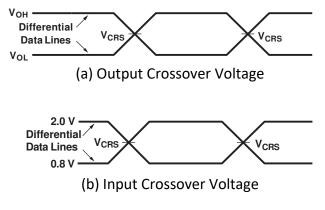


图 8-4. USB Endpoint Crossover Voltages

9 Detailed Description

9.1 Overview

The TPS25762-Q1 is a fully-integrated AEC-Q100 USB Power Delivery (USB-PD) source intended for use in 12-V automotive battery systems. Input supply pin, V_{IN} , must be connected to a load dump clamped battery supply, V_{BAT} , and never exceed 40 V (ABS MAX).

The device consists of seven sub-blocks: USB-PD controller; Type-C cable plug and orientation detection circuitry; USB Endpoint; USB Battery Charging Specification Version 1.2 (BC1.2) detection circuitry; digital core; device power management and supervisory circuitry; and a buck-boost converter integrated with 4 power switches.

The USB-PD controller provides the physical layer (PHY) functionality of the USB-PD protocol. The USB-PD data is output through either the Px_CC1 pin or the Px_CC2 pin, depending on the orientation of the reversible USB Type-C cable. For a high-level block diagram of the USB-PD physical layer, a description of its features and more detailed circuitry, see USB-PD Physical Layer.

The cable plug and orientation detection analog circuitry automatically detects a USB Type-C cable plug insertion and also automatically detects the cable orientation. For a high-level block diagram of cable plug and orientation detection, a description of its features and more detailed circuitry, see *Cable Plug and Orientation Detection*.

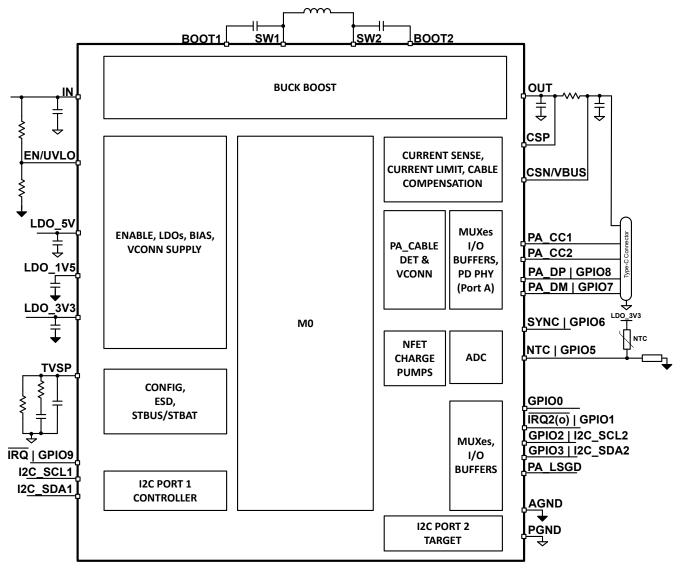
A USB Endpoint is included for downloading configuration information and firmware updates. When enabled by firmware, the USB Endpoint connects to the Port A DP and DM pins.

The USB BC1.2 sub-block contains circuitry to support legacy USB charging methods which signal on the USB DP and DM data lines including: DCP, Divider-3, 1.2 V mode, and HVDCP. See BC 1.2, legacy and fast charging modes (Px_DP, Px_DM).

The power management and supervisory circuitry generates the LDO_5V, LDO_3V3, and LDO_1V5 voltage rails used by the device. LDO_5V supplies the LDO_3V3 and LDO_1V5 rails. For a high-level block diagram of the power management circuitry, a description of its features and more detailed operation, see *Internal LDO Regulators* section.

The digital core contains an ARM Cortex-M0 with 160-kB ROM and 27-kB RAM memory. The ROM contains firmware code to execute device functionality. RAM stores application configuration code created using the Graphical User Interface (GUI) and post-manufacturing firmware updates. The digital core is the engine for autonomously managing the system including: USB port connection status and communication; system power budget and allocation; system thermal monitoring and load shedding; and fault detection and reporting. All devices contain one controller I²C port (I²C1) for controlling external peripherals such as external EEPROM memory; DC/DC converters; USB data multiplexers/redrivers; GPIO expanders; and additional temperature sensors. Some devices include an I²C target port (I²C2) for connection to an external processor, HUB or embedded controller. An integrated 8-bit analog-to-digital converter ADC (see the *ADC* section), monitors USB port telemetry information. USB port connection status, voltage, current and fault information can be read from I²C2 target port. For a high-level block diagram of the digital core and a description of its features, see the *Digital Core* section.

The integrated buck-boost converter is the PA_VBUS power source. It operates in buck mode when V_{IN} is greater than V_{OUT} and boost mode when V_{IN} is less than V_{OUT} . When V_{IN} and V_{OUT} are nearly the same, it operates in transition mode.


Single Port Device

TPS25762-Q1 is a single USB-PD port device. Refer to *Device Comparison Table* for dual port options. The TPS25762-Q1 device consists of a single 3 to 21 V output internal buck-boost converter, one USB-PD port controller providing cable plug and orientation detection, one internal VCONN source path, legacy USB Battery Charging Specification v1.2 Dedicated Charging Port (DCP) as well as legacy (non-USB compliant) charger detection including: Divider-3, 1.2 V, and HVDCP modes. The TPS25762-Q1 device communicates with its

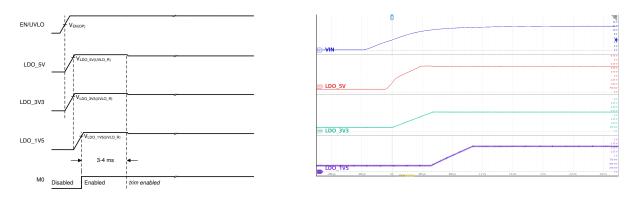
connected USB Type-C cable and downstream USB device at the opposite end of the cable to determine connection state and enables VBUS sourcing as appropriate.

9.2 Functional Block Diagram

9.3 Feature Description

9.3.1 Device Power Management and Supervisory Circuitry

9.3.1.1 VIN UVLO and Enable/UVLO


The TPS25762-Q1 has one internally fixed V_{IN} UVLO and one user programmable UVLO using the EN/UVLO pin. Both thresholds must be cleared for the device to start up.

- The fixed V_{IN(UVLO)} has a rising threshold between 5 and 5.5 V to ensure internal circuits have sufficient headroom for proper operation.
- The EN/UVLO pin provides the user with a resistor programmable UVLO threshold and master enable / disable for the device.

The EN/UVLO pin has three distinct voltage ranges: shutdown, standby, and operating. When the EN/UVLO pin is below the standby threshold $V_{EN(STBY)}$, the device is disabled in a low power shutdown. When EN/UVLO voltage is greater than the standby threshold $V_{EN(STBY)}$ but less than the operating threshold $V_{EN(OPER)}$, the internal bias rails, LDO_5V, LDO_3V3, and LDO_1V5 regulators are enabled but remaining device functions

are disabled. When EN/UVLO is greater than the operating threshold $V_{EN(OPER)}$ and LDO_5V, LDO_3V3 and LDO_1V5 regulators are above their respective undervoltage threshold UVLO thresholds, the device is fully functional. The EN/UVLO pin includes fixed hysteresis between the shutdown mode and the standby mode.

图 9-1. EN/UVLO and LDO Sequencing

EN/UVLO (1)	LDOs	DEVICE OPERATION
V _{EN/UVLO} < V _{EN(LDO_V5V_F)}	_	Shutdown: LDO_5V, LDO_3V3 and LDO_1V5 OFF. M0 (MCU) is OFF.
V _{EN(LDO_V5V_R)} < V _{EN/UVLO} < V _{EN(STBY)}	_	Standby: LDO_5V, LDO_3V3 and LDO_1V5 ON. M0 (MCU) is OFF.
$V_{EN/UVLO} > V_{EN(OPER)}$	$\label{eq:ldot_bound} \begin{array}{l} LDO_5V < V_{LDO_5V(UVLO_R)}, \mbox{ or } \\ LDO_3V3 < V_{LDO_3V3(UVLO_R)}; \mbox{ or } \\ LDO_1V5 < V_{LDO_1V5(UVLO_R)} \end{array}$	LDO_5V, LDO_3V3 and LDO_1V5 ON, M0 (MCU) is OFF.
$V_{EN/UVLO} > V_{EN(OPER)}$	$\label{eq:ldot_state} \begin{split} & LDO_5V > V_{LDO_5V(UVLO_R)}, \text{ and} \\ & LDO_3V3 > V_{LDO_3V3(UVLO_R)}, \text{ and} \\ & LDO_1V5 > V_{LDO_1V5(UVLO_R)} \end{split}$	Operating: M0 (MCU) is ON.

表 9-1. EN/UVLO and LDO_UVLO Operation

(1) Valid when $V_{IN} > V_{IN(UVLO_R)}$.

In some cases an input UVLO level different than that provided by the internal V_{IN(UVLO)} is needed. This can be accomplished by using the circuit shown in *UVLO Threshold Programming*. The input voltage at which the device turns on is designated V_{ON}; while the turnoff voltage is V_{OFF}. First a value for R_{ENB} is chosen in the range of 13 kΩ to 22 kΩ. Use 方程式 1 and 方程式 2 to calculate R_{ENT} and V_{OFF}.

$$R_{ENT} = \left(\frac{V_{ON}}{V_{EN(OPER)}} - 1\right) \times R_{ENB}$$
(1)

The hysteresis between the UVLO turn-on threshold and turn-off threshold is set by the upper resistor in the EN/UVLO resistor divider and is given by:

$$V_{OFF} = \left(1 - \frac{V_{EN(HYS)}}{V_{EN(OPER)}}\right) \times V_{ON}$$
⁽²⁾

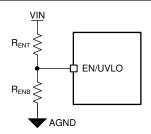
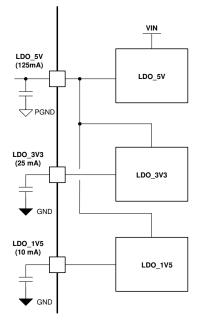


图 9-2. UVLO Threshold Programming

Where

- V_{ON} = V_{IN} turn-on voltage
- $V_{OFF} = V_{IN}$ turn-off voltage

Note: Ensure $R_{ENT} \ge 47 \text{ k}\Omega$

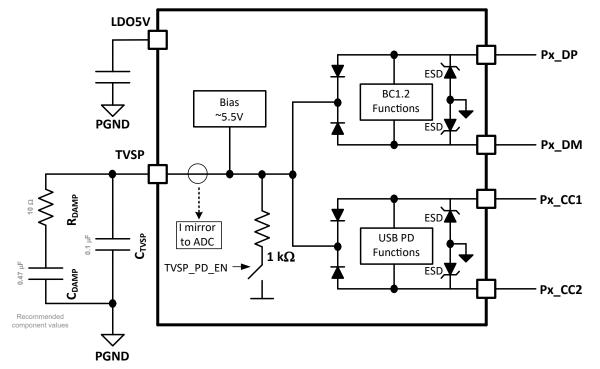

If the programmable UVLO is not required, the EN/UVLO pin can be connected to the IN pin with a 47 k Ω , or larger, resistor.

9.3.1.2 Internal LDO Regulators

Three internal LDOs provide regulated supplies for operation of internal circuitry.

- LDO_5V: Supplies buck-boost gate drive circuitry, LDO_3V3, LDO_1V5, and PA and PB VCONN power paths. External bypass capacitance, C_{LDO_5V} is required for proper operation. It is highly recommended to include an additional high frequency 0.1 µF capacitor in parallel with C_{LDO_5V}. C_{LDO_5V} and the parallel high frequency should be placed as close to the LDO_5V pin as possible. This capacitance: 1) provides energy storage for the buck-boost internal FET gate drivers, and 2) is required to stabilize the internal 5-V LDO in applications where an external 5-V supply is not connected. The TPS25762-Q1 will not operate (release reset) until V_{LDO_5V}(UVLO_R) threshold is met. Hard reset occurs when V_{LDO_5V} < V_{LDO_5V}(UVLO_F) threshold. Current from LDO_5V returns to PGND pin. The LDO_5V output may be used to supply a small external loads such as indicator LEDs. When supplying external components, it is recommended that the total external load current not exceed 25 mA (MAX).
 - 0.1W VCONN: when enabled in the application configuration GUI, LDO_5V is capable of sourcing 20 mA each to PA_VCONN and PB_VCONN.
 - 1W VCONN: when enabled in the application configuration GUI, this mode of operation *requires* an external 4.75 - 5.5 V, 500-mA capable supply connected to LDO_5V. Back-feeding of LDO_5V is allowed.
- LDO_3V3: Supplies internal analog circuits, GPIO buffers, USB PD and the USB Endpoint PHYs. External bypass capacitance of C_{LDO_3V3} is required for proper operation. An additional 0.1 µF capacitor in parallel with C_{LDO_3V3} is highly recommended to filter high frequency noise from the I/O buffers and PHYs. The LDO_3V3 can supply external circuits at up to 25 mA. Expected loads include: EEPROM (5mA), NTC resistor divider network (< 1 mA). Current may be drawn up to I_{LDO_3V3}(ILIMIT). Note: the USB PD and Endpoint PHYs draw current from LDO_3V3. If a CCx or Dx pin is shorted to GND during a transmission the current drawn may reach the current limit threshold. Similarly, if any GPIO pins are configured as push-pull outputs and a GPIO short to GND event occurs, the LDO_3V3 current limit may be reached. Current returns to AGND pin.
- LDO_1V5: Supplies digital core. External bypass capacitance of C_{LDO_1V5} is required for proper operation. An additional 0.1 μF capacitor in parallel with C_{LDO_1V5} is highly recommended to filter noise generated by the digital core. The M0 is held in reset until all three UVLO_R (rising) thresholds are met. Current returns to AGND pin.

Note: LDO_5V max regulation current includes LDO_3V3 (25 mA) and LDO_1V5 (10 mA)


图 9-3. Internal LDO Connection Diagram

9.3.2 TVSP Device Configuration and ESD Protection

The Transient Voltage protection and firmware Setting Pin (TVSP) has three functions: 1) Boot configuration settings; 2) USB connector pin short to V_{BUS} or V_{BAT} protection; and 3) USB connector pin enhanced ESD protection.

- R_{TVSP}: At power on, the resistance between the TVSP pin and PGND determines the boot method, USB PD port I²C addresses and I²C logic thresholds. Refer to 表 9-3 and 表 9-4. The most common configuration is shown in 图 9-4 with R_{TVSP} open, corresponding to TVSP Index 0. During device initialization and boot, typically within 4 seconds after power on, V_{IN} must be above 7.6 V to ensure proper bias of the TVSP pin to 5.5 V. Once boot is complete the device can operate over the full V_{IN} range.
- C_{TVSP}: A 0.1-µF capacitor (C_{TVSP}) *must* be connected to PGND. Place C_{TVSP} as close to the TVSP pin as possible to minimize parasitic inductance. C_{TVSP} is part of the centralized protection circuitry fortifying connector pins Px_CCy, Px_DP and Px_DM from damage during short to V_{BUS}, V_{BAT} and ESD events. A 40-V 0.1-µF capacitor is recommended for proper operation of the internal TVSP regulator circuit.
- **TVSP Damper Network:** Capacitance, C_{DAMP}, and resistance, R_{DAMP}, form an RC network preventing excessive current from flowing inside the device durging connector pin over-voltage and ESD events.
 - C_{DAMP}: A 0.47-μF capacitor *must* be connected in series with R_{DAMP} to PGND. A 40-V 0.47-μF capacitor is recommended.
 - R_{DAMP}: A 10-Ω resistor *must* be connected in series with C_{DAMP} to PGND. A 0.25-W rating is recommended.

表 9-2. Recommended TVSP Components

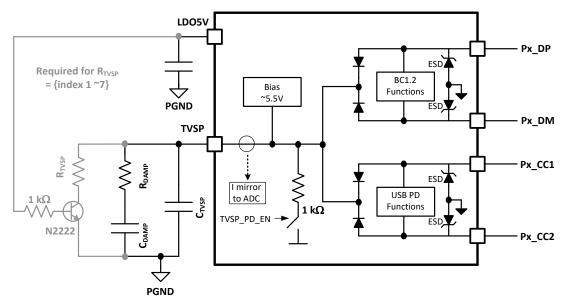
C _{TVSP}	R _{DAMP}	CDAMP	
0.1 µF	10 Ω	0.47 µF	

表 9-3. R_{TVSP} Configuration Settings (TPS25762CQRQLRQ1 and TPS25772CQRQLRQ1)

	1101	U			
R _{TVSP (kΩ)} ⁽¹⁾	TVSP Index	ADC Value	I2C Target Port Addresses (A B) ⁽²⁾	I2C Logic (V _{DD})	Boot Mode
Open	0	≤ 10 (0x0A)	0x22 0x26	3.3 V	EEPROM
93.1	1	≤ 24 (0x18)	0x23 0x27	3.3 V	External HUB/MCU
47.5	2	≤ 42 (0x2A)	0x22 0x26	1.8 V	EEPROM
29.4	3	≤ 63 (0x3F)	0x23 0x27	1.8 V	External HUB/MCU
20.0	4	≤ 89 (0x59)	0x23 0x27	3.3 V	EEPROM
14.7	5	≤ 119 (0x77)	0x22 0x26	3.3 V	External HUB/MCU
11.0	6	≤ 156 (0x9C)	0x23 0x27	1.8 V	EEPROM
8.45	7	≤ 201 (0xC9)	0x22 0x26	1.8 V	External HUB/MCU
6.65	8	≤ 255 (0xFF)	0x22 0x26	3.3 V	Firmware Update

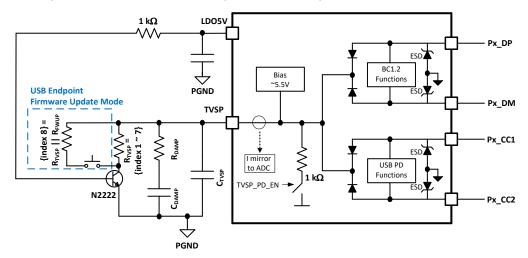
表 9-4. RTVSP Configuration Settings (TPS25762CAQRQLRQ1 and TPS25762CAQRQLRQ1)

R _{TVSP (kΩ)} ⁽¹⁾	TVSP Index		I2C Target Port Addresses (A B) ⁽²⁾	I2C Logic (V _{DD})	Boot Mode
Open	0	≤ 201 (0x0A)	0x22 0x26	3.3 V	EEPROM
5.6	8	≤ 255 (0xFF)	0x22 0x26	3.3 V	Firmware Update


(1) 1% resistor required.

(2) 0x22h = 0100010; 0x26h = 0100110; 0x23h = 0100011; 0x27 = 0100111

Applications requiring a configuration other than standard, TVSP Index 0 (R_{TVSP} open), as shown in $\frac{1}{8}$ 9-3 must implement a circuit similar to the one shown in $\frac{1}{8}$ 9-5. The base of the bipolar transistor is connected to LDO_5V to provide proper power up sequencing of the TVSP resistor - OFF when TPS25762-Q1 is disabled and ON



when TPS25762-Q1 is enabled. A 2N2222 is recommended for its large collector-emitter breakdown voltage, low-cost and wide availability.

Device firmware can be updated using the USB Endpoint on the PA_DP and PA_DM pins. To enable firmware update mode, boot the device with a resistance corresponding to Index 8 between TVPS and PGND. A boot cycle can be performed by power cycling the device or by pulling the EN/UVLO pin momentarily below $V_{EN(OPER)}$ threshold. An example circuit to enable USB Endpoint firmware update mode is shown in $\mathbb{8}$ 9-6

9.3.3 Buck-Boost Regulator

9.3.3.1 Buck-Boost Regulator Operation

The TPS25762-Q1 devices utilize a fixed frequency, current mode control buck-boost converter. This converter operates in forced continuous conduction mode (CCM) and therefore allows inductor current to flow in either direction at light loads. The power train consists of five N-Channel power MOSFETs. See gets 9-7. Transistors M1 and M2 are the high-side and low-side buck FETs. Transistors M3 and M4 are the high-side and low-side boost FETs. Transistor M5 blocks reverse conduction from OUT to SW2 during input overvoltage transients as explained in *VIN Supply and VIN Over-Voltage Protection*.

Copyright © 2023 Texas Instruments Incorporated

- IN: Receives power from the battery. The input bulk capacitor must be connected between IN and PGND.
- **OUT:** Delivers power from the switching converter. The output bulk capacitor connects between OUT to PGND.
- **PGND:** Ground return for the switching converter power train.
- **AGND:** Ground return for everything except the power train. The voltage feedback divider returns to AGND. PGND and AGND must connect together on the circuit board.
- LDO_5V: Provides gate drive for M2 and M4 and current for the bootstrap circuits feeding BOOT1 and BOOT2. A bypass capacitor must connect from LDO_5V to PGND. See *Internal LDO Regulators* for more information on LDO_5V.
- LDO_3V3: Analog circuitry power supply. A bypass capacitor must connect from LDO_3V3 to AGND. See *Internal LDO Regulators* for more information on LDO_3V3.
- **BOOT1:** Provides gate drive for M1. A bootstrap capacitor must connect from BOOT1 to SW1.
- **BOOT2:** Provides gate drive for M3. A bootstrap capacitor must connect from BOOT2 to SW2.
- SW1: Connects M1 and M2 to external inductor.
- SW2: Connects M3 and M4 to external inductor.
- **CSP:** Positive terminal of average current sense amplifier. Connects to positive terminal of output bulk capacitor.
- **CSN/BUS:** Negative terminal of average current sense amplifier. A 10-mΩ current sense resistor is externally connected from CSP to CSN/BUS.

Depending upon the input voltage V_{IN} and the output voltage V_{OUT} , the converter can operate in one of four different states, each of which is described in following sections.

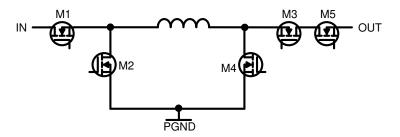
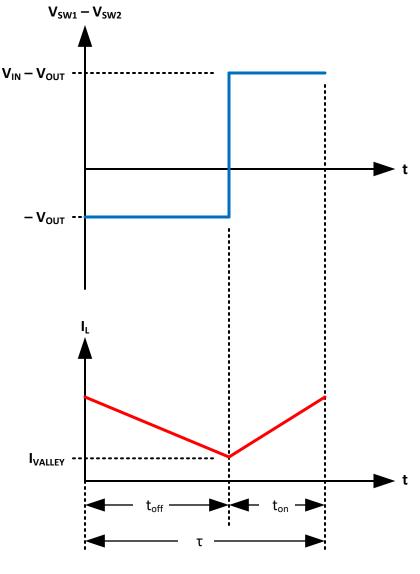



图 9-7. Buck-Boost Internal Power FETs

Buck State

When the input voltage V_{IN} significantly exceeds the output voltage V_{OUT} , the converter enters the buck region of operation in which it performs an endless series of buck switching cycles Buck State. M3 and M5 are constantly on and M4 is constantly off. When the clock signals that a switching cycle has begun, the controller turns on M2 and turns off M1. This switch configuration corresponds to the off-time interval of a traditional buck converter. The voltage difference $V_{SW1} - V_{SW2}$ across the inductor equals $-V_{OUT}$. The inductor current IL ramps down until it reaches a threshold I_{VALLEY} set by the error amplifiers. The controller then turns off M2 and turns on M1. This switch configuration corresponds to the on-time interval of a traditional buck converter. The voltage difference $V_{SW1} - V_{SW2}$ now equals $V_{IN} - V_{OUT}$. The inductor current now ramps up until the converter clock signals that the end of the switching cycle has been reached.

The on-time t_{on} equals the time interval during which M1 conducts. The off-time t_{off} equals the time interval during which M2 conducts. Because the converter operates in FCCM, the period τ equals the sum of t_{on} and t_{off} . During the buck state, the controller regulates power flow by adjusting the buck duty cycle D, which equals the ratio t_{on}/τ .

Buck Transition State

When the input voltage V_{IN} is only slightly larger than the output voltage V_{OUT} , the converter enters the buck transition region of operation in which it alternately performs buck and boost switching cycles Buck Transition. M5 is always on. When the clock signals that a buck switching cycle has begun, the controller turns on M2 and M3, and it turns off M1 and M4. This switch configuration corresponds to the off-time of a traditional buck converter. The inductor current I_L ramps down until it reaches a threshold I_{VALLEY} set by the error amplifiers. The controller then turns off M2 and turns on M1. This switch configuration corresponds to the on-time of a traditional buck converter. The inductor current now ramps up slowly until the clock signals the end of the buck switching cycle. The next switching cycle is a boost switching cycle. When this cycle begins, the controller turns M3 off and turns M4 on. M2 remains off, and both M1 and M5 remain on. This switch configuration corresponds to the on-time of a traditional boost converter. The inductor current. The inductor current. The inductor current runs M3 off and turns M4 on. M2 remains off, and both M1 and M5 remain on. This switch configuration corresponds to the on-time of a traditional boost converter. The inductor current I_L now ramps up rapidly until the fixed on-time expires. The controller then turns off M4 and turns on M3. The inductor current now ramps down until the clock signals the end of the boost switching cycle. The next switching cycle will be another buck cycle.

During the buck transition state, the controller regulates power flow by adjusting the buck duty cycle. The boost duty cycle remains fixed. If the converter had remained in the buck state rather than move to the buck transition

state, the buck on-time would have become so short that it would have become impossible to regulate power flow without pulse skipping.

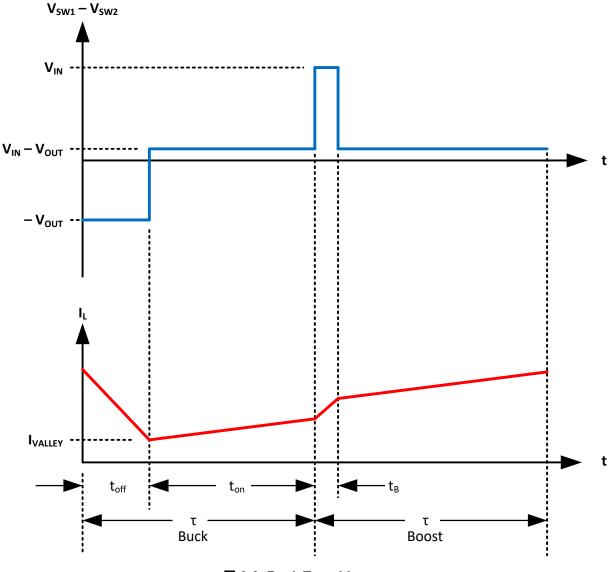


图 9-9. Buck Transition

Boost Transition State

When the input voltage V_{IN} is only slightly smaller than the output voltage V_{OUT} , the converter enters the boost transition region of operation in which it alternately performs boost and buck switching cycles Boost Transition. M5 is always on. When the clock signals that a boost switching cycle has begun, the controller turns on M1 and M4, and it turns off M2 and M3. This switch configuration corresponds to the on-time of a traditional boost converter. The inductor current I_L ramps up until it reaches a threshold I_{PEAK} set by the error amplifiers. The controller then turns off M4 and turns on M3. This switch configuration corresponds to the off-time of a traditional boost converter. The inductor current now ramps down slowly until the clock signals the end of the boost switching cycle. The next switching cycle is a buck switching cycle. When this cycle begins, the controller turns M1 off and turns M2 on. M4 remains off, and both M3 and M5 remain on. This switch configuration corresponds to the off-time of a traditional buck converter. The inductor current I_L now ramps down rapidly until the fixed off-time of a traditional buck converter. The inductor current I_L now ramps down rapidly until the fixed off-time expires. The controller then turns off M2 and turns on M1. The inductor current now ramps up until the clock signals the end of the boost to the off-time expires. The controller then turns off M2 and turns on M1. The inductor current now ramps up until the fixed off-time expires. The controller then turns off M2 and turns on M1. The inductor current now ramps up until the clock signals the end of the buck switching cycle. The next switching cycle. The next switching cycle.

During the boost transition state, the controller regulates power flow by adjusting the boost duty cycle. The buck duty cycle remains fixed. If the converter had remained in the boost state rather than move to the boost transition state, the boost on-time would have become so short that it would have become impossible to regulate power flow without pulse skipping.

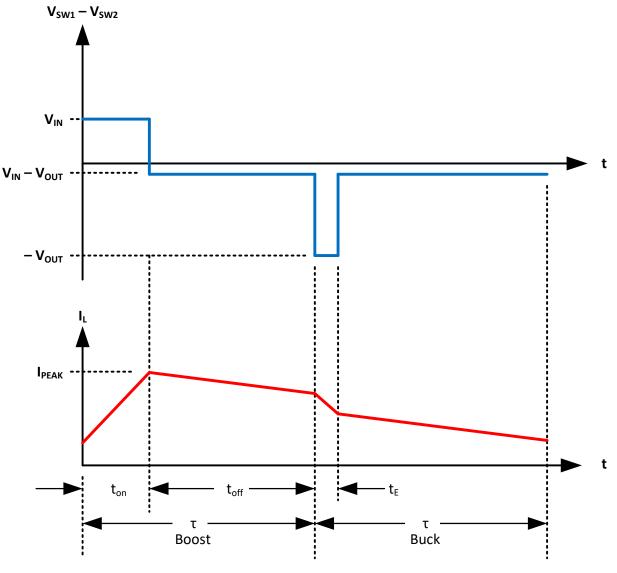
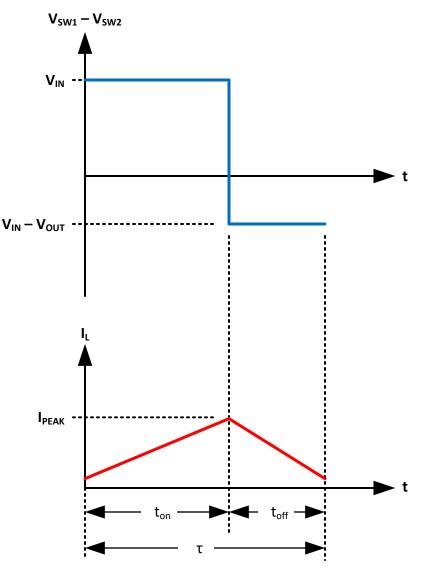


图 9-10. Boost Transition


Boost State

When the input voltage V_{IN} is significantly less than the output voltage V_{OUT} , the converter enters the boost region of operation in which it performs an endless series of boost switching cycles Boost State. M1 and M5 are constantly on and M2 is constantly off. When the clock signals that a switching cycle has begun, the controller turns on M4 and turns off M3. This switch configuration corresponds to the on-time interval of a traditional boost converter. The voltage difference $V_{SW1} - V_{SW2}$ across the inductor equals V_{IN} . The inductor current I_L ramps up until it reaches a threshold I_{PEAK} set by the error amplifiers. The controller then turns off M4 and turns on M3. This switch configuration corresponds to the off-time interval of a traditional boost converter. The voltage difference $V_{SW1} - V_{OUT}$, which is negative. The inductor current now ramps down until the converter clock signals that the end of the switching cycle has been reached.

Copyright © 2023 Texas Instruments Incorporated

The on-time t_{on} equals the time interval during which M4 conducts. The off-time t_{off} equals the time interval during which M3 conducts. Because the converter operates in FCCM, the period τ equals the sum of t_{on} and t_{off} . During the boost state, the controller regulates power flow by adjusting the boost duty cycle D, which equals the ratio t_{on}/τ .

Boundaries of the Regions of Operation

Regions of Operation graphically depicts the four regions of operation and the boundaries between them. When $V_{BUS} > kV_{IN}$, the converter remains in the boost region of operation. The value k is 1.2. When $V_{IN} < V_{BUS} < kV_{IN}$, the converter enters the boost transition region of operation. When $V_{IN}/k < V_{BUS} < V_{IN}$, the converter enters the boost transition region of operation. When $V_{IN}/k < V_{BUS} < V_{IN}$, the converter enters the buck transition region of operation. When $V_{IN}/k < V_{BUS} < V_{IN}$, the converter enters the buck region of operation. The converter will cease operating if V_{IN} exceeds the OVP threshold, which lies between 18 and 20 V. Similarly, the converter will also cease operating if V_{IN} drops below either the internal UVLO threshold, which lies between 5 and 5.5 V, or the user programmed EN/UVLO threshold (see *VIN UVLO and ENABLE/UVLO*, whichever is greater).

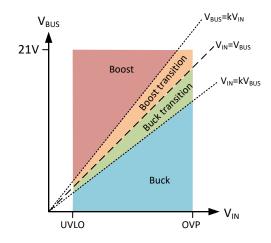
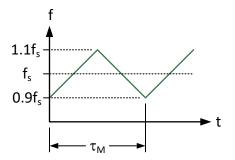
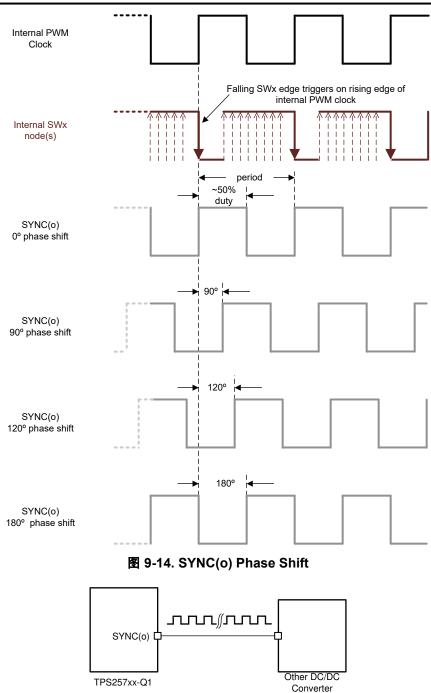



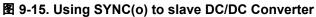
图 9-12. Regions of Operation

9.3.3.2 Switching Frequency, Frequency Dither, Phase-Shift and Synchronization

The PWM oscillator frequency (f_{sw}) is programmed by firmware using the application configuration GUI. The switching converter is intended for operation below the AM radio band (520 kHz - 1730 kHz). Three nominal f_{sw} settings below are available: 300 kHz, 400 kHz and 450 kHz.

Frequency dithering can be enabled by firmware via the application GUI. When enabled, the nominal oscillator frequency is dithered by $\pm FS_{SS}$ (approximately $\pm 10\%$) using triangular waveform modulation (see Dithering using triangular waveform modulation). The dither period τ_M is the reciprocal of the dither modulation frequency FS_{SS_MOD} . Two firmware selectable dither modulation frequencies FS_{SS_MOD} are available: 10 and 25 kHz. Dithering spreads the spectral peaks generated by switching, thereby reducing the peak harmonic levels and easing EMI filter design.




Multiple converters can be synchronized using the SYNC pin. This pin can be firmware-configured as either an output SYNC(o) or an input SYNC(i).

SYNC(o): The switching clock is placed on the SYNC(o) pin. This waveform will have a duty cycle of approximately 50%. If frequency dithering is configured by firmware, this signal will also exhibit dithering. Four phase settings are available by firmware configuration to shift the SYNC(o) output relative to the internal switching clock by 0°, 90°, 120°, or 180°. SYNC(o) is used to slave other DC/DC converter clocks to the switching converter clock inside the TPS25762-Q1. When two dc/dc converters operate out of phase, peak input current from the battery is reduced and total input bulk capacitance requirements decrease.

TEXAS INSTRUMENTS www.ti.com.cn

TPS25762-Q1 ZHCSP88A – DECEMBER 2022 – REVISED SEPTEMBER 2023

SYNC(i): The internal clock is synchronized to the pulse train on the SYNC(i) pin. This feature is used to slave the TPS25762-Q1 to an external clock. The period of this clock must meet synchronization requirements in SYNC(i) frequency ranges or the TPS25762-Q1 will instead use its internal switching clock. If an external clock deviates outside of the acceptable frequency range and then returns to within the acceptable frequency range, the TPS25762-Q1 will resume operation from the external clock after counting 8 consecutive clocks meeting the criteria of 表 9-5. When SYNC(i) is configured, frequency dithering is disabled when operating from the internal clock following a failure of the external clock.

表 9-5. SYNC(i) Frequency Ranges

f _{SW} Firmware Setting	Allowed SYNC(i) Frequency Range		
	MIN	MAX	
300 kHz	250 kHz	353 kHz	
400 kHz	334 kHz	470 kHz	
450 kHz	376 kHz	530 kHz	

9.3.3.3 VIN Supply and VIN Over-Voltage Protection

V_{IN} Supply

The voltage V_{IN} at the input supply pin IN, measured with respect to AGND, must meet the following requirements:

- Overvoltage: The voltage V_{IN} must never exceed an absolute maximum of 40 V, and should not exceed 36 V under anticipated operating conditions. Automotive applications will typically require an external transient suppressor to meet this requirement.
- Load dump: When the converter is running and V_{IN} exceeds 18 V, the positive slew rate dV_{IN}/dt must not exceed 200 V/ms.
- Double battery: When the converter is not running, the positive slew rate dV_{IN}/dt must not exceed 10 V/µs. The input EMI filter can help mitigate input voltage slew rates.
- **Reverse battery:** The voltage V_{IN} must never go below –0.3 V. Automotive applications will typically require external reverse voltage blocking circuitry.

The buck-boost switching converter is capable of delivering its full rated output power of 65 W over an input supply range 6.8 V < V_{IN} < 18 V. The input voltage can dip down to the UVLO threshold providing that the output power level is appropriately derated.

V_{IN} Overvoltage Protection Circuitry

The TPS25762-Q1 contains circuitry that protects the power train against load dump and double battery conditions. When VIN exceeds about 19 V, a comparator determines that an input overvoltage condition has occurred. This comparator sends a signal that shuts the switching converter down. Transistors M1, M2, and M3 in Buck-Boost Internal Power FETs are turned off, and transistor M4 is turned on. However, current is still flowing through the inductor. Two cases may exist: the current may flow forward (from SW1 to SW2) or in reverse (from SW2 to SW1). Reverse current flow will forward-bias the body diode of M1. The voltage across the inductor will then equal the sum of the forward voltage of this diode plus the input voltage, which is sufficient to cause the inductor voltage to rapidly ramp down to zero. Forward current flow will forward-bias the body diode of M2. After the inductor current is released, a small linear regulator biases SW1 to about 15 V. When the overvoltage condition is removed, the switching regulator may resume operation.

9.3.3.4 Feedback Paths and Error Amplifiers

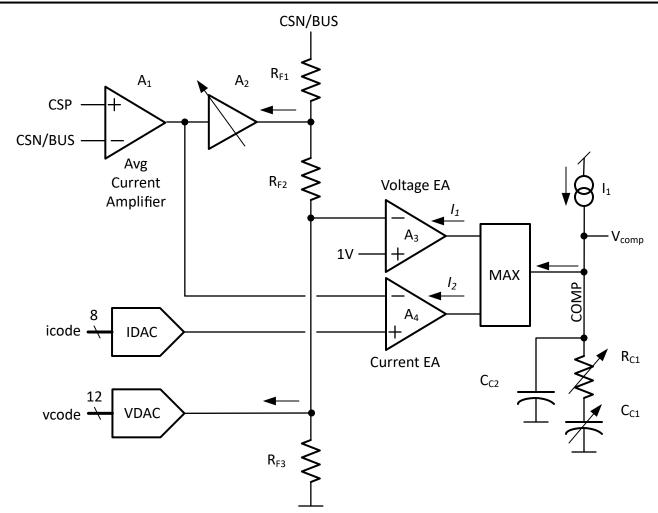


图 9-16. Simplified block diagram of feedback paths and error amplifiers.

9.3.3.5 Transconductors and Compensation

The TPS25762-Q1 is internally compensated. The overall slope compensation and loop compensation is internally fixed based on inductor and capacitance values shown in $\frac{1}{5}$ 10-1.

9.3.3.6 Output Voltage DAC, Soft-Start and Cable Droop Compensation

The buck-boost output voltage is regulated at the CSN/VBUS pin. A 12-bit digital-to-analog converter, VDAC, provides ± 20 -mV step voltage adjustments of V_{CSP/BUS} as commanded by device firmware.

After a successful cable detect event, firmware sets the VDAC to output 5 V as measured on the $V_{CSN/BUS}$ output. An internal clock steps up the VDAC codes from an initial 0 V to final 5-V setting producing a monotonic ramp of $V_{CSN/BUS}$ to 5 V at t_{SS} .

In some applications, the USB-PD controller may be located 1 m, or more, from the USB receptacle. When configured and enabled by firmware, cable droop compensation will increase the $V_{CSP/BUS}$ linearly with increasing load current independent of the VDAC setting. Four selectable V_{OUT_CDC} ranges are available. 500 mV is the maximum supported cable droop voltage and it is disabled by default during USB-PD PPS contracts.

9.3.3.7 V_{BUS} Overvoltage Protection

A fixed threshold overvoltage comparator monitors the CSN/BUS pin for overvoltage conditions. When the V_{CSN/BUS_OVP_R} threshold is exceeded, output OV protection circuitry turns off the internal MOSFETs. Switching resumes when $V_{CSN/BUS}$ decreases below V_{CSN/BUS_OVP_F} .

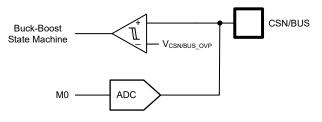


图 9-17. V_{BUS} OVP and UVP

9.3.3.8 V_{BUS} Undervoltage Protection

PA_VBUS undervoltage conditions are monitored by the internal ADC. In accordance with USB Power Delivery specifications, the TPS25762-Q1 firmware configures the threshold based on USB PD contract with the attached sink device.

9.3.3.9 Current Sense Resistor (R_{SNS}) and Current Limit Operation

The CSP and CSN/BUS pins are the positive and negative inputs to the average current sense amplifier (CSA). The TPS25762-Q1 devices sense port A load current across sense resistor, R_{SNS} , located between the CSP and CSN/BUS pins. A 10-m Ω , 1%, power resistor provides a 0 - 50-mV sense voltage over the range 0 ≤ I_{OUT} ≤ 5 A.

A seven bit digital-to-analog converter, IDAC, provides ±50-mA step current limit adjustments and is automatically programmed by device firmware.

9.3.3.10 Buck-Boost Peak Current Limits

The buck and boost peak current limits are adjustable by firmware using the application configuration GUI. Refer to the BUCK-BOOST PEAK CURRENT LIMITS in 节 7.6 of the *Electrical Characteristics* tables for selectable values.

In most applications it is desirable to limit input current to the automotive USB module to protect module components, connectors and wiring from over-current conditions. The worst case input current condition occurs when V_{IN} is minimum and $V_{CSN/BUS}$ is maximum (21 V) while supplying maximum 3.25 A output current. When $V_{IN} < V_{BUS}$, the internal DC/DC converter is operating in boost mode. Refer to the $\frac{1}{5}$ 10-6 tables in the *Inductor Currents* section to estimate the peak current versus recommended inductor value for the application.

The buck peak current limit setting selection should be just lower than the boost peak current limit. Set as close to the boost peak current limit as selections allow to prevent the possibility of limit cycling between the two peak current limits under extreme transients. $I_{PEAK(BUCK)} \cong I_{PEAK(BOOST)}$.

When selecting an inductor, it is important select one with an appropriate saturation current rating, $I_{L(SAT)}$. The inductor $I_{L(SAT)}$ rating should larger than the maximum (MAX) $I_{PEAK(BOOST)}$ limit from the *Electrical Characteristics* tables to avoid excessive current flow in the TPS25762-Q1 or the inductor.

9.3.4 USB-PD Physical Layer

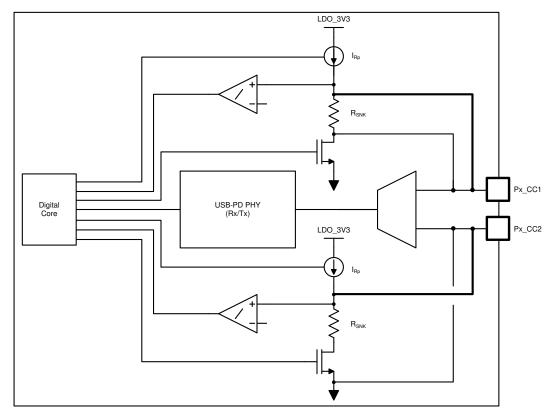
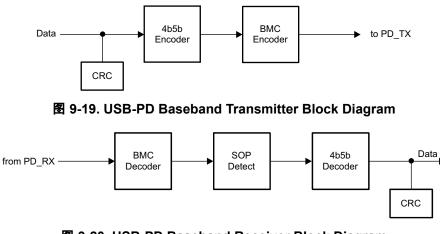



图 9-18. USB-PD Physical Layer and Simplified Plug and Orientation Detection Circuitry

USB-PD messages are transmitted in a USB Type-C system using a BMC (Biphase Mark Coding) signaling. The BMC signal is output on the same pin (Px_CC1 or Px_CC2) that is DC biased due to the Rp (or Rd) cable attach mechanism discussed in the USB-PD BMC Transmitter section.

9.3.4.1 USB-PD Encoding and Signaling

图 9-19 illustrates the high-level block diagram of the baseband USB-PD transmitter. 图 9-20 illustrates the high-level block diagram of the baseband USB-PD receiver.

9.3.4.2 USB-PD Bi-Phase Marked Coding

The USB-PD physical layer implemented in the TPS25762-Q1 is compliant to the *USB-PD Specifications*. The encoding scheme used for the baseband PD signal is a version of Manchester coding called Biphase Mark Coding (BMC). In this code, there is a transition at the start of every bit time and there is a second transition in the middle of the bit cell when a 1 is transmitted. This coding scheme is nearly DC balanced with limited disparity (limited to 1/2 bit over an arbitrary packet, so a very low DC level). 图 9-21 illustrates Biphase Mark Coding.

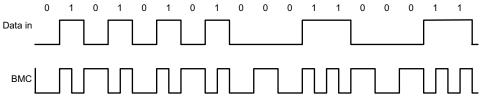
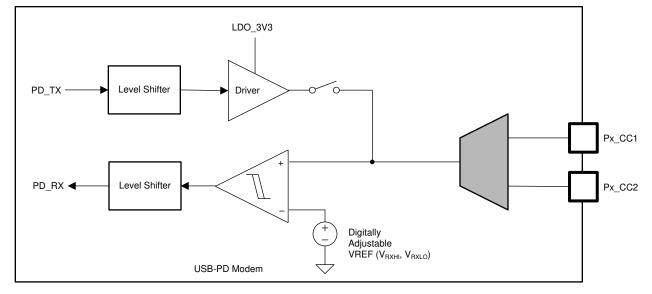


图 9-21. Biphase Mark Coding Example

The USB PD baseband signal is driven onto the Px_CC1 or Px_CC2 pin with a tri-state driver. The tri-state driver controls slew rate to limit coupling to D+/D- and to other signal lines in the Type-C fully featured cables. When sending the USB-PD preamble, the transmitter starts by transmitting a low level. The receiver at the other end tolerates the loss of the first edge. The transmitter terminates the final bit by an edge to ensure the receiver clocks the final bit of EOP.


9.3.4.3 USB-PD Transmit (TX) and Receive (Rx) Masks

The USB-PD driver meets the defined USB-PD BMC TX masks. Since a BMC coded "1" contains a signal edge at the beginning and middle of the UI, and the BMC coded "0" contains only an edge at the beginning, the masks are different for each. The USB-PD receiver meets the defined USB-PD BMC Rx masks. The boundaries of the Rx outer mask are specified to accommodate a change in signal amplitude due to the ground offset through the cable. The Rx masks are therefore larger than the boundaries of the TX outer mask. Similarly, the boundaries of the Rx inner mask are smaller than the boundaries of the TX inner mask. Triangular time masks are superimposed on the TX outer masks and defined at the signal transitions to require a minimum edge rate that has minimal impact on adjacent higher speed lanes. The TX inner mask enforces the maximum limits on the rise and fall times. Refer to the *USB-PD Specifications* for more details.

9.3.4.4 USB-PD BMC Transmitter

The TPS25762-Q1 transmits and receives USB-PD data over one of the Px_CCy pins for a given CC pin pair (one pair per USB Type-C port). The Px_CCy pins are also used to determine the cable orientation (see the *Cable Plug and Orientation Detection* section) and maintain cable/device attach detection. Thus, a DC bias exists on the Px_CCy pins. The transmitter driver overdrives the Px_CCy DC bias while transmitting, but returns to a Hi-Z state allowing the DC voltage to return to the Px_CCy pin when not transmitting. While either Px_CC1 or Px_CC2 may be used for transmitting and receiving, during a given connection only the one that mates with the CC pin of the plug is used; so there is no dynamic switching between Px_CC1 and Px_CC2. B 9-22 shows the USB-PD BMC TX and RX driver block diagram.

9-23 shows the transmission of the BMC data on top of the DC bias. Note, The DC bias can be anywhere between the minimum threshold for detecting a UFP attach and the maximum threshold for detecting a Sink attach to a Source. This means that the DC bias can be above or below the V_{OH} of the transmitter driver.

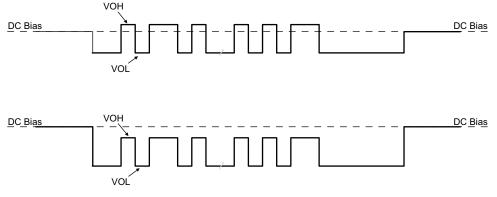


图 9-23. TX Driver Transmission with DC Bias

The transmitter drives a digital signal onto the Px_CCy lines. The signal peak, V_{TXHI}, is set to meet the TX masks defined in the *USB-PD Specifications*. Note that the TX mask is measured at the far-end of the cable.

When driving the line, the transmitter driver has an output impedance of Z_{DRIVER} . Z_{DRIVER} is determined by the driver resistance and the shunt capacitance of the source and is frequency dependent. Z_{DRIVER} impacts the noise ingression in the cable.

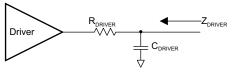


图 9-24. ZDRIVER Circuit

9.3.4.5 USB-PD BMC Receiver

The receiver block of the TPS25762-Q1 receives a signal that falls within the allowed Rx masks defined in the USB PD specification. The receive thresholds and hysteresis come from this mask.

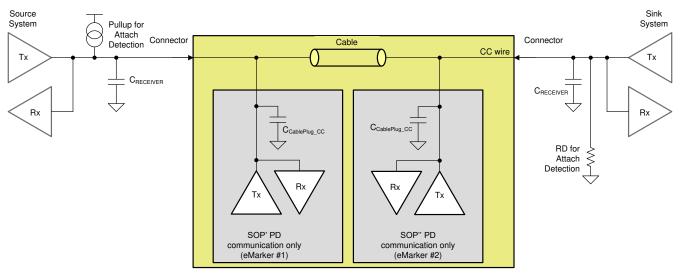
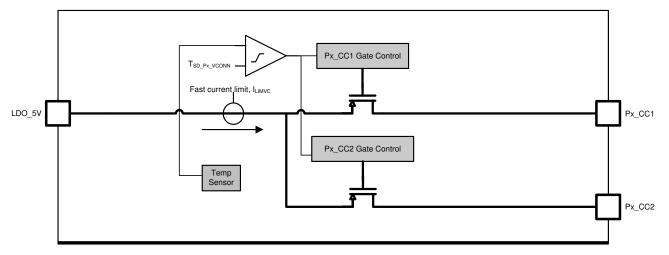


图 9-25. Example USB-PD Multi-Drop Configuration

9.3.4.6 Squelch Receiver


The TPS25762-Q1 has a squelch receiver to monitor for the bus idle condition as defined by the USB PD specification. The squelch receiver output reflects the state of the CC pin regardless of the source of the transmission.

9.3.5 VCONN

Internal VCONN sourcing power paths are firmware configurable. Using only the internal LDO_5V supply, PortA is able to draw 20 mA continuously. If an external 5-V regulator is connected to the LDO_5V pin and the application GUI settings are enabled, PortA is able to draw 200 mA continuously. When disabled, blocking FETs in the PortA VCONN paths protect the LDO_5V rail from high-voltage and reverse current.

When VCONN power is enabled and provided, the internal VCONN power switches have a current limit of I_{LIMVC} . If the VCONN load current exceeds I_{LIMVC} , the current clamping circuit activates within $t_{iOS_PP_CABLE}$ and the switch behaves as a constant current source. Reverse current blocking is disabled when current is flowing to Px_CC1 or Px_CC2.

图 9-26. VCONN Power Switches

When operating in current limit, the VCONN FET temperature rises. Local temperature sensors disable the Px_VCONN path in current limit when $T_{sensor} > T_{SD_Px_VCONN}$ within $t_{PP_CABLE_off}$. The application firmware enters USB Type-C Error Recovery on the affected port.

LDO_5V must remain above its under voltage lock out threshold ($V_{LDO_5V(UVLO_F)}$) for Px_VCONN operation. If the $V_{LDO_5V(UVLO_F)}$ threshold is reached, Px_VCONN paths are automatically disabled within $t_{PP_CABLE_off}$.

9.3.6 Cable Plug and Orientation Detection

When the port is operating as a Type-C source, the V_{REFx} nodes are multiplexed to the V_{SRC} thresholds corresponding to the advertised Type-C source capability current, I_{Rp} .

When the port is operating as a Type-C sink, the V_{REFx} nodes are multiplexed to the V_{SNK} thresholds corresponding to sink detection.

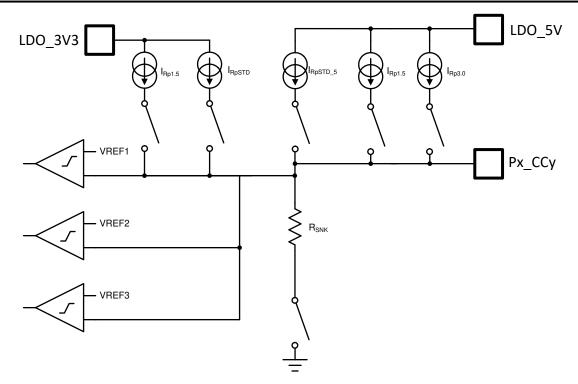


图 9-27. Plug and Orientation Detection Block

9.3.6.1 Configured as a Source

When either of the PA or PB ports is configured as a Source, the device detects when a cable or a Sink is attached using the Px_CC1 and Px_CC2 pins. When in a disconnected state, the device monitors the voltages on these pins to determine what, if anything, is connected. See *USB Type-C Specification* for more information.

表 9-6 shows the Cable Detect States for a Source.

Px_CC1	Px_CC2	CONNECTION STATE	RESULTING ACTION	
Open	Open	Nothing attached	Continue monitoring both Px_CCy pins for attach. Power is not applied to Px_VBUS or VCONN.	
Rd	Open	Sink attached	Monitor Px_CC1 for detach. Power is applied to Px_VBUS but not to VCONN (Px_CC2).	
Open	Rd	Sink attached	Monitor Px_CC2 for detach. Power is applied to Px_VBUS but not to VCONN (Px_CC1).	
Ra	Open	Powered Cable-No UFP attached	Monitor Px_CC2 for a Sink attach and Px_CC1 for cable detach. Power is not applied to Px_VBUS or VCONN (Px_CC1).	
Open	Ra	Powered Cable-No UFP attached	Monitor Px_CC1 for a Sink attach and Px_CC2 for cable detach. Power is not applied to Px_VBUS or VCONN (Px_CC2).	
Ra	Rd	Powered Cable-UFP Attached	Provide power on Px_VBUS and VCONN (Px_CC1) then monitor Px_CC2 for a Sink detach. Px_CC1 is not monitored for a detach.	
Rd	Ra	Powered Cable-UFP attached	Provide power on Px_VBUS and VCONN (Px_CC2) then monitor Px_CC1 for a Sink detach. Px_CC2 is not monitored for a detach.	

表 9-6. Cable Detect States for a Source

When a port is configured as a Source, a current $I_{Rp1.5A}$, is driven out of each Px_CCy pin and each pin is monitored for different states. When a Sink is attached to the pin a pull-down resistance of Rd to GND exists. The current $I_{Rp1.5A}$ is then forced across the resistance Rd generating a voltage at the Px_CCy pin. The device applies the configured $I_{Rp1.5A}$ until the buck-boost regulator is enabled and operating at 5 V, at which time application firmware may remain at $I_{Rp1.5A}$ or change to $I_{Rp3.0A}$.

Copyright © 2023 Texas Instruments Incorporated

When the Px_CCy pin is connected to an electronically marked cable VCONN input, the pull-down resistance is different (Ra). In this case the voltage on the Px_CCy pin will pull below V_{RDstd} and the system recognizes the electronically marked cable.

The $V_{Dstd1.5}$ or $V_{D3.0}$ threshold is monitored to detect a disconnection depending upon which Rp current source is active. When a connection has been recognized and the voltage on Px_CCy subsequently rises above the disconnect threshold for t_{CC} , the system registers a disconnection.

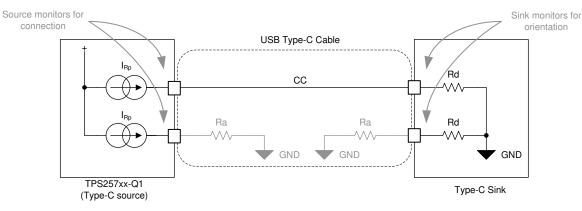


图 9-28. Type-C Cable

9.3.6.2 Configured as a Sink

When the TPS25762-Q1 port is configured as a Sink, such as in Firmware Update Mode with TVSP Index 8, the device presents a pull-down resistance R_{SNK} on each PA_CCy pin and waits for a Source to attach and pull-up the voltage on the pin. The Source pulls-up the PA_CCy pin by applying either a resistance or a current. The Sink detects an attachment by the presence of VBUS. The Sink determines the advertised current from the Source by the pull-up applied to the PA_CCy pin.

9.3.6.3 Overvoltage Protection (Px_CC1, Px_CC2)

Comparators on the Px_CCy pins detect when the voltage on CC1 or CC2 is too high, or there is reverse current into the LDO_5V output. During an overvoltage event, VCONN is disabled within tPP_CABLE_FSD and the associated USB PD transmitter is disabled.

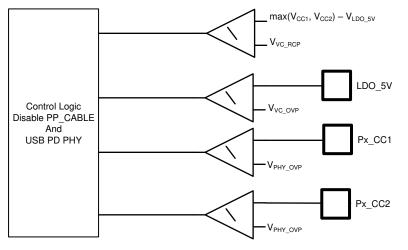


图 9-29. Over-voltage and Reverse Current Protection

9.3.7 ADC

The ADC is shown in 图 9-30. The ADC is an 8-bit successive approximation ADC. The input to the ADC is an analog input mux that supports multiple inputs from various voltages and currents in the device. The output from the ADC is available to be read and used by application firmware.

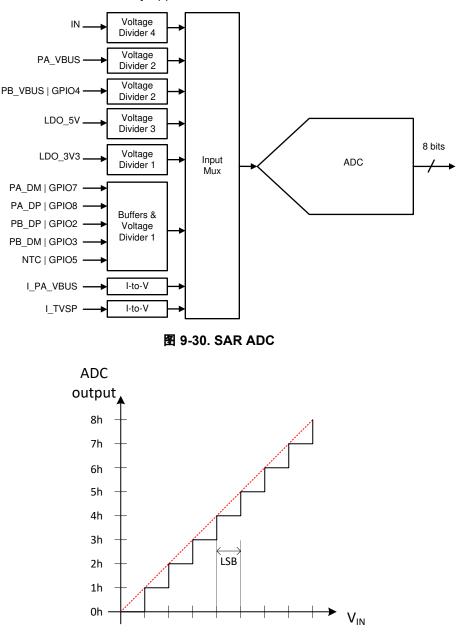


图 9-31. ADC Conversion

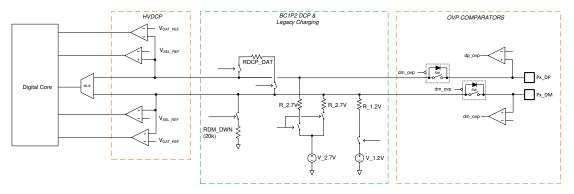
9.3.7.1 ADC Divider Ratios

The ADC voltage inputs are each divided down to the full-scale input of 1.2 V. The ADC current sensing elements are not divided.

表 9-7 shows the divider ratios for each ADC input. The application firmware may select any group of channels to be auto-sequenced in the round robin automatic readout mode.

Copyright © 2023 Texas Instruments Incorporated

CHANNEL	SIGNAL	ТҮРЕ	DIVIDER RATIO	BUFFERED
0	I_TVSP	Current	n/a	No
1	IN	Voltage	17	No
2	LDO_3V3	Voltage	3	No
3	PA_VBUS	Voltage	21	No
4	GPIO4 PB_VBUS	Voltage	21	No
5	I _{PA_VBUS}	Current	n/a	No
6	GPIO2 PB_DP	Voltage	3	Yes
7	GPIO3 PB_DM	Voltage	3	Yes
8	GPIO5 NTC	Voltage	3	Yes
9	GPIO7 PA_DM	Voltage	3	Yes
10	GPIO8 PA_DP	Voltage	3	Yes
11	LDO_5V	Voltage	5	No


9.3.8 BC 1.2, Legacy and Fast Charging Modes (Px_DP, Px_DM)

BC 1.2 downstream port charger emulation is application GUI configurable. The following charging modes can be enabled or disabled:

- DCP (Dedicated Charging Port) Shorted Mode
- Divider-3 Mode
- 1.2-V Mode
- HVDCP (High Voltage Dedicated Charging Port) Mode

The following table shows voltage sources, resistors and comparator hardware used in each mode. Symbol "X" represents that the corresponding module is implemented.

Application	2.7-V SRC	1.2-V SRC	R _{DCP_DAT}	R _{DM_DWN} (20 kΩ)	V _{DAT_REF}	V _{SEL_REF}
DCP			Х			
Divider-3	Х					
1.2 V		Х	Х			
HVDCP				Х	Х	Х

图 9-32. BC1P2 Functional Diagram

9.3.9 USB2.0 Low-Speed Endpoint

The USB low-speed Endpoint is a USB 2.0 low-speed (1.5 Mbps) interface used to support HID class based accesses. The TPS25762-Q1 supports control of endpoint EP0. This endpoint enumerates to a USB 2.0 host

during firmware update mode. Firmware update mode is entered with when the device is powered on with an R_{TVSP} corresponding to TVSP Index 8.

图 9-33 shows the USB Endpoint physical layer. The physical layer consists of the analog transceiver, the Serial Interface Engine, and the Endpoint FIFOs and supports low-speed USB operation.

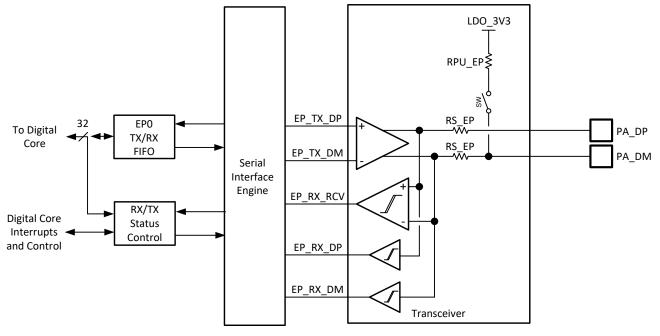


图 9-33. USB Endpoint PHY

The transceiver is made up of a fully differential output driver, a differential to single-ended receive buffer and two single-ended receive buffers on the D+/D- independently. The output driver drives the D+/D- through a source resistance RS_EP. RPU_EP is disconnected during transmit mode of the transceiver.

When the endpoint is in receive mode, the resistance RPU_EP is connected to the PA_DM pin. The RPU_EP resistance advertises low speed mode only.

9.3.10 Digital Interfaces

The TPS25762-Q1 contains one I²C controller which used for communicating with I²C target devices. Depending upon application GUI firmware configuration, an I²C target and GPIOs may be available.

9.3.10.1 General GPIO

An application configuration GUI manages the multi-function pins which contain General Purpose Input/Output functionality. Each buffer is configurable to be a push-pull output or open drain output. When configured as an input, the signal can be a de-glitched digital input or an analog input to the ADC (only designated pins). The push-pull output is a simple CMOS totem-pole structure. Independent pull-up and pull-down enables can be configured using the application GUI. When interfacing with <u>non</u> 3.3-V I/O devices the output buffer should be configured as an open drain output and an external pull-up resistor attached to the GPIO pin.

9.3.10.2 I²C Buffer

The TPS25762-Q1 features two I²C interfaces that each use an I²C I/O driver like the one shown in 8 9-34. This I/O consists of an open-drain output and an input comparator with de-glitching.

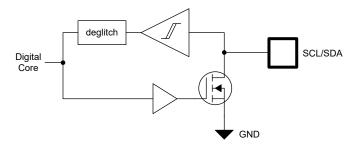


图 9-34. I²C Driver

9.3.11 I²C Interface

The TPS25762-Q1 has two I^2C ports. I^2C1 is a controller interface. I^2C2 is a target interface.

I²C1 is used to read from or write to external target devices. During boot I²C1 is configured to read firmware patch and application configuration data from an external EEPROM with target address 0x50.

Depending upon application configuration, the TPS25762-Q1 may expose target port, I^2C2 , using multi-function pins: GPIO2 (I^2C_SCL2), GPIO3 (I^2C_SDA2). When the TPS257xx-Q1 is used in systems with a HUB or MCU, the I^2C2 port can provide connection status and telemetry information as well as transfer firmware updates from the HUB or MCU to an EEPROM connected on I^2C1 .

 \overline{IRQ} functionality depends upon firmware application configuration. \overline{IRQ} is not always available on both I²C1 and I²C2 simultaneously. the IRQ is available as follows:

- Multi-function pin GPIO9: IRQ1(i), IRQ1(o), IRQ2(o)
- Multi-function pin GPIO1: IRQ2(o)

Where (i) = operates as an input, and (o) = operates as output.

In HUB applications where I²C control is not used, GPIO9 can be configured as a simple FAULT pin reporting port over-current conditions as required by the USB 2.0 specifications.

表 9-8. I²C Summary

I2C Bus	Туре	Typical Usage	Max Bus Frequency
I2C1c	Controller	Connect to I ² C EEPROM, USB Type-C mux, I2C temperature sensor, I2C GPIO expander, or other I2C target. Use LDO_5V or LDO_3V3 pin as the pull-up voltage. Multi-controller configuration is not supported.	1 MHz (Fast Mode Plus)
I2C2t	Target	Connect to I ² C capable USB HUB, MCU or automotive processor.	1 MHz (Fast Mode Plus)

9.3.11.1 I²C Interface Description

The I²C1 and I²C2 ports support Standard, Fast Mode, and Fast Mode Plus I²C interfaces. The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a supply through a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

A controller sending a Start condition, a high-to-low transition on the SDA input/output, while the SCL input is high initiates I^2C communication. After the Start condition, the device address byte is sent, most significant bit (MSB) first, including the data direction bit (R/W).

After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/output during the high of the ACK-related clock pulse. On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period as changes in the data line at this time are interpreted as control commands (Start or Stop). The controller sends a Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high.

Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period. When a

target receiver is addressed, it must generate an ACK after each byte is received. Similarly, the controller must generate an ACK after each byte that it receives from the target transmitter. Setup and hold times must be met to ensure proper operation.

A controller receiver signals an end of data to the target transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the target. The controller receiver holding the SDA line high does this. In this event, the target transmitter must release the data line to enable the controller to generate a Stop condition.

图 9-35 shows the start and stop conditions of the transfer. 图 9-36 shows the SDA and SCL signals for transferring a bit. 图 9-37 shows a data transfer sequence with the ACK or NACK at the last clock pulse.

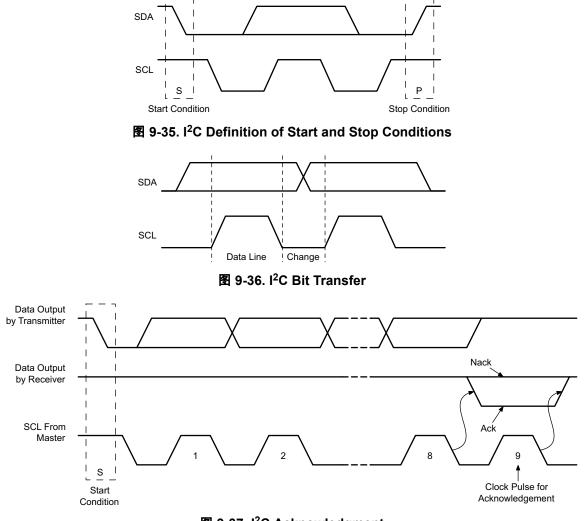


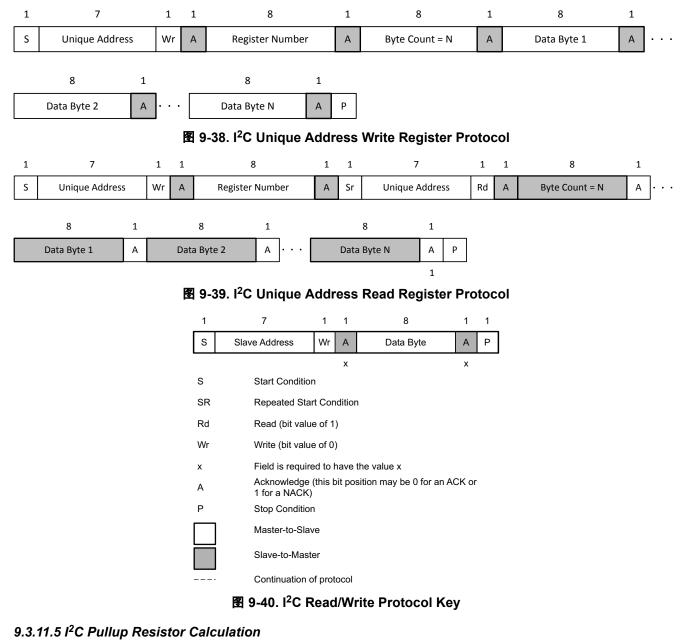
图 9-37. I²C Acknowledgment

9.3.11.2 I²C Clock Stretching

Clock stretching for I^2C2 . The target I^2C port may hold the clock line (SCL) low after receiving (or sending) a byte, indicating that it is not yet ready to process more data. The controller communicating with the target must not finish the transmission of the current bit and must wait until the clock line actually goes high. When the target is clock stretching, the clock line remains low.

The controller must wait until it observes the clock line transitioning high plus an additional minimum time (4 μ s for standard 100-kbps I²C) before pulling the clock low again.

Any clock pulse may be stretched but typically it is the interval before or after the acknowledgment bit.



9.3.11.3 I²C Address Setting

A HUB, MCU, or automotive processor host should only use I²C_SCL2 and I²C_SDA2 for loading a firmware patches or general status communication. Once the boot process is complete, each I²C port is assigned a unique target address as determined by the TVSP pin. The target address used by each port on the I2C2s bus are determined from the application configuration.

9.3.11.4 Unique Address Interface

The Unique Address Interface allows for complex interaction between an I^2C controller and a single TPS25762-Q1. The I^2C target sub-address is used to receive or respond to Host Interface protocol commands. (2) 9-38 and (2) 9-39 show the write and read protocol for the I^2C target interface, and a key is included in (2) 9-40 to explain the terminology used. The key to the protocol diagrams is in the SMBus Specification and is repeated here in part.

Typical value for R_P , the I²C pullup resistor is given by:

$R_P = t_r / (0.8473 \times C_b)$

Refer to $\frac{1}{8}$ 9-9 for values of t_r, C_b and V_{OL}.

Parameter		Standard Mode (Max)	Fast Mode (Max)	Fast Mode Plus (Max)	Unit
f _{SCL}	SCL clock frequency	100	400	1000	kHz
tr	Rise time of both SDA and SCL signals	1000	300	120	ns
C _b	Capacitive load for each bus line	400	400	550	pF
	Low-level output voltage (at 3-mA current sink, V _{DD} > 2 V)	0.4	0.4	0.4	V
V _{OL}	Low-level output voltage (at 2-mA current sink, $V_{DD} \le 2 V$)	_	$0.2 \times V_{DD}$	$0.2 \times V_{DD}$	v

For additional background regarding I2C pullup resistor calculations, please refer to application report, *I*²*C Bus Pullup Resistor Calculation*.

9.3.12 Digital Core

图 9-41 shows a simplified block diagram of the digital core.

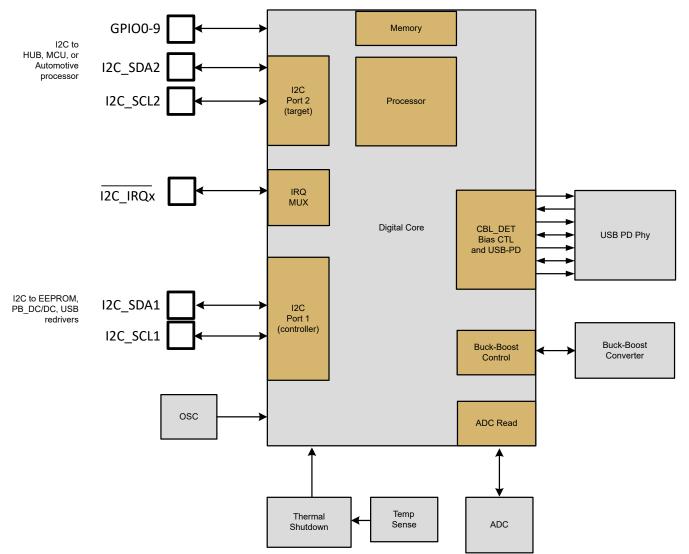
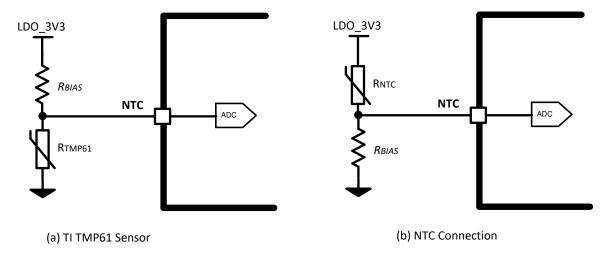


图 9-41. Digital Core Simplified Block Diagram

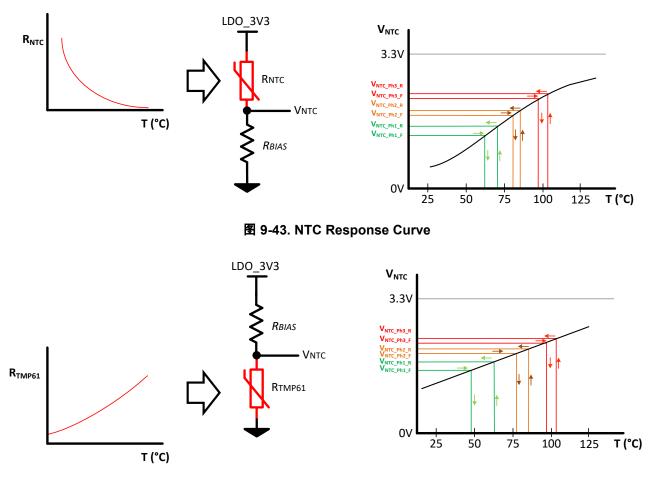
9.3.12.1 Device Memory

The digital core contains a combination of ROM, SRAM, and OTP. ROM and SRAM function as the storage and operational space for application firmware. OTP contains boot configuration settings. There are 27 kBytes of SRAM, 160 kBytes of ROM, and 512 bytes of OTP.


9.3.12.2 Core Microprocessor

The digital core is an ARM M0+ clocked at 24MHz with zero wait states.

9.3.13 NTC Input


The NTC pin is used by the device firmware to monitor system temperature. Rising or falling voltages on the NTC pin indicate increasing or decreasing system temperatures, respectively. To achieve a positive temperature slope on the TPS25762-Q1 NTC pin, thermistors should be connected to LDO_3V3 as shown in 🕅 9-42.

See $\[B]$ 9-43 and $\[B]$ 9-44. Using the application configuration GUI, the user can configure system power policy management responses for up to three V_{NTC} voltages.

备注

For optimum accuracy, use the V_{LDO_3V3} specifications in *Electrical Characteristics* tables when performing resistor divider calculations.

9.3.14 Thermal Sensors and Thermal Shutdown

There are five internal thermal sensors in the TPS25762-Q1 devices:

- T_{SD_BB}. Two diode OR'ed thermal sensors to monitor buck-boost power FETs. Disables buck-boost regulator when asserted. USB-PD engine enters error recovery.
- T_{SD_PA_VCONN}. One thermal sensor located in the PA_VCONN path. Opens PA_VCONN FET during overtemperature event. USB-PD engine enters error recovery.
- •
- T_{SD_PA_VBUS_DISCH}. One thermal sensor located in the PA_VBUS discharge path. Opens PA_VBUS discharge FET during over-temperature. Closes PA_VBUS discharge FET when temperature decreases below falling hysteresis. (T_{SD_HYS}) if PA_VBUS is above discharge threshold set by firmware during decreasing VBUS transition.
- T_{SD_LDO5V}. One thermal sensor located in the LDO_5V regulator. Operates as master thermal shutdown. Disables device completely during over-temperature events causing M0 to hard reset. Allows device operation when temperature decreases below falling hysteresis (T_{SD_HYS}).

9.4 Device Functional Modes

Shutdown Mode

The EN/UVLO pin provides electrical ON and OFF control for the TPS25762-Q1. When $V_{EN/UVLO}$ is below 1.15 V (typ), the device is in shutdown mode in which the Cortex M0 is disabled and only minimal analog functions are operating. Refer to VIN UVLO and Enable/UVLO section for the detailed description of the EN/UVLO pin functionality.

Active Mode

The TPS25762-Q1 enters active mode when $V_{EN/UVLO}$ is above its rising threshold, $V_{EN(OPER)}$, and the supply voltage on the IN pin is above the V_{IN} undervoltage lockout threshold, $V_{IN(UVLO_R)}$. In active mode, the internal analog circuits are fully operational with the M0 enabled and executing firmware from ROM.

At the onset of active mode, firmware boot code will attempt to measure the resistance on the TVSP pin and decode a TVSP Index value. Upon successful configuration and firmware patch load, the device is ready to begin operation per configuration settings stored on the external EEPROM. If the configuration and patch data do not load successfully due to communications error the device will continue to operate with only Port A enabled with standard Type-C functionality. Index value 8 is reserved for use when updating device configuration and firmware patch information through the TPS25762-Q1 GUI and Port A connection. Once device boot is complete, device firmware will control and manage USB connections in accordance with loaded application configuration settings.

10 Application and Implementation

备注

以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定 器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

10.1 Application Information

The TPS25762-Q1 application GUI provides default settings suitable for most applications.

The most common implementations are dual port USB PD charger and dual port USB PD with USB HUB. Consult the TPS2576x, TPS2577x Configuration GUI User's Guide and application GUI for additional configurations.

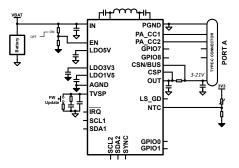
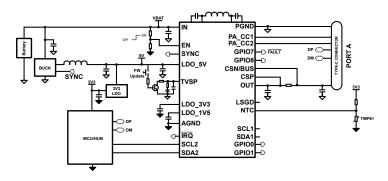
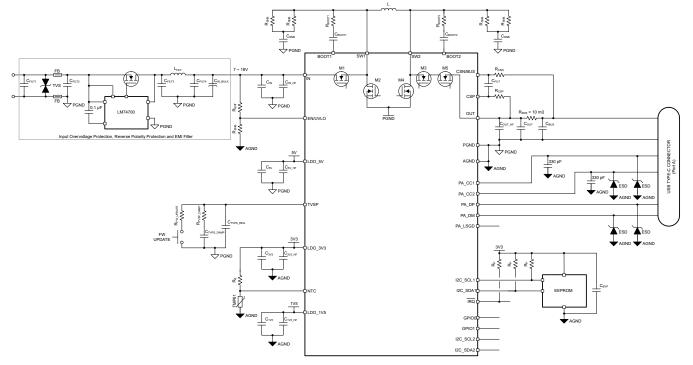



图 10-1. Simplified Single USB PD Charger



Typical Application describes a detailed step-by-step design procedure for a typical charger application circuit.

10.2 Typical Application

图 10-3 Shows a typical example of a 65 W output automotive USB Type-C Power Delivery port. The device is internally compensated and optimized for components shown in 表 10-1.

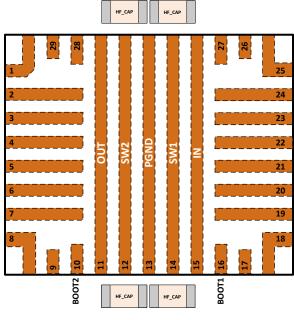


图 10-3. TPS25762-Q1 Application Schematic

f _{SW}	C _{IN} + C _{HF}	L	MIN of C _{OUT} + C _{BUS}	C _{OUT} + C _{HF}	C _{BUS}
300	22 μF + 2 × 0.1 μF	4.7 µH	160 µF	30 µF + 2 × 0.1 µF	130 μF + 2 × 0.1 μF
400	22 μF + 2 ×0.1 μF	4.7 µH	120 µF	30 μF + 2 × 0.1 μF	90 μF + 2 × 0.1 μF
400	22 μF + 2 × 0.1 μF	3.3 µH	140 µF	30 μF + 2 × 0.1 μF	110 μF + 2 × 0.1 μF
450	22 μF + 2 × 0.1 μF	3.3 µH	140 µF	30 µF + 2 × 0.1 µF	110 μF + 2 × 0.1 μF

• 50 V rated capacitors recommended.

Inductor

图 10-4. Input and Output C_{HF} Capacitor Placement

To ensure adequate decoupling of V_{IN} and V_{OUT} and robust device operation, use two 0.1 μ F, C_{HF} capacitors per node, placed on opposite sides of the IC package, as close to the pins as possible. Typically, the inductor is placed on the same PCB layer (top or bottom) as the IC package. The C_{HF} capacitors on the inductor end of the IC package may be placed on the opposite side of the PCB (bottom or top) using vias to minimize trace length from the inductor side IN and OUT pins to the physical location of these capacitors.

表 10-2. Recommended SWx Snubber and Current Sense Filter Comp	onents
---	--------

SW1 ⁽¹⁾		sw	2 ⁽²⁾		CSP & CSN Filter (3)
R_{SNB} (0.25 W)	С_{SNB} (50 V)	R_{SNB} (0.25 W)	С_{SNB} (50 V)	R_{CSP} (0.1 W)	R_{CSN} (0.1 W)	C_{FLT} (50 V)
2.2 Ω 2.2 Ω	1 nf	2.2 Ω 2.2 Ω	3.3 nF	10 Ω	0 Ω	0.22 µF

- 1. As needed for EMI mitigation user optional. (Use of this snubber can also aid in supporting devices with high initial inrush load current that exceeds the power delivery specification.)
- 2. Required for robust device operation.
- 3. **Required** to meet USB-IF current regulation requirements.

10.2.1 Design Requirements

For this example, $\frac{10-3}{2}$ are used as the target parameters.

表 10-3. Design Inputs			
DESIGN PARAMETER	EXAMPLE VALUE		
Input Voltage Range	6.8 V to 18 V (transients to 36 V)		
UVLO Turn on Voltage	6.5 V		
USB PD Power	65 W		
USB PD V _{BUS} Voltages	5 V, 9 V, 15 V, 20 V and 3.3 to 21 V (PPS)		
Output	3.3 - 21 V		
Load Current	PDO: 5 V, 3 A; 9 V, 3 A; 15 V, 3 A, 20 V, 3.25 A APDO: 3.3 - 21 V, 3 A		
Switching Frequency	400 kHz		
V _{CONN}	0.1 W		

表 10-3. Design Inputs (continued)		
DESIGN PARAMETER	EXAMPLE VALUE	
Automotive Module Maximum Current	15 A	

10.2.2 Detailed Design Procedure

10.2.2.1 Application GUI Selections

Use the application GUI to select the desired operating conditions. Once complete, save the settings to the programming PC, flash the firmware to EEPROM, and power cycle device. Once complete the TPS25762-Q1 will be ready for operation.

表 10-4. Application GUI Selections				
PARAMETER GUI SELECTION				
BUCK-BOOST AND USB INPUTS				
Port A V _{BUS} Power	65 W			
Port A PDOs and APDOs	PDO: 5 V, 3 A; 9 V, 3 A; 15 V, 3 A; 20 V, 3.25 A APDO: 3.3 - 21 V, 3A			
Port A V _{CONN} Power	0.1 W			
f _{SW} Switching Frequency	400 kHz			
L Inductor 4.7 µH				
Automotive Module Maximum Current 15 A				
LOW BATTERY INPUTS	i			
Engine ON voltage	12.5 V			
Engine OFF voltage	11 V			
Run timer after engine off	600 seconds			
THERMAL MANAGEMENT INPUTS				
V _{NTC_PHASE1}	1.65 V			
NTC_PHASE1 Power as Percentage of MAX	50 %			
TC_PHASE2 2.1 V				
TC_PHASE2 Power as Percentage of MAX 30 %				
V _{NTC_PHASE3}	2.4 V			
NTC_PHASE3 Power as Percentage of MAX	0 % (disable PA_VBUS)			

10.2.2.2 EEPROM Selection

An EEPROM is required to store user application configuration data as any firmware patch updates released by Texas Instruments during the life of the product.

Basic requirements:

- 32kB (256kb)
- 7 Bit I2C address (0x50)
- Organization: 32kb x 8 (totals 256kb)
- Active firmware image is stored in one 16kb x 8 partition. The previous firmware image is retained in the other 16kb x 8 partition for reliability.
- Page size/buffer should be 64b

Manufacturer	Part Number		
On Semi	CAV24C256		
Microchip	24LC256		
ST Micro	M24256		

表 10-5. Suggested EEPROMs

表 10-5. Suggested EEPROMs (continued)

Manufacturer		Part Number	
	Rohm	BRA24T512=3AM	

10.2.2.3 EN/UVLO

The TPS25762-Q1 has a fixed V_{IN(UVLO)} with rising and falling thresholds between 5 and 5.5 V, refer to \ddagger 7.6 for exact values. The falling threshold, V_{IN(UVLO_F)}, disables the device when the battery voltage is too low for continued operation. To establish a turn on voltage higher than V_{IN(UVLO_R)}, connect a resistor divider from the IN supply voltage to the EN/UVLO pin. When V_{EN/UVLO} > V_{EN(OPER)}, nominally 1.25 V, the device exits low power shutdown and begins to startup.

In this example a V_{IN} turn on voltage of approximately 6.5 V is required. Use the equations and examples below to determine the required resistor values.

- Choose standard value $R_{ENB} = 22 \text{ k}\Omega$.
- Calculate R_{ENT}

$$R_{ENT} = \left(\frac{V_{ON}}{V_{EN(OPER)}} - 1\right) \times R_{ENB}$$
(3)

$$R_{\rm ENT} = \left(\frac{6.5 \,\mathrm{V}}{1.25 \,\mathrm{V}} - 1\right) \times 22 \,\mathrm{k}\Omega = 92.4 \,\mathrm{k}\Omega \tag{4}$$

- Select a standard value of 91 kΩ.
- Using 22 kΩ and 91 kΩ. Rearranging 方程式 3 results in

$$V_{ON} = \left(\frac{R_{ENT}}{R_{ENB}} + 1\right) \times V_{EN(OPER)}$$
(5)

$$V_{\rm ON} = \left(\frac{91\,\rm k\Omega}{22\,\rm k\Omega} + 1\right) \times 1.25\,\rm V = 6.42\,\rm V \tag{6}$$

Calculate V_{OFF}

$$V_{\rm OFF} = \left(1 - \frac{V_{\rm EN(\rm HYS)}}{V_{\rm EN(\rm OPER)}}\right) \times V_{\rm ON}$$
(7)

$$V_{\rm OFF} = \left(1 - \frac{0.1 \,\rm V}{1.25 \,\rm V}\right) \times 6.42 \,\rm V = 5.91 \,\rm V \tag{8}$$

 Lastly, confirm the selected resistors do not trigger the EN/UVLO pin MAX clamp voltage. Assuming 36 V as a maximum V_{IN} transient.

$$V_{EN/UVLO(MAX)} = \left(\frac{V_{IN}(MAX) \times R_{ENB}}{R_{ENT} + R_{ENB}}\right)$$
(9)

$$V_{\text{EN/UVLO(MAX)}} = \left(\frac{36 \text{ V} \times 22 \text{ k}\Omega}{22 \text{ k}\Omega + 91 \text{ k}\Omega}\right) = 7 \text{ V}$$
(10)

• The result, 7 V, is less than the EN/UVLO pin maximum clamp voltage.

10.2.2.4 Sense Resistor, R_{SNS} , R_{CSP} , R_{CSN} and C_{FILT}

The TPS25762-Q1 requires a 10-m Ω resistance between the CSP and CSN/BUS pins. For accurate current limit regulation, ±1% precision or better is required. For a DC output current of 3.25 A, the power dissipation in the resistor is

 I^2 R, or $(3.25 \text{ A})^2 \times 0.01 \Omega = 0.106 \text{ W}.$

A power resistor with 0.33-W rating, ± 1% tolerance and 2010 case is chosen. Check the manufacturers power derating curves when selecting the component. Most derate maximum power above 70°C.

An RC filter network is required on the CSP and CSN/BUS pins for proper USB PD PPS current limit accuracy. A filter network with $R_{CSP} = 10 \Omega$, $R_{CSN} = 0 \Omega$, and filter capacitor, $C_{FILT} = 0.22 \mu$ F is recommended. Suggested RC filter component ratings are shown in $\frac{1}{5}$ 10-2. R_{CSN} must be zero ohm to avoid interfering with the V_{BUS} discharge functionality.

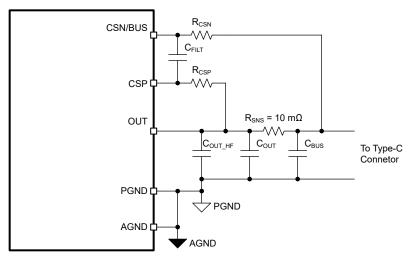


图 10-5. Current Sense Amplifier: RC Filter Components

10.2.2.5 Inductor Currents

 $\frac{10}{10}$ lists recommended inductor values based on desired switching frequency, f_{SW} . The following equations were used to derive the values in the *Buck Calculation* and *Boost Calculation* results tables below.

$$D_{BUCK} = \frac{V_{OUT}}{V_{IN(MAX)} \times \eta}$$
(11)

$$D_{BOOST} = 1 - \frac{V_{IN(MIN)} \times \eta}{V_{OUT}}$$
(12)

where

- V_{IN(MAX)} = maximum input voltage
- V_{IN(MIN)}['] = minimum input voltage
- V_{OUT} = output voltage
- D_{BUCK} = minimum duty cycle for buck mode
- D_{BOOST} = maximum duty cycle for boost mode
- η = estimated efficiency calculated at V_{IN}, V_{OUT}, and I_{OUT}

Buck Mode

$$I_{SW_BUCK(MAX)} = \frac{\Delta I_{L_BUCK(MAX)}}{2} + I_{OUT}$$

$$\Delta I_{L_{BUCK(MAX)}} = \frac{(V_{IN(MAX)} - V_{OUT(MIN)}) \times D_{BUCK}}{f_{SW} \times L}$$

where

(13)

(14)

(15)

- V_{IN(MAX)} = maximum input voltage
- V_{OUT(MIN)} = minimum output voltage
- I_{OUT} = maximum DC output current
- $\Delta I_{L-BUCK(MAX)}$ = maximum ripple current through the inductor when in buck operation
- I_{SW BUCK(MAX)} = maximum switch current when in buck operation
- D_{BUCK} = minimum duty cycle for buck operation
- f_{SW} = switching frequency of the converter
- L = selected inductor value

$$I_{MAXOUT(BUCK)} = I_{PEAK(BUCK)} - \frac{\Delta I_{L_BUCK(MAX)}}{2}$$

where

- I_{MAXOUT(BUCK)} = maximum deliverable current through inductor by the converter
- I_{PEAK(BUCK)} = buck switch peak current limit from *Electrical Characteristics* table
- ΔI_{L BUCK(MAX)} = Ripple current through the inductor calculated in 方程式 14.

Boost Mode

$$I_{SW_BOOST(MAX)} = \frac{\Delta I_{L_BOOST(MAX)}}{2} + \frac{I_{OUT}}{1 - D_{BOOST}}$$
(16)

$$\Delta I_{L_BOOST(MAX)} = \frac{V_{IN(MIN)} \times D_{BOOST}}{f_{SW} \times L}$$
(17)

where

- V_{IN(MIN)} = minimum input voltage
- V_{OUT(MAX)} = desired output voltage
- I_{OUT} = desired output current
- $\Delta I_{L BOOST(MAX)}$ = maximum ripple current through the inductor in boost operation
- I_{SW BOOST(MAX)} = maximum switch current in boost operation
- D_{BOOST} = maximum duty cycle for boost operation
- f_{SW}= switching frequency of the converter
- L = selected inductor value

$$I_{MAXOUT(BOOST)} = \left(I_{PEAK(BOOST)} - \frac{\Delta I_{L_BOOST(MAX)}}{2}\right) \times (1 - D_{BOOST})$$
(18)

where

- I_{MAXOUT(BOOST)} = maximum deliverable current through inductor by the converter
- D_{BOOST} = maximum duty cycle for boost mode
- I_{PEAK(BOOST)} = boost switch peak current limit from *Electrical Characteristics* table
- ΔI_{L MAX(BOOST)} = Ripple current through the inductor calculated in 方程式 17.

Buck Operation

 $\frac{10-6}{10-6}$ provides the tabulated ΔI_{L BUCK(MAX)} and I_{SW BUCK(MAX)} for the conditions below.

- η = 0.95
- V_{IN(MAX)} = 18 V

- V_{OUT(MIN)} = 3.3 V
- D_{BUCK(MIN)} = 0.193

∞ 10-0. Duck calculation Results ($E = 4.7 \mu m$), BUS = 5 A				
f _{SW} (kHz)	І _{ОՍТ} (А)	ΔI _{L_BUCK(MAX)} (A)	I _{SW_BUCK(MAX)} (A)	
300	3.00	2.87	4.44	
400	3.00	2.15	4.08	
450	3.00	1.91	3.96	
300	3.00	2.01	4.01	
400	3.00	1.51	3.76	
450	3.00	1.34	3.67	

表 10-6. Buck Calculation Results (L = 4.7 μ H), I_{BUS} = 3 A

Boost Operation

 $\frac{10-7}{10-7}$ provides the tabulated ΔI_{L_BOOST(MAX)}, I_{SW_BOOST(MAX)}, suggested GUI I_{PEAK(BOOST)} (MIN) settings for the maximum output power conditions shown below.

If $I_{SW_BOOST(MAX)} > I_{PEAK(BOOST)}$ (MIN) $\rightarrow V_{BUS}$ dropout likely.

If $I_{SW_BOOST(MAX)} < I_{PEAK(BOOST)}$ (MIN) $\rightarrow V_{BUS}$ regulates normally.

- η = 0.95
- $\dot{V}_{IN(MIN)}$ = 5.5 V to 9 V
- V_{OUT(MAX)} = 21 V
- I_{OUT} = 3 Á

To be noted, the calculation here uses 21V 3 A instead of 20 V 3.25A because 21 V 3A has bigger inductor peak current.

表 10-7. Boost Calculation Results (L = 4.7 μH), I _{BUS} = 3 A					
f _{SW} (kHz)	V _{IN(MIN)} (V)	D _{BOOST(MAX)}	ΔI _{L_BOOST(MAX)} (A)	I _{SW_BOOST(MAX)} (A)	GUI ⁽¹⁾ I _{PEAK(BOOST)} (A)
	5.5	0.751	2.93	13.51	12.3
	6	0.729	3.10	12.62	12.3
	6.5	0.706	3.25	11.83	12.3
200	7	0.683	3.39	11.16	12.3
300	7.5	0.661	3.52	10.61	10.8
-	8	0.638	3.62	10.10	10.8
	8.5	0.615	3.71	9.65	10.8
	9	0.593	3.79	9.27	9.3
	5.5	0.751	2.20	13.15	12.3
	6	0.729	2.33	12.24	12.3
-	6.5	0.706	2.44	11.42	12.3
100	7	0.683	2.54	10.73	10.8
400	7.5	0.661	2.64	10.17	10.8
	8	0.638	2.71	9.64	10.8
	8.5	0.615	2.78	9.18	9.3
	9	0.593	2.84	8.79	9.3

表 10-7. Boost Calculation Results (L = 4.7 μH), I_{BUS} = 3 A

f _{SW} (kHz)	V _{IN(MIN)} (V)	D _{BOOST(MAX)}	ΔI _{L_BOOST(MAX)} (A)	Isw_boost(max) (A)	GUI ⁽¹⁾ I _{PEAK(BOOST)} (A)
	5.5	0.751	1.95	13.02	12.3
	6	0.729	2.07	12.11	12.3
	6.5	0.706	2.17	11.29	12.3
450	7	0.683	2.26	10.59	10.8
450	7.5	0.661	2.34	10.02	10.8
	8	0.638	2.41	9.49	9.3
	8.5	0.615	2.47	9.03	9.3
	9	0.593	2.51	8.63	9.3

表 10-7. Boost Calculation Results (L = 4.7 μ H), I_{BUS} = 3 A (continued)

(1) MIN value of boost peak ILIM shown. See electrical characteristics table for MIN, TYP, MAX values.

10.2.2.6 Output Capacitor

In the boost mode, the output capacitor conducts high ripple current. The output capacitor RMS ripple current is given by 5 Rd 19 where the minimum V_{IN} corresponds to the maximum capacitor current.

$$I_{\text{COUT}(\text{RMS})} = I_{\text{OUT}} \times \sqrt{\frac{V_{\text{OUT}}}{V_{\text{IN}}} - 1}$$
(19)

In this example the maximum output ripple RMS current is $I_{COUT(RMS)}$ = 3.18 A. A 5-m Ω output capacitor ESR causes an output ripple voltage of 34 mV as given by:

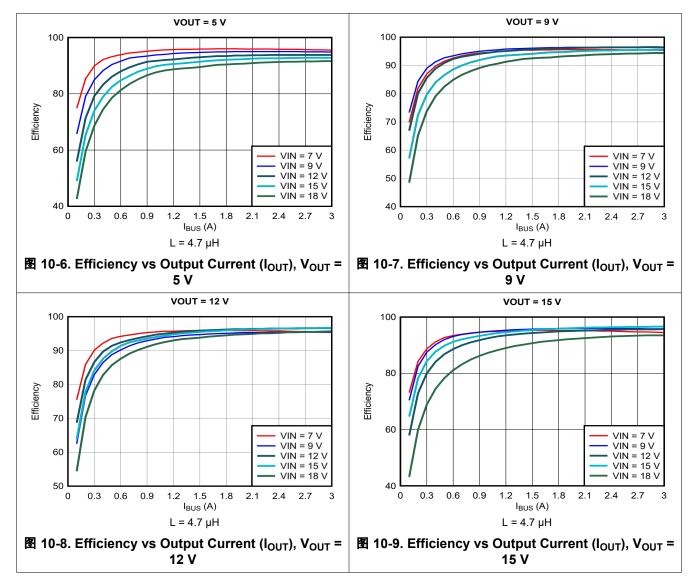
$$\Delta V_{\text{RIPPLE(ESR)}} = \frac{I_{\text{OUT}} \times V_{\text{OUT}}}{V_{\text{IN(MIN)}}} \times \text{ESR}$$
(20)

A 140 µF output capacitor (C_{OUT} + C_{BUS}) causes a capacitive ripple voltage of 26 mV as given by:

$$\Delta V_{\text{RIPPLE}(\text{COUT})} = \frac{I_{\text{OUT}} \times \left(1 - \frac{V_{\text{IN}(\text{MIN})}}{V_{\text{OUT}}}\right)}{C_{\text{OUT}} \times F_{\text{sw}}}$$
(21)

Typically a combination of ceramic and bulk capacitors is needed to provide low ESR and high ripple current capacity. The complete schematic in *Typical Application* section provides C_{OUT} and C_{BUS} recommendations suitable for most applications.

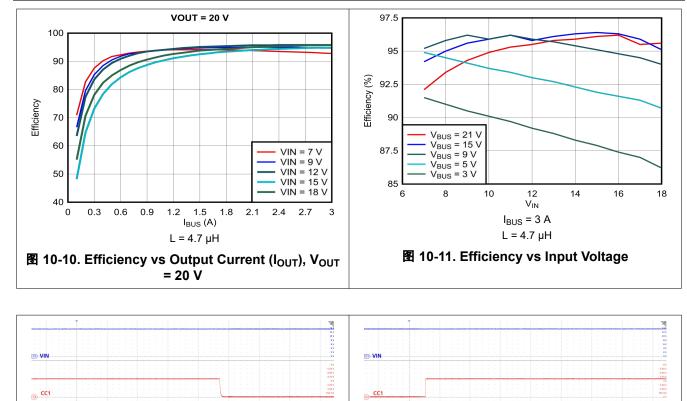
10.2.2.7 Input Capacitor


In the buck mode, the input capacitor supplies high ripple current. The RMS current in the input capacitor is given by:

$$I_{\text{CIN}(\text{RMS})} = I_{\text{OUT}} \sqrt{D \times (1-D)}$$
(22)

The maximum RMS current occurs at D = 0.5, which gives $I_{CIN(RMS)} = I_{OUT}/2 = 1.5$ A. A combination of ceramic and bulk capacitors should be used to provide short path for high di/dt current and to reduce the output voltage ripple. $\frac{1}{2}$ 10-1 in the *Typical Application* section is a good starting point for C_{IN} selection.

10.2.3 Application Curves



© CC1

CC2

VBUS

V_{IN} = 13.5 V

CC2

VBUS

V_{IN} = 13.5 V

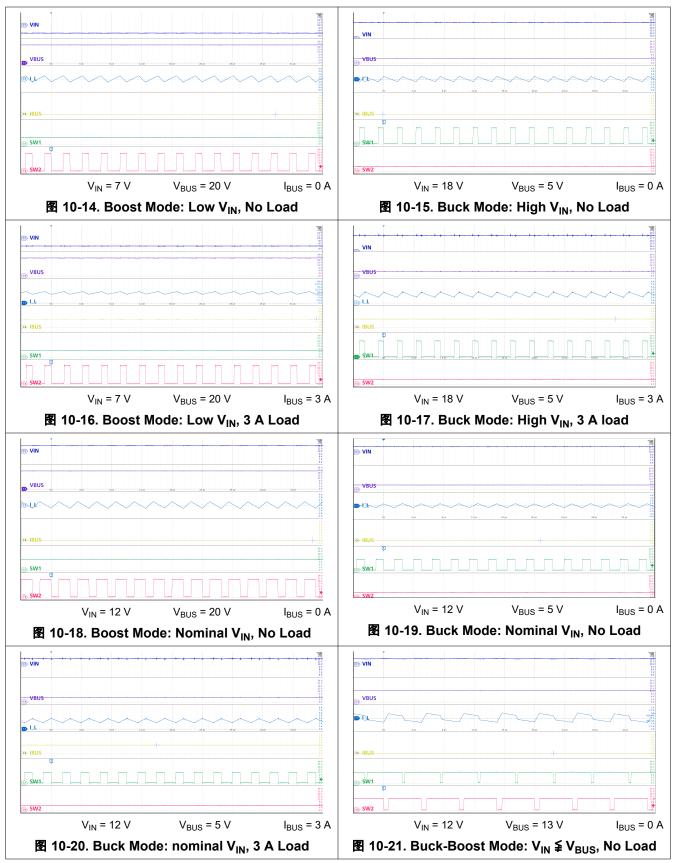
 V_{BUS} = 5 V to 0 V

图 10-13. Type-C Detach

 $I_{BUS} = 0 A$

 V_{BUS} = 0 V to 5 V

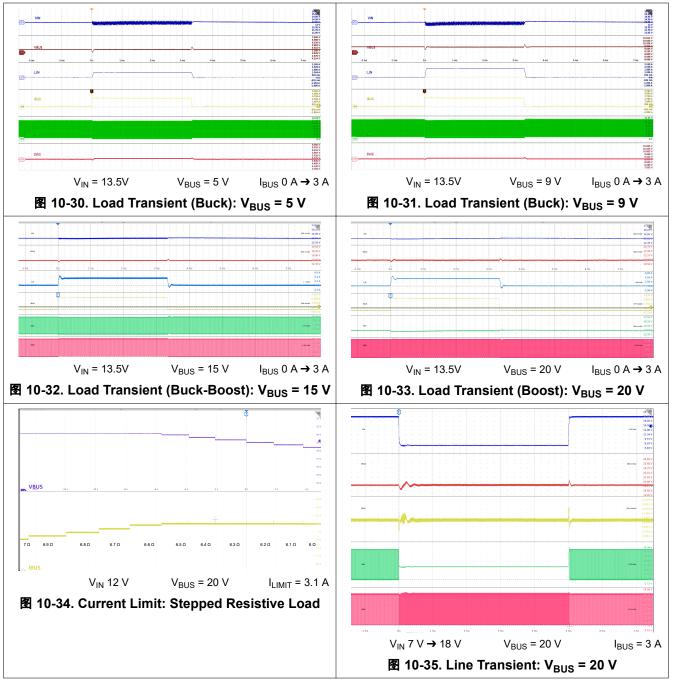
图 10-12. Type-C Attach


19 150 m 150 m 150 m 150 m 150 m 150 m 150 m

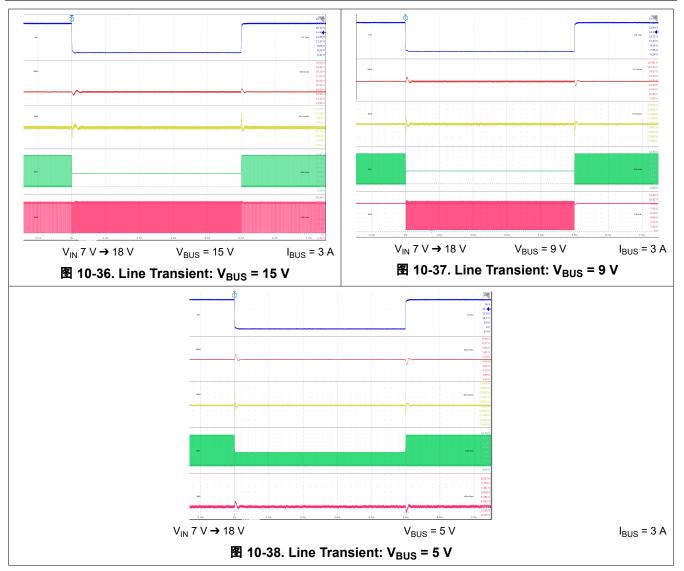
 $I_{BUS} = 0 A$

TPS25762-Q1


ZHCSP88A - DECEMBER 2022 - REVISED SEPTEMBER 2023


TPS25762-Q1 ZHCSP88A – DECEMBER 2022 – REVISED SEPTEMBER 2023

TPS25762-Q1


ZHCSP88A - DECEMBER 2022 - REVISED SEPTEMBER 2023

TPS25762-Q1 ZHCSP88A – DECEMBER 2022 – REVISED SEPTEMBER 2023

11 Power Supply Recommendations

The TPS25762-Q1 is a power management device typically operated from an automotive battery, though the power supply for the device can be any dc voltage source within the specified V_{IN} input range. The supply should be capable of supplying sufficient current based on the maximum inductor current in boost mode operation. The input supply should be bypassed with bulk capacitors at the input of the application board to avoid ringing due to parasitic impedance of the connecting cables. A typical choice is an aluminum electrolytic capacitor of 47 to 100 μ F.

12 Layout

12.1 Layout Guidelines

The basic PCB board layout requires separation of sensitive signal and power paths. This checklist must be followed to get good performance for a well designed board.

- Use a combination of bulk capacitors and smaller ceramic capacitors with low series impedance for the IN, OUT, and V_{BUS} capacitors. Place the smaller capacitors closer to the IC to provide a low impedance path for high di/dt switching currents.
- Refer to 表 10-1 for suggested C_{IN} values. Place the input bypass capacitors, C_{IN} and C_{IN_HF} , as close to the IN and PGND pins as possible to minimize the loop area for input switching current in buck operation. The C_{IN_HF} capacitors should be as close as possible see 图 10-4. The IN and PGND pins transverse the package and it is highly recommended to split C_{IN} and C_{IN_HF} such that capacitors can be placed on either side.
- Place the output filter capacitors, C_{OUT} and C_{OUT_HF}, as close to the OUT and PGND pins as possible to minimize the loop area for output switching current in boost operation. Refer to 表 10-1 for suggested C_{OUT} and C_{OUT HF} values.
- Place the current sense resistor and filter components. R_{SNS}, R_{CSP}, R_{CSN}, and C_{FLT}. Place the filter capacitor for the current sense signal as close to the IC CSP and CSN/BUS as possible. Use Kelvin connections between R_{SNS} through the CSP and CSN resistors and to the CSP and CSN/BUS pins to avoid creating offsets in the current sense amplifier. Avoid crossing noisy areas such as SW1 and SW2 nodes. The recommended values in 表 10-2 provide a good starting point but may require some fine adjustment to meet PPS current limit accuracy requirements. When deviating from recommended values, R_{CSP} must not be larger than 10 ohms. R_{CSN} must be 0 ohms. CFLT should not be larger than 0.33 µF.
- Place C_{BUS} between the R_{SNS} and the USB Type-C connector. See 表 10-1 for suggested C_{BUS} values. .
- Place the C_{IN}, C_{OUT}, and C_{BUS} ground connections as close as possible to the IC with thick ground trace and/or planes on multiple layers.
- Minimize the SW1 and SW2 loop areas as these are high dv/dt nodes.
- Place the LDO_5V bypass capacitors, C_{5V} and C_{5V_HF} close to the IC pin, between the LDO_5V and PGND pins. A 4.7 μ F and 0.1 μ F ceramic capacitors are typically used. LDO_5V supplies LDO_3V3 and LDO_1V5 as well as the low side buck and boost MOSFETs.
- Place the LDO_3V3 bypass capacitors, C_{3V3} and C_{3V3_HF} close to the IC pin, between the LDO_3V3 and AGND pins. A 4.7 μ F and 0.1 μ F ceramic capacitors are typically used. LDO_3V3 supplies the analog IO circuits.
- Place the LDO_1V5 bypass capacitors, C_{1V5} and C_{1V5_HF} close to the IC pin, between the LDO_1V5 and AGND pins. A 4.7 μ F and 0.1 μ F ceramic capacitors are typically used. LDO_3V3 supplies the Cortex M0 and digital circuits.
- Place the BOOT1 bootstrap capacitor close to the IC and connect directly to the BOOT1 to SW1 pins. For EMI mitigation, a series resistor R_{BOOT1} may be added.
- Place the BOOT2 bootstrap capacitor close to the IC and connect directly to the BOOT2 to SW2 pins. For EMI mitigation, a series resistor R_{BOOT2} may be added.
- Bypass the TVSP pin to PGND with a low ESR ceramic capacitor, C_{TVSP} located close to the IC. A 0.1 µF ceramic capacitor is typically used. R_{TVSP} and C_{TVSP} and C_{TVSP} should be added in parallel close to C_{TVSP} . 10 Ω and 0.47 µF are recommended values.
- Use care to separate the power and signal paths so that no power or switching current flows through the AGND connections which can either corrupt the USB PD modem or GPIO signals. The PGND and AGND traces can be connected near the AGND pin.
- USB data lines, DP and DM should be differentially routed between the IC pins and USB connector. Impedance control is based on the PCB stack-up. 90 Ω differential is recommended. Route the DP and DM USB signals using a minimum of vias and corners which will reduce signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points on twisted pair lines; through-hole pins are not recommended. When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This reduces reflections on the signal traces by minimizing impedance

discontinuities. Avoid stubs on the high-speed USB signals because they cause signal reflections. If a stub is unavoidable, then the stub should be less than 200 mm.

- CC lines should be routed with a 10-mil trace to ensure the needed current for supporting powered Type-C cables through VCONN. For more information on VCONN refer to the Type-C specifications. For the 330 pF CC capacitor GND pins use a 16-mil trace if possible.
- GPIO signals can be fanned out on the top or bottom layer using either a 8-mil or 10-mil trace.

12.2 Layout Example

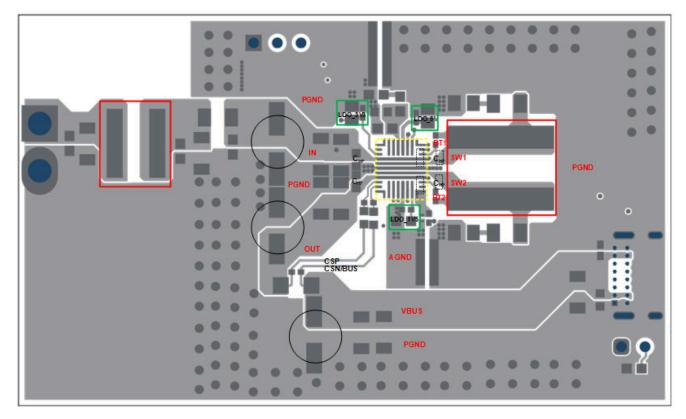


图 12-1. TPS25762-Q1 Power Stage Layout

13 Device and Documentation Support

13.1 Documentation Support

13.1.1 Related Documentation

Please visit TI homepage for latest technical document including application notes, user guides, and reference designs.

IC Package Thermal Metrics application report, Semiconductor and IC Package Thermal Metrics.

13.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

13.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

13.4 Trademarks

HotRod[™] and TI E2E[™] are trademarks of Texas Instruments.

USB Type-C[®] is a registered trademark of USB Implementers Forum.

ARM[®] and Cortex[®] are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 所有商标均为其各自所有者的财产。

13.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理 和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

13.6 术语表

TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TPS25762CAQRQLRQ1	ACTIVE	VQFN-HR	RQL	29	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TPS25762 CA	Samples
TPS25762CQRQLRQ1	ACTIVE	VQFN-HR	RQL	29	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TPS25762 C	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

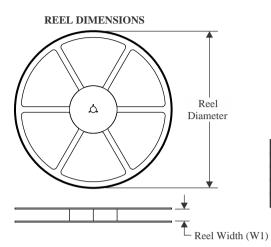
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

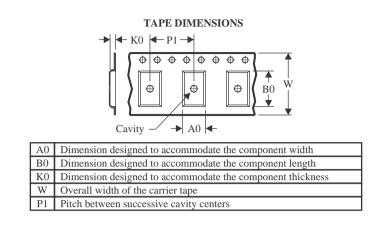
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

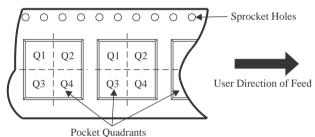
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com


PACKAGE OPTION ADDENDUM

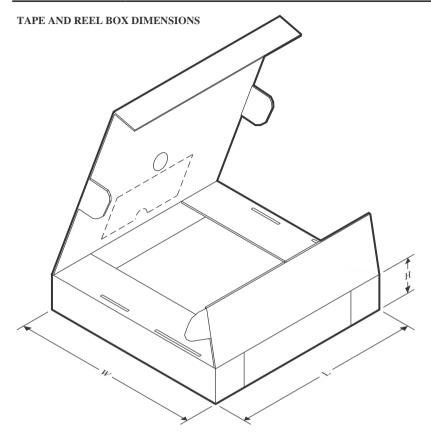


Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS25762CAQRQLRQ1	VQFN- HR	RQL	29	3000	330.0	12.4	5.3	6.3	1.15	8.0	12.0	Q2
TPS25762CQRQLRQ1	VQFN- HR	RQL	29	3000	330.0	12.4	5.3	6.3	1.15	8.0	12.0	Q2

www.ti.com

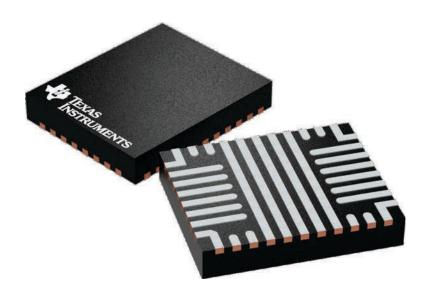
PACKAGE MATERIALS INFORMATION

5-Oct-2023

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS25762CAQRQLRQ1	VQFN-HR	RQL	29	3000	367.0	367.0	35.0
TPS25762CQRQLRQ1	VQFN-HR	RQL	29	3000	367.0	367.0	35.0

RQL 29

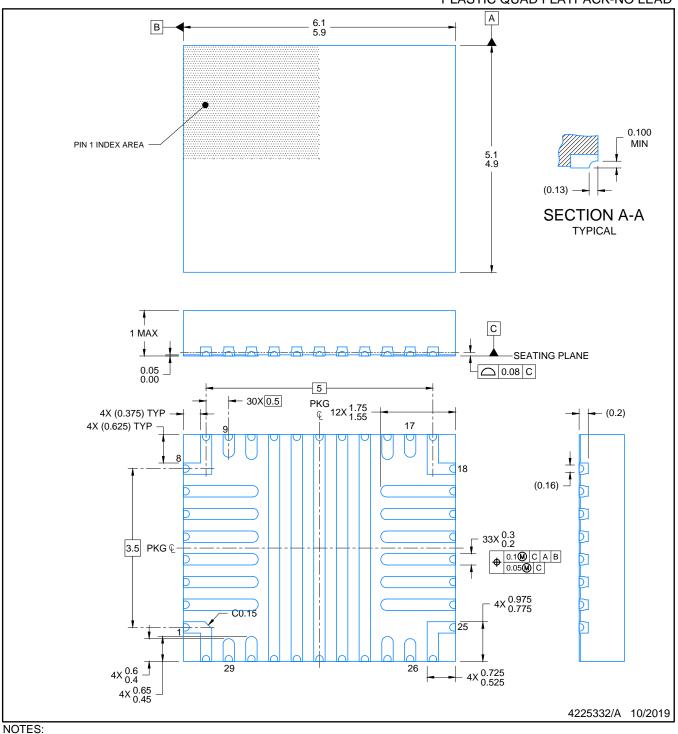

5 x 6, 0.5 mm pitch

GENERIC PACKAGE VIEW

VQFN-HR - 1 mm max height

VERY THIN QUAD FLATPACK-HotRod

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



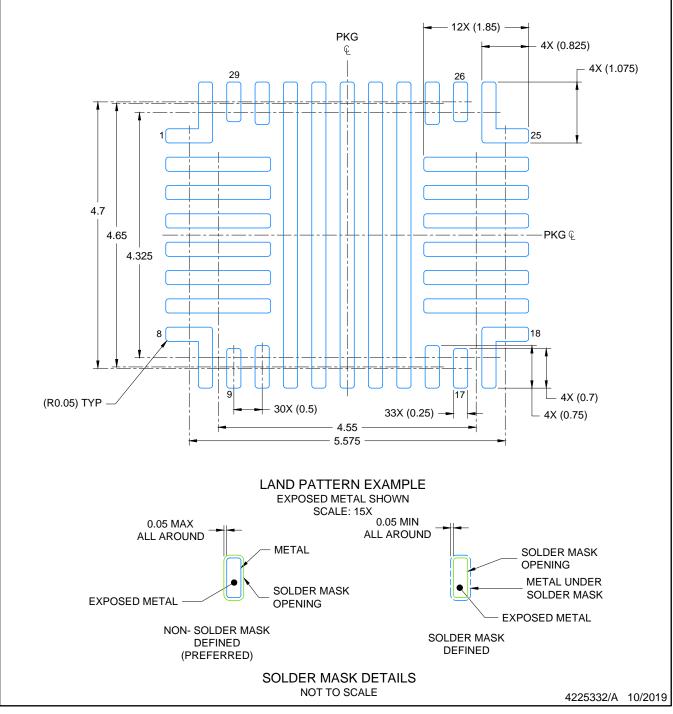
RQL0029A

PACKAGE OUTLINE

VQFN-HR - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.



RQL0029A

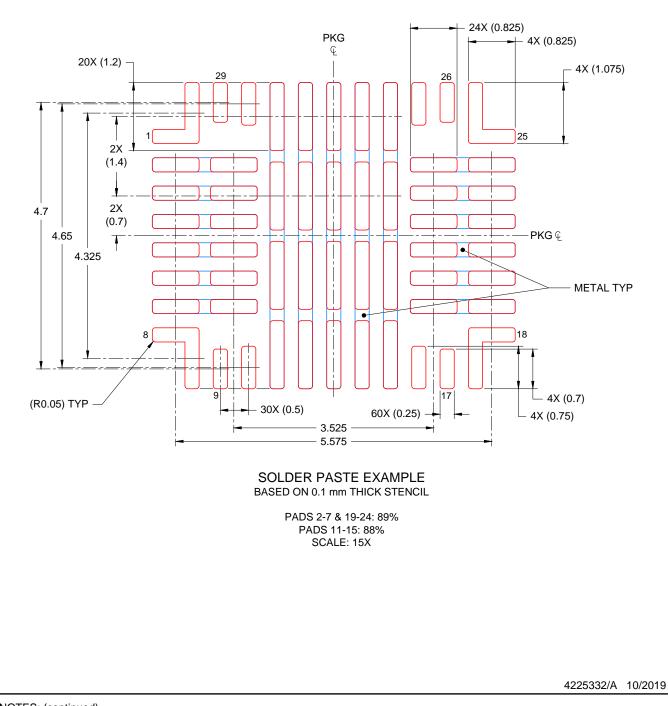
EXAMPLE BOARD LAYOUT

VQFN-HR - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

- 3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



RQL0029A

EXAMPLE STENCIL DESIGN

VQFN-HR - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司