SN75ALS191 ZHCSVF7C - DECEMBER 1987 - REVISED MARCH 2024 # SN75ALS191 双路差分线路驱动器 ## 1 特性 - 符合或超出 ANSI 标准 EIA/TIA-422-B 和 ITU 建议 V.11 的要求 - 设计在 20Mbaud 或更高速率下运行 - TTL 和 CMOS 输入兼容性 - 由 5V 单电源供电运行 - 输出短路保护 - 经过改进可替代 μ A9638 ### 2 应用 - 工厂自动化 - ATM 和点钞机 - 智能电网 - 交流和伺服 电机驱动器 ### 3 说明 SN75ALS191 是一款双路高速差分线路驱动器,可满 足 ANSI 标准 EIA/TIA-422-B 和 ITU 建议 V.11 的要 求。输入是 TTL 和 CMOS 兼容输入,并具有输入钳位 二极管。肖特基二极管钳位晶体管可更大限度地减少传 播延迟时间。该器件由单个 5V 电源供电并采用 8 引脚 封装。 SN75ALS191 的工作温度范围是 0°C 至 70°C。 #### 封装信息 | 器件型号 | 封装 ⁽¹⁾ | 封装尺寸 ⁽²⁾ | |------------|-------------------|---------------------| | | P (PDIP , 8) | 9.81mm × 9.43mm | | SN75ALS191 | D (SOIC , 8) | 4.9mm × 6mm | | | PS (SOP , 8) | 6.2mm × 7.8mm | - (1) 有关更多信息,请参阅节 10。 - 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。 ¹ 此符号符合 ANSI/IEEE 标准 91-1984 和 IEC 出版物 617-12。 ### **Table of Contents** | 1 特性 | 7 Detailed Description | 7 | |--------------------------------------|---|---| | 2 应用 | | | | 3 说明 | | 8 | | 4 Pin Configuration and Functions | • 17.11 1.10 | 8 | | 5 Specifications | a a a a a a a a a a a a a a a a a a a | 8 | | 5.1 Absolute Maximum Ratings | | 8 | | 5.2 Dissipation Rating | 4 8.4 静电放电警告 | 8 | | 5.3 Recommended Operating Conditions | 4 8.5 术语表 | 8 | | 5.4 Thermal Information | | | | 5.5 Electrical Characteristics | 5 10 Mechanical, Packaging, and Orderable | | | 5.6 Switching Characteristics | 5 Information | 8 | | 6 Parameter Measurement Information | 6 | | ## **4 Pin Configuration and Functions** 图 4-1. D or P Package (Top View) 表 4-1. Pin Functions | PIN | | TYPE ⁽¹⁾ | DESCRIPTION | |-----------------|-----|---------------------|---| | NAME | NO. | 11155 | DESCRIP HON | | 1Z | 7 | 0 | Inverting Output of Differential Driver on Channel 1 | | 1Y | 8 | 0 | Non-Inverting Output for Differential Driver on Channel 1 | | 1A | 2 | I | Single Ended Data Input for Channel 1 | | GND | 4 | GND | Device Ground | | 2A | 3 | I | Single Ended Data Input for Channel 2 | | 2Y | 6 | 0 | Non-Inverting Output for Differential Driver on Channel 2 | | 2Z | 5 | 0 | Inverting Output of Differential Driver on Channel 2 | | V _{CC} | 1 | Р | 5V Power Supply Positive Terminal Connection | Product Folder Links: SN75ALS191 ⁽¹⁾ Signal Types: I = Input, O = Output, I/O = Input or Output, P = Power, GND = Ground. ### **5 Specifications** #### 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)⁽¹⁾ | | | MIN | MAX | UNIT | |------------------|--|-----|-------------|--------------------| | V _{CC} | Supply voltage, see ⁽²⁾ | | 7 | V | | VI | Input voltage | | 7 | V | | | Continuous total dissipation | | See Dissipa | ation Rating table | | T _A | Operating free-air temperature range | 0 | 70 | °C | | | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | | 260 | °C | | T _{stg} | Storage temperature range | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability (2) All voltage values except differential output voltage (V_{OD}) are with respect to network ground terminal. #### 5.2 Dissipation Rating | PACKAGE | T A ≤ 25°C POWER RATING | DERATING FACTOR ABOVE T _A
= 25°C | T _A = 70°C POWER RATING | |---------|-------------------------|--|------------------------------------| | D | 725mW | 5.8mW/°C | 464mW | | Р | 1000mW | 8mW/°C | 640mW | #### **5.3 Recommended Operating Conditions** | | MIN | NOM | MAX | UNIT | |--|------|-----|------|------| | Supply voltage, V _{CC} | 4.75 | 5 | 5.25 | V | | High-level input voltage, V _{IH} | 2 | | | V | | Low-level input voltage, V _{IL} | | | 0.8 | V | | High-level output current, I _{OH} | | | -50 | mA | | Low-level output current, I _{OL} | | | 50 | mA | | Operating free-air temperature, T _A | 0 | | 70 | °C | #### **5.4 Thermal Information** | THERMAL METRIC ⁽¹⁾ | | D | Р | PS | UNIT | |-------------------------------|--|-------|------|------|------| | | | | UNII | | | | R _{θ JA} | Junction-to-ambient thermal resistance | 116.7 | 84.3 | 89.5 | °C/W | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 56.3 | 65.4 | 46.2 | °C/W | | R _{0 JB} | Junction-to-board thermal resistance | 63.4 | 62.1 | 50.7 | °C/W | | ψ ЈТ | Junction-to-top characterization parameter | 8.8 | 31.3 | 23.5 | °C/W | | ψ ЈВ | Junction-to-board characterization parameter | 62.6 | 60.4 | 60.3 | °C/W | | R _{θ JC(bot)} | Junction-to-case (bottom) thermal resistance | N/A | N/A | N/A | °C/W | For more information about traditional and new thermal metrics, see the <u>Semiconductor and IC package thermal metrics</u> application report. Product Folder Links: SN75ALS191 English Data Sheet: SLLS032 Copyright © 2024 Texas Instruments Incorporated #### 5.5 Electrical Characteristics over operating free-air temperature range (unless otherwise noted) | PARAMETER | | TE | MIN | TYP (1) | MAX | UNIT | | | |--------------------|--|---|-------------------------|-----------------------------------|------|-------|--------------------|-------| | V _{IK} | Input clamp voltage | V _{CC} = 4.75V, | I _I = - 18mA | | | - 1 | - 1.2 | V | | \/ | High lovel output voltage | V _{CC} = 4.75V, | \/ - 2\/ | I _{OH} = - 10mA | 2.5 | 3.3 | | V | | V _{OH} | High-level output voltage | V _{IL} = 0.8V | $V_{IH} = 2V$, | I _{OH} = -40mA | 2 | | | V | | V _{OL} | Low-level output voltage | V _{CC} = 4.75V, I _{OL} = 40mA | V _{IH} = 2V, | V _{IL} = 0.8V, | | | 0.5 | V | | V _{OD1} | Differential output voltage | V _{CC} = 5.25V, | I _O = 0 | | | | 2 V _{OD2} | V | | V _{OD2} | Differential output voltage | | | | 2 | | | V | | Δ V _{OD} | Change in magnitude of differential output voltage (2) | V _{CC} = 4.75V to 5.25V, See 图 6-1 | | RL = 100 Ω , | | | ± 0.4 | V | | V _{OC} | Common-mode output voltage ⁽³⁾ | | | | | | 3 | V | | Δ V _{OC} | Change in magnitude of common-mode output voltage ⁽²⁾ | | | | | | ± 0.4 | V | | | | | | V _O = 6V | | 0.1 | 100 | | | I _O | Output current with power off | V _{CC} = 0 | | V _O = -0.25V | | - 0.1 | -100 | μА | | .0 | Surpar surrein man perior sir | | | V _O = - 0.25V to
6V | | | ±100 | μ / ι | | I _I | Input current | V _{CC} = 5.25 V, | V _I = 5.5V | | | | 50 | μА | | I _{IH} | High-level input current | V _{CC} = 5.25 V, | V _I = 2.7V | | | | 25 | μА | | I _{IL} | Low-level input current | V _{CC} = 5.25 V, | V _I = 0.5V | | | | 200 | μА | | I _{OS} | Short-circuit output current ⁽⁴⁾ | V _{CC} = 5.25 V, | V _O = 0 | | - 50 | | -150 | mA | | I _{CC} | Supply current (all drivers) | V _{CC} = 5.25 V, | No load, | All inputs at 0V | | 32 | 40 | mA | - (1) All typical values are at $V_{CC} = 5V$ and $T_A = 25$ °C. - (2) | V_{OD} | and | V_{OC} | are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level. - (3) In ANSI Standard EIA/TIA-422-B, V_{OC}, which is the average of the two output voltages with respect to ground, is called output offset voltage, V_{OS}. - (4) Only one output at a time should be shorted, and duration of the short circuit should not exceed one second. #### 5.6 Switching Characteristics over recommended operating free-air temperature range, $V_{CC} = 5V$ | PARAMETER | | TE | MIN | TYP ⁽¹⁾ | MAX | UNIT | | | |--------------------|-------------------------------------|------------------------|----------------------|--------------------|-----|------|---|----| | t _{d(OD)} | Differential-output delay time | | | | | 3.5 | 7 | ns | | t _{t(OD)} | Differential-output transition time | C _L = 15pF, | $R_L = 100 \Omega$, | See 🖺 6-2 | | 3.5 | 7 | ns | | | Skew | | | | | 1.5 | 4 | ns | Product Folder Links: SN75ALS191 (1) Typical values are at $T_A = 25$ °C. #### **6 Parameter Measurement Information** 图 6-1. Differential and Common-Mode Output Voltages - The input pulse generator has the following characteristics: Z $_{0}$ = 50 Ω , PRR \leqslant 500kHz, t $_{w}$ = 100ns, t $_{r}$ = \leqslant 5ns. - C_L includes probe and jig capacitance. 图 6-2. Test Circuit and Voltage Waveforms 提交文档反馈 Copyright © 2024 Texas Instruments Incorporated 6 ## 7 Detailed Description ### 7.1 Device Functional Modes 表 7-1. Function Table (Each Driver) | INPUTS A ⁽¹⁾ | OUTPUTS | | | | | |-------------------------|---------|---|--|--|--| | INFUIS A | Y | Z | | | | | Н | Н | L | | | | | L | L | Н | | | | (1) H = high level, L = low level, Z = high impedance 图 7-1. Schematics of Inputs and Outputs ### 8 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. #### 8.1 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 #### 8.2 支持资源 TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。 #### 8.3 Trademarks TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 #### 8.4 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 #### 8.5 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 #### 9 Revision History 注:以前版本的页码可能与当前版本的页码不同 #### Changes from Revision B (May 1995) to Revision C (March 2024) **Page** · 更改了整个文档中的表格、图和交叉参考的编号格式......1 #### 10 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2024 Texas Instruments Incorporated www.ti.com 19-Mar-2024 #### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|---|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------| | SN75ALS191D | LIFEBUY | SOIC | D | 8 | 75 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 75A191 | | | SN75ALS191DG4 | LIFEBUY | SOIC | D | 8 | 75 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 75A191 | | | SN75ALS191DR | ACTIVE | SOIC | D | 8 | 2500 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | 75A191 | Samples | | SN75ALS191P | ACTIVE | PDIP | Р | 8 | 50 | RoHS & Green | NIPDAU | N / A for Pkg Type | 0 to 70 | 75ALS191 | Samples | | SN75ALS191PE4 | ACTIVE | PDIP | Р | 8 | 50 | RoHS & Green | NIPDAU | N / A for Pkg Type | 0 to 70 | 75ALS191 | Samples | | SN75ALS191PSR | ACTIVE | SO | PS | 8 | 2000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | 0 to 70 | V191 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ## **PACKAGE OPTION ADDENDUM** www.ti.com 19-Mar-2024 Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## **PACKAGE MATERIALS INFORMATION** www.ti.com 19-Mar-2024 #### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN75ALS191DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | SN75ALS191PSR | so | PS | 8 | 2000 | 330.0 | 16.4 | 8.35 | 6.6 | 2.4 | 12.0 | 16.0 | Q1 | www.ti.com 19-Mar-2024 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |---------------|--------------|-----------------|------|------|-------------|------------|-------------|--| | SN75ALS191DR | SOIC | D | 8 | 2500 | 340.5 | 338.1 | 20.6 | | | SN75ALS191PSR | SO | PS | 8 | 2000 | 356.0 | 356.0 | 35.0 | | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 19-Mar-2024 #### **TUBE** *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |---------------|--------------|--------------|------|-----|--------|--------|--------|--------| | SN75ALS191D | D | SOIC | 8 | 75 | 507 | 8 | 3940 | 4.32 | | SN75ALS191DG4 | D | SOIC | 8 | 75 | 507 | 8 | 3940 | 4.32 | | SN75ALS191P | Р | PDIP | 8 | 50 | 506 | 13.97 | 11230 | 4.32 | | SN75ALS191PE4 | Р | PDIP | 8 | 50 | 506 | 13.97 | 11230 | 4.32 | SMALL OUTLINE INTEGRATED CIRCUIT #### NOTES: - 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. - 4. This dimension does not include interlead flash. - 5. Reference JEDEC registration MS-012, variation AA. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. ## PS (R-PDSO-G8) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ## P (R-PDIP-T8) ## PLASTIC DUAL-IN-LINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Falls within JEDEC MS-001 variation BA. ### 重要声明和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024,德州仪器 (TI) 公司