

SN74AVC16T245-Q1

SCES778B - SEPTEMBER 2008 - REVISED MARCH 2024

SN74AVC16T245-Q1 16-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and 3-State Outputs

1 Features

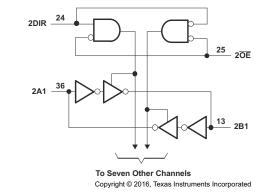
- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: -40°C to 125°C **Ambient Operating Temperature Range**
 - Device HBM ESD Classification Level H3B (JESD 22 A114-A)
 - Device CDM ESD Classification Level C5 (JESD 22 C101)
- Control Inputs V_{IH}/V_{IL} Levels Are Referenced to V_{CCA} Voltage
- V_{CC} Isolation Feature If Either V_{CC} Input is at GND, Both Ports Are in the High-Impedance State
- Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2V to 3.6V Power-Supply Range
- I_{off} Supports Partial-Power-Down Mode Operation
- I/Os Are 4.6V Tolerant
- Maximum Data Rates
 - 380Mbps (1.8V to 3.3V Translation)
 - 200Mbps (<1.8V to 3.3V Translation)
 - 200Mbps (Translate to 2.5V or 1.8V)
 - 150Mbps (Translate to 1.5V)
 - 100Mbps (Translate to 1.2V)
- Latch-Up Performance Exceeds 100mA Per JESD 78, Class II

To Seven Other Channels

2 Applications

- **Telematics**
- Clusters
- **Head Units**
- **Navigation Systems**

3 Description


The SN74AVC16T245-Q1 is a 16-bit noninverting bus transceiver that uses two separate configurable power-supply rails. The SN74AVC16T245-Q1 is optimized to operate with V_{CCA} or V_{CCB} set at 1.4V to 3.6V. It is operational with V_{CCA} or V_{CCB} as low as 1.2V. The A port is designed to track V_{CCA}. V_{CCA} accepts any supply voltage from 1.2V to 3.6V. The B port is designed to track V_{CCB}. V_{CCB} accepts any supply voltage from 1.2V to 3.6V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V voltage nodes.

The SN74AVC16T245-Q1 designed asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses effectively are isolated.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
SN74AVC16T245-Q1	TVSOP (48)	9.70mm × 4.40mm

For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram (Positive Logic)

Table of Contents

1 Features	8.2 Functional Block Diagram.
2 Applications1	8.3 Feature Description
3 Description1	8.4 Device Functional Modes
4 Description (continued)3	9 Application and Implementat
5 Pin Configuration and Functions4	9.1 Application Information
6 Specifications6	9.2 Typical Application
6.1 Absolute Maximum Ratings6	10 Power Supply Recommenda
6.2 ESD Ratings6	11 Layout
6.3 Recommended Operating Conditions7	11.1 Layout Guidelines
6.4 Thermal Information7	11.2 Layout Example
6.5 Electrical Characteristics8	12 Device and Documentation
6.6 Switching Characteristics: V _{CCA} = 1.2 V9	12.1 Documentation Support
6.7 Switching Characteristics: V _{CCA} = 1.5 V ± 0.1 V9	12.2 Receiving Notification of I
6.8 Switching Characteristics: V _{CCA} = 1.8 V ± 0.15 V10	12.3 Support Resources
6.9 Switching Characteristics: V _{CCA} = 2.5 V ± 0.2 V10	12.4 Trademarks
6.10 Switching Characteristics: V _{CCA} = 3.3 V ± 0.3 V 11	12.5 Electrostatic Discharge C
6.11 Operating Characteristics11	12.6 Glossary
6.12 Typical Characteristics12	13 Revision History
7 Parameter Measurement Information14	14 Mechanical, Packaging, and
8 Detailed Description15	Information
8.1 Overview	

6.2 Functional block Diagram	. 15
8.3 Feature Description	.15
8.4 Device Functional Modes	.15
9 Application and Implementation	. 16
9.1 Application Information	. 16
9.2 Typical Application	
10 Power Supply Recommendations	.18
11 Layout	. 18
11.1 Layout Guidelines	. 18
11.2 Layout Example	. 19
12 Device and Documentation Support	.20
12.1 Documentation Support	. 20
12.2 Receiving Notification of Documentation Updates.	.20
12.3 Support Resources	. 20
12.4 Trademarks	. 20
12.5 Electrostatic Discharge Caution	.20
12.6 Glossary	.20
13 Revision History	. 20
14 Mechanical, Packaging, and Orderable	
Information	. 21

4 Description (continued)

The SN74AVC16T245-Q1 is designed so that the control pins (1DIR, 2DIR, 1 \overline{OE} , and 2 \overline{OE}) are supplied by V_{CCA} .

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} must be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

5 Pin Configuration and Functions

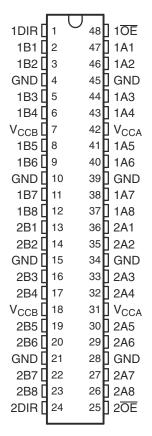


Figure 5-1. DGV Package 48-Pin TVSOP Top View

Table 5-1. Pin Functions

PIN		- I/O	DESCRIPTION								
NAME	NO.	"0	DESCRIPTION								
1A1	47										
1A2	46										
1A3	44]									
1A4	43	1/0	Input and output. Referenced to V _{CCA}								
1A5	41	- I/O	imput and output. Referenced to V _{CCA}								
1A6	40										
1A7	38										
1A8	37										
1B1	2										
1B2	3	1									
1B3	5										
1B4	6	I/O	Input and output. Referenced to V _{CCB}								
1B5	8	1/0	imput and output. Referenced to V _{CCB}								
1B6	9										
1B7	11	1									
1B8	12										

Table 5-1. Pin Functions (continued)

PIN			Table 5-1. Pin Functions (continued)										
NAME	NO.	I/O	DESCRIPTION										
2A1	36												
2A2	35												
2A3	33												
2A4	32		Input and output. Peferanced to V										
2A5	30	I/O	Input and output. Referenced to V _{CCA}										
2A6													
2A7	27												
2A8	26												
2B1	13												
2B2	14												
2B3	16												
2B4	17	I/O	Input and output. Referenced to V _{CCB}										
2B5	19	1/0	input and output. Referenced to V _{CCB}										
2B6	20												
2B7	22												
2B8	23												
1DIR	1	,	Direction-control signal										
2DIR	24	!	Direction-control signal										
1 ŌE	48		Tri-State output-mode enables. Pull $\overline{\sf OE}$ high to place all outputs in Tri-State mode.										
2 OE	25	_	Referenced to V _{CCA}										
GND	4, 10, 15, 21, 45, 39, 34, 28	_	Ground										
V _{CCA}	42, 31	_	A-port supply voltage. 1.2 V ≤ V _{CCB} ≤ 3.6 V										
V _{CCB}	7, 18	_	B-port supply voltage. 1.2 V ≤ V _{CCB} ≤ 3.6 V										

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		,	MIN	MAX	UNIT	
V _{CCA} V _{CCB}	Supply voltage		-0.5	4.6	V	
		I/O ports (A port)	-0.5	4.6		
VI	Input voltage (2)	I/O ports (B port)	-0.5	4.6	V	
		Control inputs	-0.5	4.6		
.,	Voltage applied to any output	A port	-0.5	4.6	V	
Vo	in the high-impedance or power-off state ⁽²⁾	B port	-0.5	4.6	v	
.,	Voltage applied to any output in the high or low state ^{(2) (3)}	A port		V _{CCA} + 0.5	V	
Vo	voltage applied to any output in the high of low state.	B port	-0.5	V _{CCB} + 0.5]	
I _{IK}	Input clamp current	V _I < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
Io	Continuous output current	•		±50	mA	
	Continuous current through each V _{CCA} , V _{CCB} , and GND		±100	mA		
T _{stg}	Storage temperature		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		
V _(ESD)	· ·	lischarge Charged-device model (CDM), per JEDEC specification JESD22-C101		V
		Machine model (MM), per JEDEC specification JESD22-A115-A	±200	

(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1) (2) (3)

			V _{CCI}	V _{cco}	MIN	MAX	UNIT			
V _{CCA} , V _{CCB}	Supply voltage				1.2	3.6	V			
			1.2 V to 1.95 V		V _{CCI} × 0.65					
V_{IH}	High-level input voltage	Data inputs ⁽⁴⁾	1.95 V to 2.7 V		1.6		V			
	mpat remage		2.7 V to 3.6 V		2					
			1.2 V to 1.95 V			V _{CCI} × 0.35				
V_{IL}	Low-level input voltage	Data inputs ⁽⁴⁾	1.95 V to 2.7 V			0.7	V			
	input voltago		2.7 V to 3.6 V			8.0				
			1.2 V to 1.95 V		V _{CCA} × 0.65					
V_{IH}	High-level input voltage	DIR (referenced to V _{CCA}) ⁽⁵⁾	1.95 V to 2.7 V		1.6		V			
	mpat remage	(Leterenced to CCA)	2.7 V to 3.6 V		2					
	Low-level input voltage		1.2 V to 1.95 V			V _{CCA} × 0.35				
V_{IL}		DIR (referenced to V _{CCA}) ⁽⁵⁾	1.95 V to 2.7 V			0.7	V			
		(CCA)	2.7 V to 3.6 V			0.8				
VI	Input voltage				0	3.6	V			
V.	Output voltage	Active state			0	V_{CCO}	V			
Vo		3-state			0	3.6	V			
				1.2 V		-3				
				1.4 V to 1.6 V		-6				
I _{OH}	High-level output current			1.65 V to 1.95 V		-8	mA			
				2.3 V to 2.7 V		-9				
				3 V to 3.6 V		-12				
				1.2 V		3				
				1.4 V to 1.6 V		6				
I _{OL}	Low-level output current			1.65 V to 1.95 V		8	mA			
				2.3 V to 2.7 V		9				
				3 V to 3.6 V		12				
Δt/Δν	Input transition rise or fall	rate				5	ns/V			
T _A	Operating free-air temper	ature			-40	125	°C			

- (1) V_{CCI} is the V_{CC} associated with the data input port.
- (2) V_{CCO} is the V_{CC} associated with the output port.
- All unused data inputs of the device must be held at V_{CCI} or GND to ensure proper device operation. See *Implications of Slow or* (3) Floating CMOS Inputs
- (4) For V_{CCI} values not specified in the data sheet, V_{IH} min = V_{CCI} × 0.7 V, V_{IL} max = V_{CCI} × 0.3 V.
 (5) For V_{CCA} values not specified in the data sheet, V_{IH} min = V_{CCA} × 0.7 V, V_{IL} max = V_{CCA} × 0.3 V.

6.4 Thermal Information

		SN74AVC16T245-Q1			
	THERMAL METRIC ⁽¹⁾	DGV (TVSOP)	UNIT		
		48 PINS			
R _{0JA}	Junction-to-ambient thermal resistance	77.2	°C/W		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	31.4	°C/W		
$R_{\theta JB}$	Junction-to-board thermal resistance	39.5	°C/W		
ΨЈΤ	Junction-to-top characterization parameter	3.5	°C/W		
ΨЈВ	Junction-to-board characterization parameter	39	°C/W		
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Copyright © 2024 Texas Instruments Incorporated

6.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)(2) (3)

PAR	AMETER	TEST COND	ITIONS	V _{CCA}	V _{CCB}	T _A	MIN	TYP	MAX	UNIT	
		I _{OH} = -100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C	V _{CCO} - 0.2				
		I _{OH} = -3 mA	7	1.2 V	1.2 V	T _A = 25°C		0.95			
		I _{OH} = -6 mA		1.4 V	1.4 V	T _A = -40°C to 125°C	1				
V _{OH}		I _{OH} = -8 mA	V _I = V _{IH}	1.65 V	1.65 V	T _A = -40°C to 125°C	1.15			V	
		I _{OH} = -9 mA		2.3 V	2.3 V	T _A = -40°C to 125°C	1.75				
		I _{OH} = -12 mA		3 V	3 V	T _A = -40°C to 125°C	2.3				
		I _{OL} = 100 μA		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			0.2		
		I _{OL} = 3 mA		1.2 V	1.2 V	T _A = 25°C		0.15			
		I _{OL} = 6 mA		1.4 V	1.4 V	T _A = -40°C to 125°C			0.4		
V _{OL}		I _{OL} = 8 mA	$V_I = V_{IL}$	1.65 V	1.65 V	T _A = -40°C to 125°C			0.45	V	
		I _{OL} = 9 mA		2.3 V	2.3 V	T _A = -40°C to 125°C			0.55		
Control		I _{OL} = 12 mA		3 V	3 V	T _A = -40°C to 125°C			0.7		
	Control					T _A = 25°C		±0.025	±0.25		
I _I	inputs	$V_I = V_{CCA}$ or GND		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			±2	μA	
	A or B					T _A = 25°C		±0.1	±2.5	μΑ	
I _{off}	port	V _I or V _O = 0 to 3.6 V		0 V	0 to 3.6 V	T _A = -40°C to 125°C			±10		
-011	A or B	1,10,10,000		0 to 2 6 1/	0.1/	T _A = 25°C		±0.5	±2.5		
	port			0 to 3.6 V	0 V	T _A = -40°C to 125°C			±10		
. (1)	A or B	$V_O = V_{CCO}$ or GND,		0.01/	0.01/	T _A = 25°C		±0.5	±2.5		
I _{OZ} ⁽¹⁾	port	V_{I} = V_{CCI} or GND, \overline{OE} = V_{IH}		3.6 V	3.6 V	T _A = -40°C to 125°C			±10	μA	
				1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			30		
I _{CCA}		$V_I = V_{CCI}$ or GND, $I_O = 0$		0 V	3.6 V	T _A = -40°C to 125°C			-40	μΑ	
				3.6 V	0 V	T _A = -40°C to 125°C			30		
				1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			30		
I _{ССВ}		$V_I = V_{CCI}$ or GND, $I_O = 0$		0 V	3.6 V	T _A = -40°C to 125°C			30	μΑ	
				3.6 V	0 V	T _A = -40°C to 125°C			-40		
I _{CCA} + I _C	ССВ	$V_I = V_{CCI}$ or GND, $I_O = 0$		1.2 V to 3.6 V	1.2 V to 3.6 V	T _A = -40°C to 125°C			60	μA	
Ci	Control inputs	V _I = 3.3 V or GND		3.3 V	3.3 V	T _A = 25°C		3.5		pF	
C _{io}	A or B port	V _O = 3.3 V or GND		3.3 V	3.3 V	T _A = 25°C		7		pF	

For I/O ports, the parameter I_{OZ} includes the input leakage current. V_{CCO} is the V_{CC} associated with the output port. V_{CCI} is the V_{CC} associated with the input port.

⁽²⁾ (3)

6.6 Switching Characteristics: V_{CCA} = 1.2 V

over recommended operating free-air temperature range, V_{CCA} = 1.2 V (see Figure 7-1)

PARAMETER	FROM	то	V _{CCB}	= 1.2 V	V _C	_{CB} = 1.5 \	<i>'</i>	V _C	_{CB} = 1.8 V	'	Vcc	B = 2.5	V	V _{cc}	_B = 3.3	3 V	UNIT								
PARAMETER	(INPUT)	(OUTPUT)	MIN T	YP MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT								
t _{PLH}	Α	В		4.1		3.3			3			2.8			3.2		ns								
t _{PHL}	^	Б		4.1		3.3			3			2.8			3.2		113								
t _{PLH}	В	А		4.4		4			3.8			3.6			3.5		ns								
t _{PHL}			ь	ь			4.4		4			3.8		3.6			3.5			113					
t _{PZH}	ŌĒ	А		6.4		6.4			6.4			6.4			6.4		ns								
t _{PZL}	OL	^		6.4		6.4			6.4			6.4			6.4		115								
t _{PZH}	ŌĒ	В		6		4.6			4			3.4			3.2		ns								
t _{PZL}	OL	OL	Ь		6		4.6			4			3.4			3.2		115							
t _{PHZ}	OF	ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	OF.	А	۸		3.6		6.6			6.6			6.6			6.8		ne
t _{PLZ}	OL	A		3.6		6.6			6.6			6.6			6.8		ns								
t _{PHZ}	ŌĒ	В		6		4.9			4.9			4.2			5.3		ns								
t _{PLZ}	OL.	5		6		4.9			4.9			4.2			5.3		115								

6.7 Switching Characteristics: V_{CCA} = 1.5 V ± 0.1 V

over recommended operating free-air temperature range, V_{CCA} = 1.5 V ± 0.1 V (see Figure 7-1)

DADAMETED	FROM	то	V _{CCB} = 1.2 V			V _{CCB} = 1.5 V ± 0.1 V			V _{CCB} = 1.8	V _{CCB} = 1.8 V ± 0.15 V			2.5 V ± 0.	.2 V	V _{CCB} = 3.3 V ± 0.3 V			UNIT				
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP N	MAX	MIN	TYP	MAX	UNII				
t _{PLH}	Α	В		3.6		0.5		9.2	0.5		8.2	0.5		7.1	0.5		6.7	no				
t _{PHL}	A	В		3.6		0.5		9.2	0.5		8.2	0.5		7.1	0.5		6.7	ns				
t _{PLH}	— В	Α		3.3		0.5		9.2	0.5		8.9	0.5		8.6	0.5		8.5	ns				
t _{PHL}		В		A		3.3		0.5		9.2	0.5		8.9	0.5		8.6	0.5		8.5	1115		
t _{PZH}	OF.	OF	- OE	A		4.3		0.5		13.1	0.5		13.1	0.5		13.1	0.5		13.1	ns		
t _{PZL}	OE	A		4.3		0.5		13.1	0.5		13.1	0.5		13.1	0.5		13.1	1115				
t _{PZH}	ŌĒ	ŌĒ	В		5.6		0.5		13.1	0.5		11.1	0.5		8.9	0.5		8.2	no			
t _{PZL}			ÜE	ÜE	OE	OE	OE	В		5.6		0.5		13.1	0.5		11.1	0.5		8.9	0.5	
t _{PHZ}	ŌĒ	ŌĒ	- ŌĒ	- ŌE	Α		4.5		0.5		12.1	0.5		12.1	0.5		12.1	0.5		12.1		
t _{PLZ}					A		4.5		0.5		12.1	0.5		12.1	0.5		12.1	0.5		12.1	ns	
t _{PHZ}	ŌĒ	В		5.5		0.5		11.7	0.5		10.5	0.5		9.5	0.5		9.3					
t _{PLZ}		ΟĒ	٥		5.5		0.5		11.7	0.5		10.5	0.5		9.5	0.5		9.3	ns			

6.8 Switching Characteristics: V_{CCA} = 1.8 V ± 0.15 V

over recommended operating free-air temperature range, V_{CCA} = 1.8 V ± 0.15 V (see Figure 7-1)

PARAMETER	FROM	то	Vcc	_B = 1.2 V		V _{CCB} =	1.5 V ± 0	.1 V	V _{CCB} =	1.8 V ± 0	.15 V	V _{CCB} =	2.5 V ± 0).2 V	V _{CCB} = 3	3.3 V ±	0.3 V	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	CIVII	
t _{PLH}	Α	В		3.4		0.5		8.9	0.5		7.8	0.5		6.7	0.5		6.3	ns	
t _{PHL}	A			3.4		0.5		8.9	0.5		7.8	0.5		6.7	0.5		6.3	115	
t _{PLH}	В	Α		3		0.5		8.2	0.5		7.8	0.5		7.5	0.5		7.4	ns	
t _{PHL}	ь			3		0.5		8.2	0.5		7.8	0.5		7.5	0.5		7.4	115	
t _{PZH}	ŌĒ	_		3.4		0.5		10.8	0.5		10.8	0.5		10.8	0.5		10.8	ns	
t _{PZL}	OE	Α	A		3.4		0.5		10.8	0.5		10.8	0.5		10.8	0.5		10.8	115
t _{PZH}	ŌĒ	В		5.4		0.5		12.2	0.5		10.4	0.5		8.3	0.5		7.5	ns	
t _{PZL}	OE			5.4		0.5		12.2	0.5		10.4	0.5		8.3	0.5		7.5	115	
t _{PHZ}	ŌĒ	Α		4.2		0.5		10.7	0.5		10.7	0.5		10.7	0.5		10.7	ns	
t _{PLZ}	OE			4.2		0.5		10.7	0.5		10.7	0.5		10.7	0.5		10.7	115	
t _{PHZ}	OE.	B		5.2		0.5		11.4	0.5		8.9	0.5		8.9	0.5		8.7	ns	
t _{PLZ}	ŌĒ	ŌĒ	ŌE B		5.2		0.5		11.4	0.5		8.9	0.5		8.9	0.5		8.7	115

6.9 Switching Characteristics: V_{CCA} = 2.5 V ± 0.2 V

over recommended operating free-air temperature range, V_{CCA} = 2.5 V ± 0.2 V (see Figure 7-1)

DADAMETED	FROM	то	Vcc	_B = 1.2	٧	V _{CCB} =	1.5 V ± 0.	1 V	V _{CCB} = 1	1.8 V ± 0.	15 V	V _{CCB} =	2.5 V ±	0.2 V	V _{CCB} = :	3.3 V ±	0.3 V	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
t _{PLH}	Α	В		3.2		0.5		9.6	0.5		7.5	0.5		6.3	0.5		5.8	ns
t _{PHL}	_ A			3.2		0.5		8.6	0.5		7.5	0.5		6.3	0.5		5.8	115
t _{PLH}	В	Α		2.6		0.5		7.1	0.5		6.7	0.5		6.3	0.5		6.2	ns
t _{PHL}	Ь	_ ^		2.6		0.5		7.1	0.5		6.7	0.5		6.3	0.5		6.2	115
t _{PZH}	ŌĒ	^		2.5		0.5		8.3	0.5		8.3	0.5		8.3	0.5		8.3	ns
t _{PZL}	OE A	DE A		2.5		0.5		8.3	0.5		8.3	0.5		8.3	0.5		8.3	115
t _{PZH}	ŌĒ	В		5.2		0.5		12.4	0.5		10.3	0.5		8.1	0.5		7.5	ns
t _{PZL}	OE			5.2		0.5		12.4	0.5		10.3	0.5		8.1	0.5		7.5	115
t _{PHZ}	ŌĒ	Α		3		0.5		9.1	0.5		9.1	0.5		9.1	0.5		9.1	
t _{PLZ}	OE	_ ^		3		0.5		9.1	0.5		9.1	0.5		9.1	0.5		9.1	ns
t _{PHZ}	OF	ь		5		0.5		10.9	0.5		9.6	0.5		9.1	0.5		8.2	
t _{PLZ}	OE B			5		0.5		10.9	0.5		9.6	0.5		9.1	0.5		8.2	ns

6.10 Switching Characteristics: V_{CCA} = 3.3 V \pm 0.3 V

over recommended operating free-air temperature range, V_{CCA} = 3.3 V \pm 0.3 V (see Figure 7-1)

							, , ,				_																	
PARAMETER	FROM	то	V _{cc}	_B = 1.2 \	/	V _{CCB} =	1.5 V ± 0.	1 V	V _{CCB} = 1	.8 V ± 0.1	5 V	V _{CCB} = 2	2.5 V ± 0).2 V	V _{CCB} = 3	3.3 V ±	0.3 V	UNIT										
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP I	MAX	MIN	TYP	MAX	UNIT										
t _{PLH}	А	В		3.2		0.5		8.5	0.5		7.4	0.5		6.2	0.5		5.7	ns										
t _{PHL}	^			3.2		0.5		8.5	0.5		7.4	0.5		6.2	0.5		5.7	115										
t _{PLH}	В	A		2.8		0.5		6.7	0.5		6.3	0.5		5.8	0.5		5.7	ns										
t _{PHL}	Ь			2.8		0.5		6.7	0.5		6.3	0.5		5.8	0.5		5.7	115										
t _{PZH}	ŌĒ	A		2.2		0.5		7.3	0.5		7.2	0.5		7.1	0.5		7	ns										
t _{PZL}	OL			2.2		0.5		7.3	0.5		7.2	0.5		7.1	0.5		7	115										
t _{PZH}	ŌĒ	В		5.1		0.5		12.3	0.5		10.2	0.5		7.9	0.5		7	ns										
t _{PZL}	OL			5.1		0.5		12.3	0.5		10.2	0.5		7.9	0.5		7	115										
t _{PHZ}	OE.	A		3.4		0.5		8	0.5		8	0.5		8	0.5		8	ns										
t _{PLZ}	ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	ŌĒ	OE	OE	ŌĒ	ŌĒ	ŌĒ	_ ^		3.4		0.5		8	0.5		8	0.5		8	0.5		8	113
t _{PHZ}	ŌĒ	ŌĒ	ŌĒ	OE	OF	OE	В		4.9		0.5		10.7	0.5		9.5	0.5		8.2	0.5		8	ns					
t _{PLZ}						4.9		0.5		10.7	0.5		9.5	0.5		8.2	0.5		8	113								

6.11 Operating Characteristics

T_A= 25°C

1A- 25	,																	
	PARAMETEI	R	TEST CONDITIONS	V _{CCA} = V _{CCE}	_B = 1.2	V _{CCA} =	V _{CCA} = V _{CCB} = 1.5 V		V _{CCA} =	• V _{CCB} = 1	.8 V	V _{CCA}	= V _{CCB} =	2.5 V	V _{CCA} =	V _{CCB} = 3	3.3 V	UNIT
			CONDITIONS	MIN TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
	A to B	Outputs enabled		1			1			1			1			2		
C _{pdA} (1)	Alob	Outputs disabled f =			1		1		1		1			1		pF		
OpdA V	B to A	Outputs enabled	$t_r = t_f = 1 \text{ ns}$	13			13			14			15			16		рг
	BIOA	A Outputs disabled		1			1			1			1			1		
	A to B	Outputs enabled		13			13			14			15			16		
C (1)	A to B	Outputs disabled	C _L = 0, f = 10 MHz,	1			1		1		1			1		pF		
C _{pdB} ⁽¹⁾	B to A	Outputs enabled	$t_r = t_f = 1 \text{ ns}$	1			1			1			1			2		pr
	BIOA	Outputs disabled		Outputs		1	1		1		1		1		1			

⁽¹⁾ Power dissipation capacitance per transceiver

6.12 Typical Characteristics

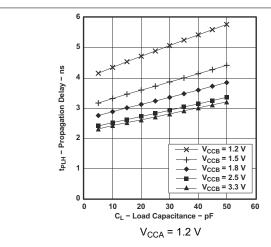


Figure 6-1. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

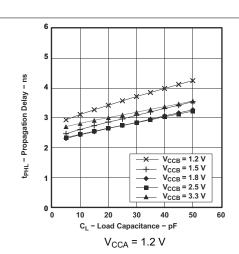


Figure 6-2. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

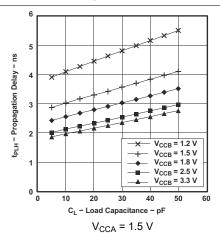


Figure 6-3. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

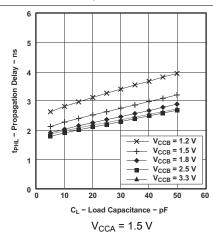


Figure 6-4. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

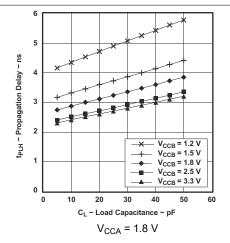


Figure 6-5. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

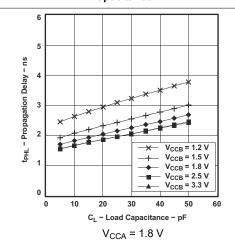


Figure 6-6. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

6.12 Typical Characteristics (continued)

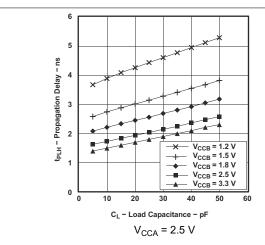


Figure 6-7. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

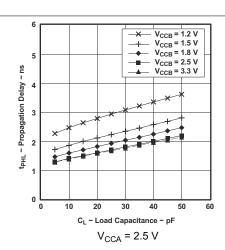


Figure 6-8. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

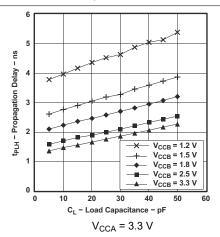


Figure 6-9. Typical Propagation Delay t_{PLH} (A to B) vs Load Capacitance

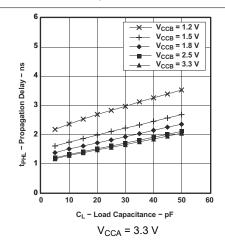
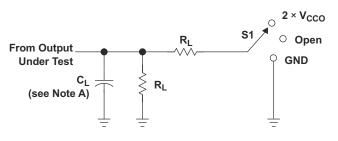
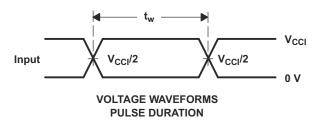
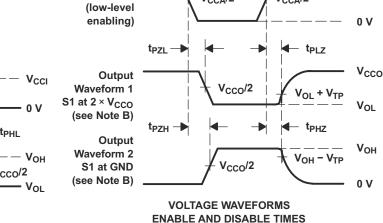



Figure 6-10. Typical Propagation Delay t_{PHL} (A to B) vs Load Capacitance

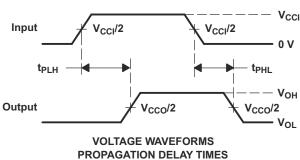
 $\mathbf{V}_{\mathsf{CCA}}$


7 Parameter Measurement Information

TEST	S 1
t _{pd}	Open
t _{PLZ} /t _{PZL}	2 × V _{CCO}
t _{PHZ} /t _{PZH}	GND


LOAD CIRCUIT

V _{CCO}	CL	R _L	V _{TP}
1.2 V	15 pF	2 k Ω	0.1 V
1.5 V ± 0.1 V	15 pF	2 k Ω	0.1 V
1.8 V ± 0.15 V	15 pF	2 k Ω	0.15 V
2.5 V ± 0.2 V	15 pF	2 k Ω	0.15 V
3.3 V ± 0.3 V	15 pF	2 k Ω	0.3 V



V_{CCA}/2

V_{CCA}/2

Output Control

NOTES: A. C_I includes probe and jig capacitance.

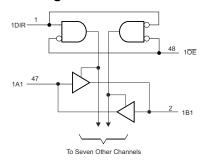
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$, $dv/dt \geq$ 1 V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis}.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. V_{CCI} is the V_{CC} associated with the input port.
- I. V_{CCO} is the V_{CC} associated with the output port.

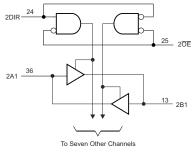
Figure 7-1. Load Circuit and Voltage Waveforms

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

8 Detailed Description


8.1 Overview


The SN74AVC16T245-Q1 is a 16-bit, dual-supply, noninverting, bidirectional voltage level translation. Pins A and control pins (DIR and $\overline{\text{OE}}$) are supported by V_{CCA} and B pins are supported by V_{CCB} . The A port can accept I/O voltages ranging from 1.2 V to 3.6 V, while the B port can accept I/O voltages from 1.2 V to 3.6 V. A high on DIR allows data transmission from A to B and a low on DIR allows data transmission from B to A when $\overline{\text{OE}}$ is set to low. When $\overline{\text{OE}}$ is set to high, both A and B are in the high-impedance state.

This device is fully specified for partial-power-down applications using off output current (I_{off}).

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, both ports are put in a high-impedance state.

8.2 Functional Block Diagram

Copyright © 2016. Texas Instruments Incorporated

8.3 Feature Description

8.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-Supply Range

Both V_{CCA} and V_{CCB} can be supplied at any voltage from 1.2 V to 3.6 V, making the device suitable for translating between any of the low voltage nodes (1.2 V, 1.8 V, 2.5 V, and 3.3 V).

8.3.2 Partial-Power-Down Mode Operation

This device is fully specified for partial-power-down applications using off output current (I_{off}). The I_{off} circuitry prevents backflow current by disabling I/O output circuits when device is in partial power-down mode.

8.3.3 V_{CC} Isolation

The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} are at GND, both ports are in a high-impedance state (I_{OZ} shown in Section 6.5). This prevents false logic levels from being presented to either bus.

8.4 Device Functional Modes

The SN74AVC16T245-Q1 is a voltage level translator that can operate from 1.2 V to 3.6 V (V_{CCA}) and 1.2 V to 3.6 V (V_{CCB}). The signal translation between 1.2 V and 3.6 V requires direction control and output enable control. When \overline{OE} is low and DIR is high, data transmission is from A to B. When \overline{OE} is low and DIR is low, data transmission is from B to A. When \overline{OE} is high, both output ports will be high-impedance. Table 8-1 lists the functions.

Table 8-1. Function Table (Each 16-Bit Section)

CONTROL	. INPUTS	OUTPUT CII	RCUITS	OPERATION
ŌĒ	DIR	A PORT	B PORT	OPERATION
L	L	Enabled	Hi-Z	B data to A bus
L	Н	Hi-Z	Enabled	A data to B bus
Н	X	Hi-Z	Hi-Z	Isolation

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

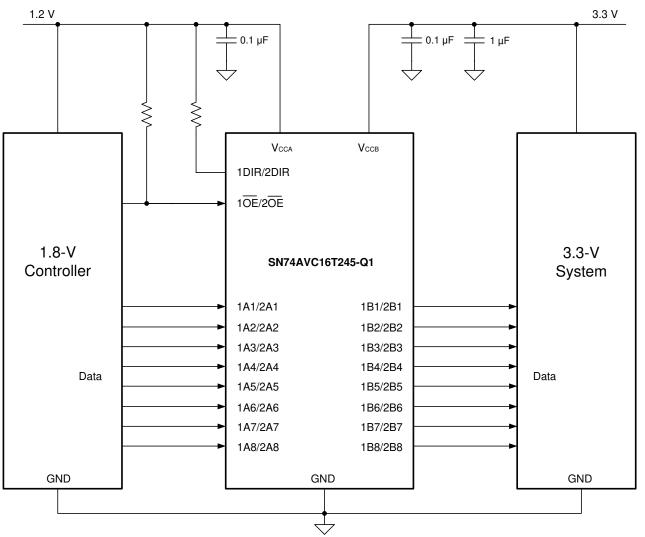
9.1 Application Information

The SN74AVC16T245-Q1 device can be used in level-shifting applications for interfacing devices and addressing mixed voltage incompatibility. The SN74AVC16T245-Q1 device is ideal for data transmission where direction is different for each channel.

9.1.1 Enable Times

Calculate the enable times for the SN74AVC16T45 using the following formulas:

$$t_{PZH}$$
 (DIR to A) = t_{PLZ} (DIR to B) + t_{PLH} (B to A) (1)


$$t_{PZL}$$
 (DIR to A) = t_{PHZ} (DIR to B) + t_{PHL} (B to A) (2)

$$t_{PZH} (DIR to B) = t_{PLZ} (DIR to A) + t_{PLH} (A to B)$$
(3)

$$t_{PZL}$$
 (DIR to B) = t_{PHZ} (DIR to A) + t_{PHL} (A to B) (4)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the SN74AVC16T245-Q1 initially is transmitting from A to B, then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

9.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

Figure 9-1. Typical Application Schematic

9.2.1 Design Requirements

This device uses drivers which are enabled depending on the state of the DIR pin. The designer must know the intended flow of data and take care not to violate any of the high or low logic levels. Unused data inputs must not be floating, as this can cause excessive internal leakage on the input CMOS structure. Tie any unused input and output ports directly to ground.

For this design example, use the parameters listed in Table 9-1.

Table 9-1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	1.2 V
Output voltage range	3.3 V

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

9.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the SN74AVC16T245-Q1 device to determine the input voltage range. For a valid logic high the value must exceed the V_{IH} of the input port. For a valid logic low the value must be less than the V_{II} of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74AVC16T245-Q1 device is driving to determine the output voltage range.

9.2.3 Application Curve

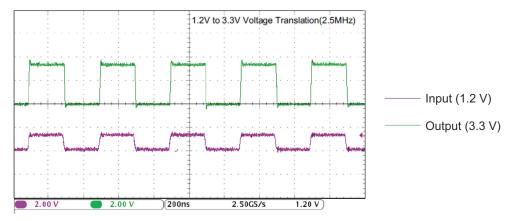


Figure 9-2. Translation Up (1.2 V to 3.3 V) at 2.5 MHz

10 Power Supply Recommendations

The SN74AVC16T245-Q1 device uses two separate configurable power-supply rails, V_{CCA} and V_{CCB} . V_{CCA} accepts any supply voltage from 1.2 V to 3.6 V and V_{CCB} accepts any supply voltage from 1.2 V to 3.6 V. The A port and B port are designed to track V_{CCA} and V_{CCB} , respectively, allowing for low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.

The output-enable \overline{OE} input circuit is designed so that it is supplied by V_{CCA} and when the \overline{OE} input is high, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the \overline{OE} input pin must be tied to V_{CCA} through a pullup resistor and must not be enabled until V_{CCA} and V_{CCB} are fully ramped and stable. The minimum value of the pullup resistor to V_{CCA} is determined by the current-sinking capability of the driver.

11 Layout

11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines is recommended:

- Bypass capacitors must be used on power supplies.
- Short trace lengths must be used to avoid excessive loading.
- Placing pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of signals depending on the system requirements.

11.2 Layout Example

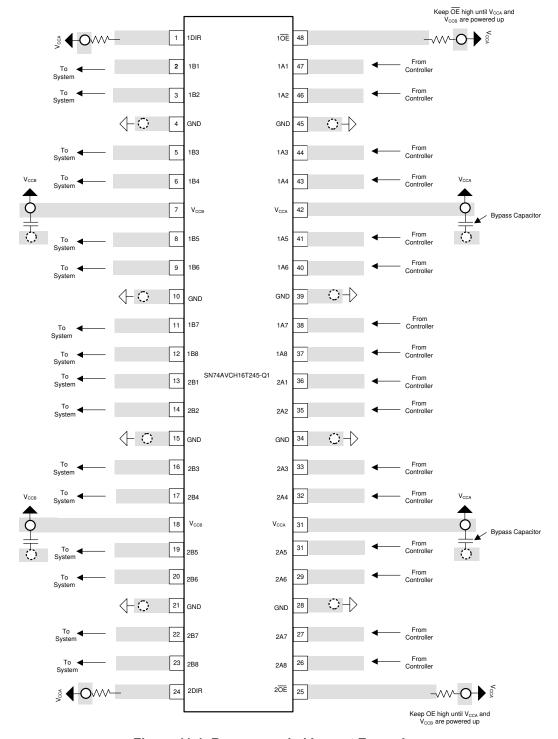


Figure 11-1. Recommended Layout Example

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- CMOS Power Consumption and Cpd Calculation
- IC Package Thermal Metrics application report
- Implications of Slow or Floating CMOS Inputs

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Notifications to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision A (February 2016) to Revision B (March 2024) **Page**

Changes from Revision * (September 2008) to Revision A (February 2016) **Page**

- Added ESD Ratings table. Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendationssection, Layout section, Device and Documentation
- Deleted Overvoltage-Tolerant Inputs/Outputs Allow Mixed- Voltage-Mode Data Communications bullet from

14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 29-Feb-2024

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
CAVC16T245QDGVRQ1	ACTIVE	TVSOP	DGV	48	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	WF245Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

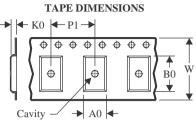
OTHER QUALIFIED VERSIONS OF SN74AVC16T245-Q1:

PACKAGE OPTION ADDENDUM

www.ti.com 29-Feb-2024

● Catalog : SN74AVC16T245

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

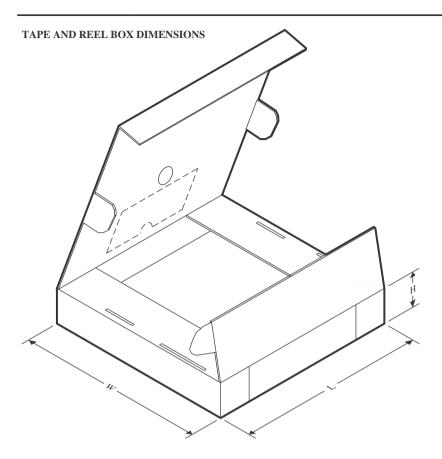
PACKAGE MATERIALS INFORMATION

www.ti.com 29-Feb-2024

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

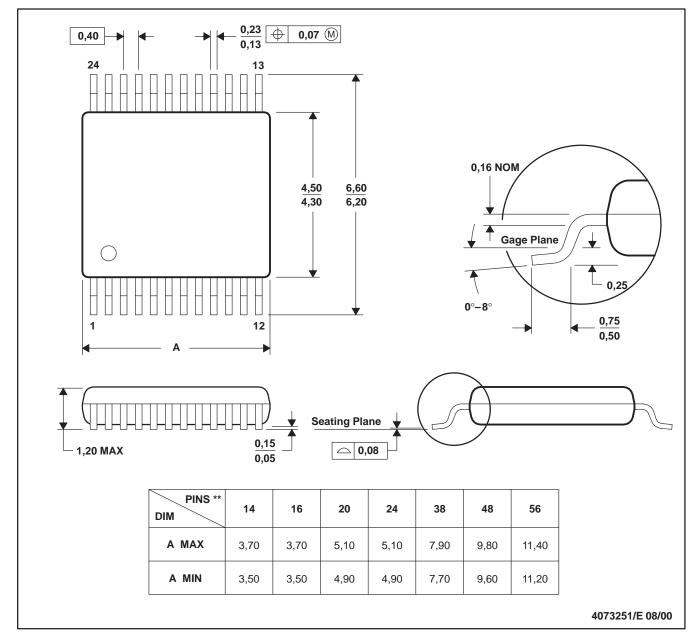


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CAVC16T245QDGVRQ1	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Feb-2024


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CAVC16T245QDGVRQ1	TVSOP	DGV	48	2000	356.0	356.0	35.0

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated