ZHCSLE0B - AUGUST 2021 - REVISED AUGUST 2023 # JFE2140 超低噪声、匹配低栅电流双离散音频 N 通道 JFET ## 1 特性 超低噪声: **TEXAS** Instruments - 电压噪声: - 1 kHz 时为 0.9 nV/ √Hz , I_{DS} = 5 mA - 1 kHz 时为 1.1 nV/ √ Hz , I_{DS} = 2mA - 电流噪声: 1 kHz 时为 1.6 fA/√Hz - 低 V_{GS} 失配: 4mV (最大值) - 低栅极电流:10 pA(最大值) - 低输入电容: V_{DS} = 5V 时为 13 pF - 高栅漏电压和栅源击穿电压:-40V - 高跨导: 30 mS - 封装: SOIC, 2mm x 2mm WSON ## 2 应用 - 麦克风输入 - 水听器和船用设备 - DJ 控制器、混频器和其他 DJ 设备 - 专业音频混合器或控制平面 - 吉他放大器和其他乐器放大器 - 状态监控传感器 ## 3 说明 JFE2140 是使用德州仪器 (TI) 现代高性能模拟双极工 艺构建的 Burr-Brown™ 音频、匹配对分立式 JFET。 JFE2140 具有以前较旧的分立式 JFET 技术所不具备 的性能。JFE2140 在所有电流范围内均提供出色的噪 声性能,静态电流可由用户设置,范围为 50 μA 至 20 mA。当偏置电流为 5 mA 时,该器件会产生 0.9 nV/√ Burr-Brown Audio \overline{Hz} 的输入参考噪声,从而以极高的输入阻抗 (>1T Ω) 提供超低噪声性能。此外,按照 ±4mV 测试 JFET 之 间的匹配,可为差分对配置提供低失调电压和高 CMRR 性能。JFE2140 还具有连接到独立钳位节点的 集成二极管,无需添加高泄漏、非线性外部二极管即可 提供保护。 JFE2140 可承受 40V 的高漏源电压,以及低至 - 40V 的栅源电压和栅漏电压。该器件额定工作温度范围为 - 40°C 至 +125°C。 #### 封装信息 | | 器件型号 | 封装 ⁽¹⁾ | 封装尺寸⁽²⁾ | | |---|---------|----------------------------|---------------------------|--| | | JFE2140 | D (SOIC , 8) 4.9mm x 6mm | | | | 1 | | DSG (WSON, 8) | 2mm x 2mm | | - 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。 - 封装尺寸(长x宽)为标称值,并包括引脚(如适用)。 #### 哭件概要 | | 参数 | 值 | |-------------------------------------|----------------|-----------------------| | V_{GSS} | 栅源击穿电压 | -40V | | V _{DSS} | 漏源击穿电压 | ±40V | | C _{ISS} | 输入电容 | 13 pF | | V _{GS1} - V _{GS2} | 差分栅源电压匹配 (最大值) | ±4mV | | TJ | 结温 | - 40°C
至
+125°C | | I _{DSS} | 漏源饱和电流 | 18 mA | 超低输入电压噪声 ## **Table of Contents** | 1 特性 | 1 | 8.3 Feature Description | 12 | |--------------------------------------|---|---|------------------| | 2 应用 | | 8.4 Device Functional Modes | 13 | | 3 说明 | | 9 Application and Implementation | 14 | | 4 Revision History | | 9.1 Application Information | 14 | | 5 Pin Configuration and Functions | | 9.2 Typical Applications | 18 | | 6 Specifications | | 9.3 Power Supply Recommendations | 21 | | 6.1 Absolute Maximum Ratings | | 9.4 Layout | <mark>2</mark> 1 | | 6.2 ESD Ratings | | 10 Device and Documentation Support | <mark>22</mark> | | 6.3 Recommended Operating Conditions | | 10.1 Device Support | <mark>22</mark> | | 6.4 Thermal Information | | 10.2 Documentation Support | | | 6.5 Electrical Characteristics. | | 10.3 接收文档更新通知 | | | 6.6 Typical Characteristics | | 10.4 支持资源 | | | 7 Parameter Measurement Information | | 10.5 Trademarks | | | 7.1 AC Measurement Configurations | | 10.6 静电放电警告 | 23 | | 8 Detailed Description | | 10.7 术语表 | | | 8.1 Overview | | 11 Mechanical, Packaging, and Orderable | | | 8.2 Functional Block Diagram | | Information | 23 | | | | | | 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 | CI | nanges from Revision A (March 2022) to Revision B (August 2023) | Page | |----|--|------| | • | 将 DSG(WSON,8) 封装状态从预发布更改为量产数据(正在供货) | 1 | | • | 将器件概要表中的参数说明从"栅源电压"更改为"栅源击穿电压",并从"漏源电压"更改为"漏源击 | 穿电 | | | 压",以便与 <i>电气特性</i> 保持一致 | 1 | | • | 向器件概要表中的"差分栅源电压匹配"参数说明中添加了"最大值" | 1 | | • | Added values for DSG (WSON, 8) package to Thermal Information table | 4 | | • | Added condition "V _{DS} = 5 V" to Figure 6-7, Gate Current vs Gate-to-Source Voltage | 7 | | • | Added clarification that the threshold voltage is equivalent to the gate-to-source cutoff voltage (V _{GSC}) in | | | | Common-Source Amplifier. | 15 | | • | Added JFE2140EVM user's guide and JFE2140 Ultra-Low-Noise Preamplifier application note to Related | d | | | Documentation | 23 | | CI | nanges from Revision * (August 2021) to Revision A (March 2022) | Page | | • | Changed ESD JEDEC specification to JS-002 | 4 | | • | Changed gate-to-source voltages from - 1.2 V to - 1.3 V (100 µA), - 0.9 V to - 1.1 V (2 mA) | 6 | | • | Changed Y-axis range from 0 to 33 to 0 to 16 on Figure 6-1, Drain-to-Source Current vs Gate-to-Source | | | | Voltage | 7 | | | | | Product Folder Links: JFE2140 # **5 Pin Configuration and Functions** 图 5-1. D Package, 8-Pin SOIC (Top View) 图 5-2. DSG Package, 8-Pin WSON (Top View) | 表 5 | : 1 | Din | Eun | ctio | nc | |------|------|------|-----|------|----| | 77 5 |)-T. | PIN. | run | CTIO | ns | | PIN | | TYPE | DESCRIPTION | | | |-------------|--|--------|--|--|--| | NAME | NO. | ITPE | DESCRIPTION | | | | D1 | 2 | Output | Drain, channel 1 | | | | D2 | 6 | Output | Drain, channel 2 | | | | G1 | 4 | Input | Gate, channel 1 | | | | G2 | 8 | Input | Sate, channel 2 | | | | S1 | 1 | Output | Source, channel 1 | | | | S2 | 5 | Output | Source, channel 2 | | | | VCH | 3 | _ | Positive diode clamp voltage. Float this pin if clamp diodes are not used. | | | | VCL | 7 | _ | Negative diode clamp voltage. Float this pin if clamp diodes are not used. | | | | Thermal Pad | al Pad Thermal Pad Exposed thermal pad. This pad is internally connected to the V _{CL} node. Cont the same node as V _{CL} or leave floating. | | Exposed thermal pad. This pad is internally connected to the V_{CL} node. Connect this pad to the same node as V_{CL} or leave floating. | | | ## **6 Specifications** ## 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) (2) | | | | MIN | MAX | UNIT | |-------------------------------------|---|----------------------------|------|-----|------| | V _{DS} | Drain-to-source voltage | | - 40 | 40 | V | | V_{GS}, V_{GD} | , V _{GD} Gate-to-source voltage, gate-to-drain voltage | | - 40 | 0.1 | V | | V _{VCH} | Voltage between VCH to D, G, or S | | | 40 | V | | V _{VCL} | Voltage between VCL to D, G, or S | | - 40 | | | | har har | Clamp diode current | DC | | 20 | mA | | I _{VCL} , I _{VCH} | Clamp diode current | 50-ms pulse ⁽³⁾ | | 200 | IIIA | | I _{DS} | Drain-to-source current | | - 50 | 50 | mA | | I _{GS,} I _{GD} | Gate-to-source current, gate-to-drain curre | ent | - 20 | 20 | mA | | T _A | Ambient temperature | | - 55 | 150 | °C | | T _J | Junction temperature | | - 55 | 150 | °C | | T _{stg} | Storage temperature | | - 55 | 175 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. ## 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | \/ | | V _(ESD) | Liectiostatic discharge | Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾ | ±500 | v | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. #### **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | |-----------------|-------------------------|-------|-----|------------------|------| | I _{DS} | Drain-to-source current | 0.02 | | I _{DSS} | mA | | V_{GS} | Gate-to-source voltage | - 1.2 | | 0 | V | | TJ | Specified temperature | - 40 | | 125 | °C | #### **6.4 Thermal Information** | | | JFE | | | |------------------------|--|----------|------------|------| | THERMAL METRIC(1) | | D (SOIC) | DSG (WSON) | UNIT | | | | 8 PINS | 8 PINS | | | R ₀ JA | Junction-to-ambient thermal resistance | 139.8 | 84.2 | °C/W | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 80.0 | 104.1 | °C/W | | R ₀ JB | Junction-to-board thermal resistance | 83.2 | 49.6 | °C/W | | ΨJT | Junction-to-top characterization parameter | 29.1 | 6.9 | °C/W | | ψ ЈВ | Junction-to-board characterization parameter | 82.4 | 49.6 | °C/W | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated All gate, drain and source voltages are referred to the same-channel JFET (that is, V_{GS} applies to both V_{G1S1} and V_{G2S2}). ⁽³⁾ Maximum diode current pulse specified for 50 ms at 1% duty cycle. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. | | | JFE | | | |------------------------|--|----------|------------|------| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | DSG (WSON) | UNIT | | | | 8 PINS | 8 PINS | | | R _{θ JC(bot)} | Junction-to-case (bottom) thermal resistance | N/A | 26.5 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ## **6.5 Electrical Characteristics** at $T_A = 25$ °C, $I_{DS} = 2$ mA, $V_{DS} = 10$ V (unless otherwise noted) | | PARAMETER | TEST C | CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|---|--|---|------|-------|------|---------------------| | NOISE | | | | | | | | | | | | f = 1 kHz | | 2.5 | | | | | | I _{DS} = 100 μA | f = 10 Hz | | 5.4 | | nV/ √ Hz | | | | | f = 0.1 Hz to 10 Hz | | 0.26 | | μV _{PP} | | e _n | Input-referred noise | | f = 1 kHz | | 1.1 | | | | | | I _{DS} = 2 mA | f = 10 Hz | | 2.4 | | nV/ √ Hz | | | | | f = 0.1 Hz to 10 Hz | | 0.12 | | μV _{PP} | | e _i | Input current noise, each input | f = 1 kHz, I _{DS} = 2 mA | , V _{DS} = 5 V | | 1.6 | | fA/ √ Hz | | INPUT C | URRENT | | L | | | | | | | | V _{DS} = 2 V, V _{VCH} = 5 \ | V, V _{VCL} = -5 V | | 1 | ±10 | | | | | | | | 0.2 | ±60 | рA | | I_G | Input gate current | V _{DS} = 0 V, | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ | | , | 0.85 | | | | | V _{GS} = -30 V | T _A = -40°C to
+125°C | | | 9 | nA | | INPUT V | OLTAGE | | | | | | | | V _{GSS} | Gate-to-source breakdown voltage | V _{DS} = 0 V, I _G = - 100 | Αμ(| | | -40 | V | | V _{GSC} | Gate-to-source cutoff voltage | V _{DS} = 10 V, I _{DS} = 0.1 | · | -1.5 | -1.15 | -0.9 | V | | V _{GS} | Gate-to-source voltage | I _{DS} = 100 µA | | -1.3 | -0.85 | -0.7 | V | | | | I _{DS} = 2 mA | | -1.1 | -0.6 | -0.5 | | | | | 103 = 112 (| | | 1 | 4 | | | ΔV_{GS} | Differential V _{GS} mismatch | I _{DS} = 2 mA | T _A = -40°C to
+125°C | | 1.1 | 4.2 | mV | | | Differential V _{GS} mismatch drift | T _A = - 40°C to
+125°C | | | 1.7 | ±10 | μV/°C | | INPUT IN | MPEDANCE | | | | , | | | | R _{IN} | Gate input resistance | V _{GS} = -30 V to -1 | V, V _{DS} = 0 V | | 1 | | ΤΩ | | 0 | In and a second state of | V _{DS} = 0 V | | | 17 | | | | C _{ISS} | Input capacitance | V _{DS} = 5 V | | | 13 | | pF | | OUTPUT | - ' | | | , | | l | | | | | | | 12 | 18 | 23 | | | I _{DSS} | Drain-to-source saturation current | V _{GS} = 0 V | T _A = -40°C to
+125°C | 10 | | 28 | mA | | | Drain-to-source saturation current ratio | V _{GS} = 0 V, I _{DSS1} / I _{DS} | S2 | 0.95 | 1 | 1.05 | | | | Transcanductors | I _{DS} = 100 μA | | | 2.1 | | m- C | | | Transconductance | I _{DS} = 2 mA | | - | 10 | | mS | | G _{FS} | Full conduction transconductance | V _{GS} = 0 V | | 24 | 30 | | mS | | V _{DSS} | Drain-to-source breakdown voltage | I _{DS} = 100 μA | | 40 | 43 | | V | | Coss | Output capacitance | I _{DS} = 2 mA | | | 4.5 | | pF | ## **6.6 Typical Characteristics** at $T_A = 25$ °C, $I_{DS} = 2$ mA, common-source configuration, and $V_{DS} = 10$ V (unless otherwise noted) ## 6.6 Typical Characteristics (continued) at $T_A = 25$ °C, $I_{DS} = 2$ mA, common-source configuration, and $V_{DS} = 10$ V (unless otherwise noted) ## **6.6 Typical Characteristics (continued)** at $T_A = 25$ °C, $I_{DS} = 2$ mA, common-source configuration, and $V_{DS} = 10$ V (unless otherwise noted) ## **6.6 Typical Characteristics (continued)** at T_A = 25°C, I_{DS} = 2 mA, common-source configuration, and V_{DS} = 10 V (unless otherwise noted) English Data Sheet: SLPS730 ## 7 Parameter Measurement Information ## 7.1 AC Measurement Configurations The circuit configuration used for noise measurements is seen in \boxtimes 7-1. The nominal I_{DS} current is configured in the schematic by calibrating V - . After I_{DS} is fixed, the V_{DS} voltage is set by calibrating V+. For input-referred noise data, the gain of the circuit is calibrated from V_{IN} to V_{OUT} and used for the input-referred gain calculation. 图 7-1. AC Measurement Reference Schematic ## 8 Detailed Description #### 8.1 Overview The JFE2140 is a ultra-low noise, matched-input pair N-type JFET designed to create low-noise gain stages for very high output impedance sensors or microphones. Advanced, high precision processing technology gives the JFE2140 tight channel-to-channel matching, extremely low-noise performance, a high gm/C_{ISS} ratio, and ultra-low gate-current performance. The integrated Input-protection diodes clamp high-voltage spurious input signals without the need for additional input diodes that can add leakage current or distortion-creating nonlinear capacitance. The JFE2140 provides a next-generation device to implement low-noise amplifiers for piezoelectric sensors, transducers, large-area condenser microphones, and hydrophones in small-package options. #### 8.2 Functional Block Diagram ## 8.3 Feature Description ## 8.3.1 Precision Matching The JFE2140 features matched-pair, n-type JFET transistors fabricated on a high-precision analog process. Precision matching between opposite JFETs is required in differential-pair configurations, where any mismatch between input devices results in gain and common-mode rejection degradation. Precision matching also minimizes offset voltages that produce excessive error voltages in high-gain, dc-coupled composite amplifiers. Matching distribution for a production lot of units can be seen in $\boxed{8}$ 6-10. #### 8.3.2 Ultra-Low Noise Junction field effect transistors (JFETs) are commonly used as an input stage in high-input-impedance, low-noise designs in audio, SONAR, vibration analysis, and other technologies. The JFE2140 is a new generation JFET device that offers very low noise performance at the lowest possible current consumption in high-input-impedance amplifier designs. The JFE2140 is manufactured on a high-performance analog process technology, giving tighter process parameter control than a standard JFET. Designs that feature operational amplifiers (op amps) as the primary gain stage are common, but these designs are not able to achieve the lowest possible noise as a result of the inherent challenges and tradeoffs required from a full operational amplifier design. Noise in JFET designs can be evaluated in two separate regions: low-frequency flicker noise and wideband thermal noise. Flicker, or 1/f noise, is extremely important for systems that require signal gain at frequencies less that 100 Hz. The JFE2140 achieves extremely low 1/f noise in this range. Thermal noise is noise in the region greater than 1 kHz and depends on the gain, or gm, of the circuit. The gm is a function of the drain-to-source bias current; therefore, thermal noise is also a function of drain-to-source bias current. 8 6-14 shows both 1/f and thermal noise with multiple bias conditions measured using the circuit shown in 7-1. Noise is typically modeled as a voltage source (voltage noise) and current source (current noise) on the input. The 1/f and thermal noise can be represented as voltage noise. Current noise is dominated by current flow into the gate, and is called *shot noise*. The JFE2140 features extremely low gate current, and therefore, extremely low current noise. 8 6-15 shows how source impedance on the input is the dominant noise source. In nearly all cases, noise created as a result of current noise is negligible. #### 8.3.3 Low Gate Current The JFE2140 features a maximum gate current of 10 pA at room temperature, making the device an excellent choice for maximizing the gain and dynamic range from extremely high impedance sensors. Additionally, any noise contributions as a result of gate current are minimized because of the negligible shot noise at low current levels. As with all JFET devices, when the drain-to-source voltage increases, the gate current also increases. Keep the drain-to-source voltage to less than 5 V for the lowest gate input current operation. #### 8.3.4 Input Protection The JFE2140 features input protection diodes that are used for surge clamping and ESD events. The diodes are rated to withstand high current surges for short times, steering current from the gate (G) pin to the VCH and VCL pins. The diodes also feature very low leakage, removing the need for external protection devices that can have high leakage currents or nonlinear capacitance that degrade the distortion performance. #### 8.4 Device Functional Modes The JFE2140 functionality is identical to standard N-channel depletion JFET devices. The gate-to-source (V_{GS}) voltage, drain-to-source voltage (V_{DS}) and drain-to-source current (I_{DS}) determine the region of operation. - For $V_{GS} < V_{GSC}$: JFE2140 conduction channel is closed; I_{DS} is only determined by junction leakage current. - For $V_{GS} > V_{GSC}$: Two modes of operation can exist depending on V_{DS} . When V_{DS} is less than the linear (saturation) region threshold (see \boxtimes 8-1), the device operates in the linear region, meaning that the device behaves as a resistor connected from drain-to-source with minimal variation from any changes in V_{GS} . When V_{DS} is greater than the linear (saturation) region threshold, I_{DS} has a strong dependance on V_{GS} , where the relationship is described by the parameter gm. 图 8-1. V_{DS} vs I_{DS} ## 9 Application and Implementation #### 备注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. #### 9.1 Application Information #### 9.1.1 Input Protection Diodes The JFE2140 features diodes that are used to help clamp voltage surges that can occur on the input sensor to the gate. The diodes are connected between the gates, sources, and drains of each JFET to two separate pins, VCL and VCH. The clamping mechanism works by *steering* current from the gate into the VCL or VCH nodes when the voltage at the gate, source or drain is less than VCL or greater than VCH. 9-1 shows an example of a microphone input circuit where a dc blocking capacitor operates with a large dc voltage. When the microphone input is dropped or shorted, the dc blocking capacitor discharges into the VCL or VCH nodes, thus helping eliminate large signal transient voltages on the gate. There are also clamping diodes from the drain and source to VCL and VCH, respectively. The clamping diodes can withstand high surge currents up to 200 mA for 50 ms; however, limit dc current to less than 20 mA. 图 9-1. JFE2140 Clamping Diode Example The clamping diodes are not required for operation. The V_{GS} voltage can withstand -40 V, so clamping is not required if the V_{GS} voltage is kept greater than this limit. If the diodes are not needed, leave the VCL and VCH nodes floating. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 9.1.2 Cascode Configuration The JFE2140 can be configured as a *cascoded* JFET front end. Cascode refers to using a second transistor inseries with the input transistor; see 9-2 for an example. 图 9-2. JFE2140 connected in Cascode Configuration Using a cascode configuration, as shown in $\[mathbb{R}\]$ 9-2, increases the output impedance of the stage, resulting in higher gain, as well as buffers the input node from gate current that flows when the V_{DS} voltages are higher. The V_{BIAS} node must be forced to a voltage greater than what is required to allow both JFETs to remain in the saturated region. A JFET is not required to be used as the cascode device; the benefits of cascoding can be realized with other transistor types, while still maintaining the low-noise, high-impedance benefits of the JFE2140. ### 9.1.3 Common-Source Amplifier 图 9-3. Common-Source Amplifier The equation for gain of the circuit in 图 9-3 is shown in 方程式 1. $$\frac{V_{OUT}}{V_{IN}} = -\frac{gm^*R_D}{1+gm^*R_S} \tag{1}$$ Generally, higher gain results in improved noise performance. Gain increases as the bias current is increased as a result of increasing gm (see 8 6-4). As a result, the input-referred noise decreases as bias current is increased (see 8 6-14). Any JFET design must make a tradeoff between current consumption and noise Product Folder Links: JFE2140 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 15 performance. The JFE2140, however, delivers significantly lower noise performance than most operational amplifiers at the same current consumption. The bias current (I_{DS}) is set by the value of the source resistor, R_S , and the threshold voltage, V_T , of the JFE2140. For JFETs, this threshold voltage is equivalent to the gate-to-source cutoff voltage, V_{GSC} . A graph showing nominal I_{DS} vs R_S is shown in 89-4. 图 9-4. Drain-to-Source Current vs R_S , $V_{DS} = 5 V$ The bias current varies according to the resistor and threshold voltage tolerances. Additionally, thermal noise associated with R_S couples directly into the gain of the circuit, degrading the overall noise performance. To improve the circuit in \S 9-5, use a current-source biasing scheme. Current-source biasing removes the JFET threshold variation from the biasing scheme, and allows for lower-value filtering capacitance (C_S) for equivalent filtering due to the high output impedance of current sources. 图 9-5. Common-Source Amplifier With Current-Source Biasing #### 9.1.4 Composite Amplifiers The JFE2140 can be configured to provide a low-noise, high-input impedance front-end stage for a typical op amp. Open-loop transistor gain stages shown previously suffer from wide gain variations that are dependent on the forward transcondutance of the JFE2140. When precision gain is required, the composite amplifier (JFET front-end + operational amplifier) achieves excellent results by allowing for a fixed gain determined by external resistors, and improving the noise and bandwidth of the operational amplifier. The JFE2140 gain stage provides a boost to the open-loop performance of the system, extending the bandwidth beyond what the operational amplifier alone can provide, and gives a high-input impedance, ultra-low noise input stage to interface with high source impedance microphones. 图 9-6 shows a generic schematic representation of a voltage-feedback composite amplifier. The component requirements and tradeoffs are listed in 表 9-1. 图 9-6. Low Noise, High Input Impedance Composite Amplifier The gain of 8 9-6 can be calculated using the following equation: $$A = 1 + \frac{R_{F1}}{R_{F2}} \tag{2}$$ 表 9-1. Composite Amplifier Component List and Function | COMPONENT | DESCRIPTION | |-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | R _{S1} | Degeneration resistors. These resistors reduce the overall gain of the JFET stage, but improve the linearity performance. Also, when used in differential configurations (see OPA1637 reference design), the resistors reduce CMRR errors that occur as a result of input mismatch voltages. | | R _{S2} | Bias-current setting resistor. This resistor, along with R_{S1} , determine the bias current when using resistive biasing (see $\boxed{8}$ 9-4). Be aware that both R_{S1} and R_{S2} resistance directly impact noise performance. | | R _G | Gate resistor. This resistor is used to help limit current flow into the gate in overvoltage cases. For improved dc precision, match R_G to the equivalent parallel resistance of $R_{S1} \parallel R_{S2}$. Use the low resistance values to minimize the thermal noise impact on the circuit. | | R _D | Drain resistor. This resistor sets the JFET stage gain in common source biasing, along with gm and R_{S1} + R_{S2} . Higher resistance increases gain, but lowers the nominal V_{DS} voltage. | | R _{F1} | Feedback resistor 1. Along with R _{F2} , this resistor sets the gain of the composite amplifier. | | R _{F2} | Feedback resistor 2. Along with R _{F1} , this resistor sets the gain of the composite amplifier. | | R _{S2} | Source resistor 2. Along with R _{S1} , this resistor sets the dc bias current where the JFET is nominally operated. | | Cs | Source capacitor. This capacitor reduces the noise coupling from R _{S2} . | ## 9.2 Typical Applications ## 9.2.1 Low-Noise, Low-Power, High-Input-Impedance Composite Amplifier The JFE2140 can be configured to provide a low-noise, high-input impedance single-ended amplifier stage that can be optimized for ultra-low noise performance at low power levels. This configuration is designed for battery-powered audio applications such as guitar pedals, amplifiers and handheld recorders. The OPA1692, a low-power, dual audio amplifier, is used for the composite voltage-feedback amplifier, as well as a *rail-splitting* amplifier that centers the ground voltage between the battery positive and negative voltage. 图 9-7. Low-Noise, Low-Power, High-Input-Impedance Composite Amplifier #### 9.2.1.1 Design Requirements | PARAMETER | DESIGN GOAL | |---------------------------|-------------------------------------------------| | Gain | 15 dB to 40 dB nominal with low-frequency boost | | Frequency response | 1 Hz to 20 kHz | | Noise | < 3 nV/ √ Hz at 1 kHz | | Total current consumption | < 4 mA | | Input current | < 100 pA | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated English Data Sheet: SLPS730 #### 9.2.1.2 Detailed Design Procedure This design provides single-ended, adjustable gain from 15 dB to 40 dB with extremely high input impedance at a very low frequency response. The power consumption is optimized for battery-powered audio applications. - The JFE2140 is configured as a differential pair in a voltage-feedback composite amplifier. This configuration allows for low-frequency gain without large dc-blocking capacitors. - The bias current is set by selecting the desired bias current and noise tradeoff (see 6-16). To set the bias current point, adjust the source resistance according to 9-4. - After the bias current is selected, set the JFET stage gain as high as possible. To avoid pushing the device into the linear region of operation, use the largest drain resistor (R_{D1,2}) possible while maintaining a minimum of 1 V across the drain-to-source nodes. - The overall gain can be configured with the feedback resistors R_{F1}, R_{F2} and R_{F3}. Capacitor C_{F3} can be required depending on the gain configuration for amplifier stability; use amplifier stability best practices to maintain stability at both maximum and minimum gain configurations. #### 9.2.1.3 Application Curves #### 9.2.2 Differential Front-End Design Differential pair architectures are useful for differential small signal amplification where high common-mode voltage rejection (CMRR) is required. In typical differential amplifiers or fully-differential amplifiers (FDA), the tolerance of the resistors alone dominates the CMRR performance. In addition, these amplifiers cannot be configured with high input impedance because of the requirement of input resistors. When used on the front-end of an FDA, the precision-matching on the JFE2140 removes the requirement of extremely low resistor matching (< 1%) by creating a matched-input gain stage. In addition, high input impedance significantly reduces the effects of source impedance mismatch on CMRR performance, creating a differential input designed for noisy environments that are common in professional audio. 图 9-10. The JFE2140 as a High Input Impedance Front End for the OPA1637 ## 9.2.2.1 Application Curves ## 9.3 Power Supply Recommendations The JFE2140 is a dual, matched JFET transistor pair with clamping diodes. There are no specific power-supply connections; however, take care not to exceed any absolute maximum voltages on any of the pins if system supply voltages greater than or equal to 40 V are used. #### 9.4 Layout #### 9.4.1 Layout Guidelines For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including: - Reduce parasitic coupling by running the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to in parallel with the noisy trace. - Place the external components as close to the device as possible. - Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. - · Keep high impedance input signals away from noisy traces. - · Make sure supply voltages are adequately filtered. - Minimize distance between source-connected and drain-connected components to the JFE2140. - Consider a driven, low-impedance guard ring around the critical gate traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. - · Clean the PCB following board assembly for best performance. - Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the plastic package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove moisture introduced into the device packaging during the cleaning process. A low temperature, post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances. #### 9.4.2 Layout Example 图 9-13. JFE2140 Layout Example: Differential Pair Configuration ## 10 Device and Documentation Support ## 10.1 Device Support #### 10.1.1 Development Support ## 10.1.1.1 PSpice® for TI PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决方案,可降低开发成本并缩短上市时间。 ## 10.1.1.2 TINA-TI™ 仿真软件 (免费下载) TINA-TI™ 仿真软件是一款简单易用、功能强大且基于 SPICE 引擎的电路仿真程序。TINA-TI 仿真软件是 TINA™ 软件的一款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 仿真软件提供所有传统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。 TINA-TI 仿真软件提供全面的后处理能力,便于用户以多种方式获得结果,用户可从设计工具和仿真网页免费下载。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的能力,从而构建一个动态的快速启动工具。 #### 备注 必须安装 TINA 软件或者 TINA-TI 软件后才能使用这些文件。请从 TINA-TI™ 软件文件夹中下载免费的 TINA-TI 仿真软件。 #### 10.1.1.3 TI 参考设计 TI 参考设计是由 TI 的精密模拟应用专家创建的模拟解决方案。TI 参考设计提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物料清单以及性能测量结果。TI 参考设计可在线获取,网址为 https://www.ti.com/reference-designs。 #### 10.1.1.4 滤波器设计工具 滤波器设计工具是一款简单、功能强大且便于使用的有源滤波器设计程序。利用滤波设计器,用户可使用精选 TI 运算放大器和 TI 供应商合作伙伴提供的无源器件来打造理想滤波器设计方案。 设计工具和仿真网页以基于网络的工具形式提供滤波设计工具。用户通过该工具可在短时间内完成多级有源滤波器解决方案的设计、优化和仿真。 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## **10.2 Documentation Support** #### 10.2.1 Related Documentation For related documentation see the following: - Texas Instruments, JFE2140 Ultra-Low-Noise Preamplifier application note - Texas Instruments, JFE2140 Evaluation Module user's guide - Texas Instruments, OPAx202 Precision, Low-Noise, Heavy Capacitive Drive, 36-V Operational Amplifiers data sheet - Texas Instruments, OPAx210 2.2-nV/ √Hz Precision, Low-Power, 36-V Operational Amplifiers data sheet - Texas Instruments, OPA1692 Low-Power, Low-Noise and Low-Distortion SoundPlus™ Audio Operational Amplifiers data sheet - Texas Instruments, OPAx197 36-V, Precision, Rail-to-Rail Input/Output, Low Offset Voltage Operational Amplifiers data sheet ## 10.3 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新*进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 #### 10.4 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 #### 10.5 Trademarks Burr-Brown[™], TINA-TI[™], and TI E2E[™] are trademarks of Texas Instruments. TINA[™] is a trademark of DesignSoft, Inc. PSpice® is a registered trademark of Cadence Design Systems, Inc. 所有商标均为其各自所有者的财产。 #### 10.6 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 #### 10.7 术语表 TI术语表本术语表列出并解释了术语、首字母缩略词和定义。 ## 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 23 www.ti.com 17-Aug-2023 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | | | | | | | | (6) | | | | | | JFE2140DR | ACTIVE | SOIC | D | 8 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | JF2140 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 17-Aug-2023 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | _ | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------|------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | JFE2140DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | **PACKAGE MATERIALS INFORMATION** www.ti.com 17-Aug-2023 #### *All dimensions are nominal | Г | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |---|-----------|--------------|-----------------|------|------|-------------|------------|-------------|--| | | JFE2140DR | SOIC | D | 8 | 2500 | 356.0 | 356.0 | 35.0 | | SMALL OUTLINE INTEGRATED CIRCUIT ## NOTES: - 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. - 4. This dimension does not include interlead flash. - 5. Reference JEDEC registration MS-012, variation AA. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ## 重要声明和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司