

CC1314R10SimpleLink™ 高性能 Sub-1GHz 无线 MCU

1 特性

无线微控制器

- 采用 TrustZone® 技术的强大的 48MHz Arm® Cortex®-M33 处理器
- FPU 和 DSP 扩展
- 1024 kB 闪存程序存储器
- 8 kB 高速缓存 SRAM
- 具有奇偶校验功能的 256 kB 超低泄漏 SRAM,可实现高度可靠运行
 - 如果禁用奇偶校验,有额外的 32kB SRAM 可用
- 动态多协议管理器 (DMM) 驱动程序
- 支持无线升级 (OTA)

超低功耗传感器控制器

- 具有 4 kB SRAM 的自主 MCU
- 采样、存储和处理传感器数据
- 快速唤醒进入低功耗运行
- 软件定义外设;电容式触控、流量计、LCD

低功耗

- MCU 功耗:
 - 3.4 mA 有源模式, CoreMark®
 - 71 μ A/MHz (运行 CoreMark 时)
 - 0.98 µ A 待机模式, RTC, 256kB RAM
 - 0.17 μA 关断模式,引脚唤醒
- 超低功耗传感器控制器功耗:
 - 2 MHz 模式下为 30 µ A
 - 24MHz 模式下为 809 µ A
- 无线电功耗:
 - TX: 25.8 mA (在 +14dBm 和 868 MHz 条件下)

无线协议支持

- Wi-SUN®
- mioty®
- Amazon Sidewalk
- 无线 M-Bus
- SimpleLink™ TI 15.4-Stack (Sub-1GHz)
- 专有系统

高性能无线电

- 相干调制解调器,802.15.4 O-QPSK
- -121dBm (在 2.5kbps 远距离模式下)
- -110dBm (在 50kbps、802.15.4、868MHz 下)

法规遵从性

- 适用于符合以下标准的系统:
 - 1 RSK 封装 (8.00mm x 8.00mm) 信息只是预发布版,可能会更改。

- ETSI EN 300 220 接收器类别 1.5 和 2、EN 303 131、EN 303 204
- FCC CFR47 第 15 部分
- ARIB STD-T108 和 STD-T67

MCU 外设

- 数字外设大多可连接至任何 GPIO
- 四个 32 位或八个 16 位通用计时器
- 12 位 SAR ADC, 200ksps, 8 通道
- 8位 DAC
- 两个比较器
- 可编程电流源
- 四个 UART、四个 SPI、两个 I²C、I²S
- 实时时钟 (RTC)
- 集成温度和电池监控器

安全驱动工具

- 支持安全启动
- 支持安全密钥存储和器件 ID
- Arm TrustZone 打造可信执行环境
- AES 128 位和 256 位加密加速计
- 公钥加速器
- SHA2 加速器 (包括至 SHA-512 的全套装)
- 真随机数发生器 (TRNG)
- 安全调试锁
- 软件防回滚保护

开发工具和软件

- LP-EM-CC1314R10
- LP-XDS110、LP-XDS110ET 或 TMDSEMU110-U (含 TMDSEMU110-ETH 附加模块) 调试探针
- SimpleLink™ LOWPOWER F2 软件开发套件 (SDK)
- 用于简单无线电配置的 SmartRF™ Studio
- 用于构建低功耗检测应用的 Sensor Controller Studio
- SysConfig 系统配置工具

工作温度范围

- 片上降压直流/直流转换器
- 1.8V 至 3.8V 单电源电压
- -40°C 至 +105°C

封装

- 7mm × 7mm RGZ VQFN48 (30 个 GPIO)
- 8mm × 8mm RSK VQFN64 (46 个 GPIO) ¹
- 符合 RoHS 标准的封装

2 应用

- 315MHz、433MHz、470MHz 至 510MHz、 868MHz、902MHz 至 928MHz ISM 和 SRD 系统 ² 接收带宽低至 4kHz
- 楼宇自动化
 - 楼宇安防系统 运动检测器、电子智能锁、门 窗传感器、车库门系统、网关
 - HVAC 恒温器、无线环境传感器、HVAC 系统控制器、网关
 - 防火安全系统 烟雾和热量探测器、火警控制 面板 (FACP)
 - 视频监控 IP 网络摄像头
 - 升降机和自动扶梯 升降机和自动扶梯的电梯 主控板

- 电网基础设施
 - 智能仪表 水表、燃气表、电表和热量分配表
 - 电网通信 无线通信 远距离传感器应用
 - 其他替代能源 能量收集、光伏逆变器
- 工业运输 资产跟踪
- 工厂自动化和控制
- 医疗
- 电子销售终端 (EPOS) 电子货架标签 (ESL)
- 个人电子产品
 - 联网外设 消费类无线模块
 - 家庭影院和娱乐 智能扬声器、机顶盒
 - 游戏
 - 可穿戴设备(非医用)

3 说明

SimpleLink™ CC1314R10 器件是一款低功耗 Sub-1GHz 无线微控制器 (MCU),适用于需要增强安全性、片上无线更新功能以及支持高级应用或大型无线协议的应用。它支持 IEEE 802.15.4、支持 IPv6 的智能对象 (6LoWPAN)、无线 M-Bus、Wi-SUN、Amazon Sidewalk、mioty 和专有系统(包括 Sub-1GHz 的 TI 15.4-Stack)。该器件经过优化,可在楼宇安防系统、HVAC、智能仪表、医疗、有线网络、网关和电网通信、家庭影院和娱乐以及联网外设市场中实现低功耗无线通信和高级检测。该器件的突出特性包括:

- 支持基于 Arm TrustZone 的安全密钥存储、器件 ID 和可信功能。
- 灵活的 Sub-1GHz 无线电,支持业界通用频带(315MHz、433MHz、868MHz、915MHz 等),可满足工业需求。
- SimpleLink LOWPOWER F2 软件开发套件 (SDK) 中提供非常灵活的协议栈支持,包括 Wi-SUN、Amazon Sidewalk 和 SimpleLink 15.4-Stack (Sub-1GHz)。
- 对于 Sub-1GHz,最大发送功率为 +14dBm (电流消耗为 25.8 mA)。
- 具有 0.98µA 的低待机电流 (完全 RAM 保持) ,从而延长无线应用的电池寿命。
- 支持工业温度,在105℃下最低待机电流大概为13µA(完全保持RAM)。
- 通过具有快速唤醒功能的可编程、自主式超低功耗传感器控制器 CPU 实现高级检测。例如,传感器控制器能够在系统电流为 1.2µA 时进行 1Hz ADC 采样。
- 低 SER (软错误率) FIT (时基故障),可延长运行寿命,不会对工业市场造成干扰, SRAM 奇偶校验功能始终开启,可防止潜在辐射事件导致的损坏。
- 软件控制的专用无线电控制器 (Arm Cortex-M0) 提供灵活的低功耗射频收发器功能,支持多个物理层和射频标准
- 出色的无线电敏感度 (-121dBm) 和稳健性(选择性与阻断)性能,适用于 SimpleLink 远距离模式。

CC1314R10 器件是 SimpleLink™ MCU 平台的一部分,该平台包括 Wi-Fi®、低功耗*蓝牙*、Thread、Zigbee、Sub-1GHz MCU 和主机 MCU,它们共用一个通用、易于使用的开发环境,其中包含单核软件开发套件 (SDK) 和丰富的工具集。借助一次性集成的 SimpleLink 平台,用户可以将产品组合中器件的任何组合添加至自有设计中,从而在设计要求变更时实现代码的完全重复使用。如需更多信息,请访问 SimpleLink MCU 平台。

除了软件兼容之外,在 Sub-1GHz 无线 MCU 中,7mm×7mm QFN 封装的 32kB 闪存到最高 1MB 闪存都是引脚对引脚兼容的,以更大限度提高设计的可扩展性。有关 TI 的 Sub-1GHz 解决方案的详细信息,请访问www.ti.com/sub1ghz。

器件信息

器件型号 ⁽¹⁾	封装	封装尺寸 (标称值)
CC1314R106T0RGZ	VQFN (48)	7.00mm × 7.00mm

² 请参阅*射频内核*,了解有关支持的协议标准、调制格式和数据速率的其他详细信息。

Product Folder Links: CC1314R10

Submit Document Feedback

器件信息 (continued)

器件型号 ⁽¹⁾	封装	封装尺寸(标称值)
CC1314R106T0RSK	VQFN (64)	8.00mm x 8.00mm

(1) 如需所有可用器件的最新器件、封装和订购信息,请参阅节 12 中的"封装选项附录"或访问 TI 网站。

4 Functional Block Diagram

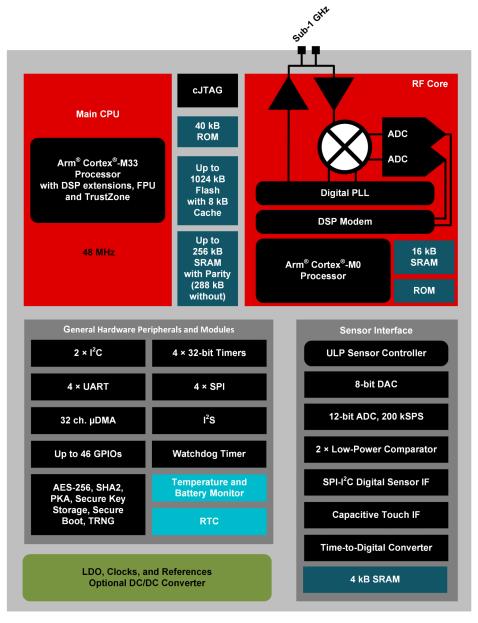


图 4-1. CC1314R10 Block Diagram

Table of Contents

1 特性	1	8.14 Timing and Switching Characteristics	27
2 应用		8.15 Peripheral Characteristics	33
		8.16 Typical Characteristics	41
4 Functional Block Diagram		9 Detailed Description	49
5 Revision History		9.1 Overview	49
6 Device Comparison		9.2 System CPU	49
7 Terminal Configuration and Functions		9.3 Radio (RF Core)	50
7.1 Pin Diagram - RGZ Package (Top View)		9.4 Memory	
7.2 Signal Descriptions - RGZ Package		9.5 Sensor Controller	53
7.3 Connections for Unused Pins and Modules -		9.6 Cryptography	
RGZ Package	8	9.7 Timers	
7.4 Pin Diagram - RSK Package (Top View)		9.8 Serial Peripherals and I/O	
7.5 Signal Descriptions - RSK Package		9.9 Battery and Temperature Monitor	
7.6 Connection of Unused Pins and Module - RSK	10	9.10 µDMA	
	44	9.11 Debug	
Package		9.12 Power Management	
8 Specifications		9.13 Clock Systems	
8.1 Absolute Maximum Ratings		9.14 Network Processor	
8.2 ESD Ratings		10 Application, Implementation, and Layout	
· · · · · · · · · · · · · · · · · · ·		10.1 Reference Designs	
8.4 Power Supply and Modules8.5 Power Consumption - Power Modes		10.2 Junction Temperature Calculation	
8.6 Power Consumption - Radio Modes		11 Device and Documentation Support	
8.7 Nonvolatile (Flash) Memory Characteristics		11.1 Tools and Software	
8.8 Thermal Resistance Characteristics		11.2 Documentation Support	
8.9 RF Frequency Bands		11.3 支持资源	
8.10 861 MHz to 1054 MHz - Receive (RX)		11.4 Trademarks	
8.11 861 MHz to 1054 MHz - Transmit (TX)		11.5 静电放电警告	66
8.12 861 MHz to 1054 MHz - PLL Phase Noise	20	11.6 术语表	66
Wideband Mode	27	12 Mechanical, Packaging, and Orderable	
8.13 861 MHz to 1054 MHz - PLL Phase Noise	21	Information	
Narrowband Mode	27	12.1 Packaging Information	67

5 Revision History

注:以前版本的页码可能与当前版本的页码不同

C	nanges from December 8, 2022 to June 14, 2023 (from Revision ^ (December 2022) to	
R	evision A (June 2023))	Page
•	Added devices to the Device Comparison table	5
•	Deleted device revision limitation for LQI in 表 9-1	<mark>5</mark> 1
•	Updated links in the Reference Designs	61

Product Folder Links: CC1314R10

6 Device Comparison

				F	RADIC	SUP	PORT	Γ								PA	CKA	GE S	ΙΖΕ	
Device	Sub-1 GHz Prop.	2.4GHz Prop.	Wireless M-Bus	mioty	Wi-SUN®	Sidewalk	Bluetooth® LE	ZigBee	Thread	Multiprotocol	+20 dBm PA	FLASH (kB)	RAM + Cache (kB)	GPIO	4 × 4 mm VQFN (24)	4 × 4 mm VQFN (32)	5 × 5 mm VQFN (32)	5 × 5 mm VQFN (40)	7 × 7 mm VQFN (48)	8 × 8 mm VQFN (64)
CC1310	√		√	√								32-128	16-20 + 8	10-30		√	√		√	
CC1311R3	√		√	√								352	32 + 8	22-30				√	√	
CC1311P3	√		√	√							√	352	32 + 8	26					√	
CC1312R	√		√	√	√							352	80 + 8	30					√	
CC1312R7	√		√	√	√	√				√		704	144 + 8	30					√	
CC1314R10	√		√	√	√	√				√		1024	256 + 8	30-46					√	√
CC1352R	√	√	√	√	√		√	√	√	√		352	80 + 8	28					√	
CC1354R10	√	√	√	√	√		√	√	√	√		1024	256 + 8	28-42					√	√
CC1352P	√	√	√	√	√		√	√	√	√	√	352	80 + 8	26					√	
CC1352P7	√	√	√	√	√	√	√	√	√	√	1	704	144 + 8	26					√	
CC1354P10	√	√	√	√	√	√	√	√	√	√	√	1024	256 + 8	26-42					√	√
CC2340R2		√					√	√				256	28	12	√					
CC2340R5		√					√	√	√			512	36	12-26	√			√		
CC2340R5-Q1							√					512	36	19			√			
CC2640R2F							√					128	20 + 8	10-31		√	√		√	
CC2642R							√					352	80 + 8	31					√	
CC2642R-Q1							√					352	80 + 8	31					√	
CC2651R3		√					√	√				352	32 + 8	23-31				√	√	
CC2651P3		√					√	√			√	352	32 + 8	22-26				√	√	
CC2652R		√					√	√	√	√		352	80 + 8	31					√	
CC2652RB		√					1	√	√	√		352	80 + 8	31					√	
CC2652R7		√					1	√	√	√		704	144 + 8	31					√	
CC2652P		√					1	√	√	√	√	352	80 + 8	26					√	
CC2652P7		√					1	√	√	√	√	704	144 + 8	26					√	
CC2674R10		√					√	√	√	√		1024	256 + 8	31-45					√	√
CC2674P10		√					√	√	√	√	√	1024	256 + 8	26-45					√	√

7 Terminal Configuration and Functions

7.1 Pin Diagram - RGZ Package (Top View)

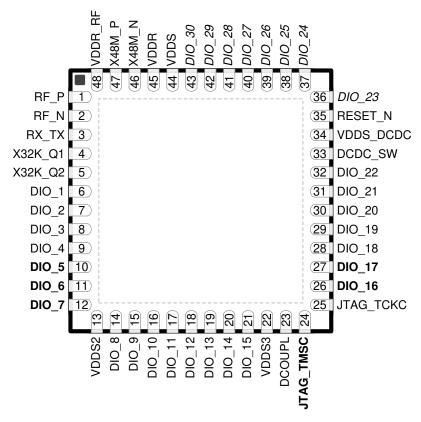


图 7-1. RGZ (7 mm × 7 mm) Pinout, 0.5 mm Pitch (Top View)

The following I/O pins marked in 图 7-1 in **bold** have high-drive capabilities:

- Pin 10, DIO_5
- Pin 11, DIO 6
- Pin 12, DIO_7
- · Pin 24, JTAG TMSC
- Pin 26, DIO 16
- Pin 27, DIO_17

The following I/O pins marked in \(\bar{2} \) 7-1 in *italics* have analog capabilities:

- Pin 36, DIO 23
- Pin 37, DIO_24
- Pin 38, DIO 25
- Pin 39, DIO_26
- Pin 40, DIO_27
- Pin 41, DIO_28
- Pin 42, DIO_29
- Pin 43, DIO_30

Submit Document Feedback

7.2 Signal Descriptions - RGZ Package

表 7-1. Signal Descriptions - RGZ Package

PIN				tions - RGZ Package
NAME	NO.	I/O	TYPE	DESCRIPTION
DCDC_SW	33	_	Power	Output from internal DC/DC converter ⁽¹⁾
DCOUPL	23	_	Power	For decoupling of internal 1.27 V regulated digital-supply (2)
DIO_1	6	I/O	Digital	GPIO
DIO_2	7	I/O	Digital	GPIO
DIO_3	8	I/O	Digital	GPIO
DIO_4	9	I/O	Digital	GPIO
DIO_5	10	I/O	Digital	GPIO, high-drive capability
DIO_6	11	I/O	Digital	GPIO, high-drive capability
DIO_7	12	I/O	Digital	GPIO, high-drive capability
DIO_8	14	I/O	Digital	GPIO
DIO_9	15	I/O	Digital	GPIO
DIO_10	16	I/O	Digital	GPIO
DIO_11	17	I/O	Digital	GPIO
DIO_12	18	I/O	Digital	GPIO
DIO_13	19	I/O	Digital	GPIO
DIO_14	20	I/O	Digital	GPIO
DIO_15	21	I/O	Digital	GPIO
DIO_16	26	I/O	Digital	GPIO, JTAG_TDO, high-drive capability
DIO_17	27	I/O	Digital	GPIO, JTAG_TDI, high-drive capability
DIO_18	28	I/O	Digital	GPIO
DIO_19	29	I/O	Digital	GPIO
DIO_20	30	I/O	Digital	GPIO
DIO_21	31	I/O	Digital	GPIO
DIO_22	32	I/O	Digital	GPIO
DIO_23	36	I/O	Digital or Analog	GPIO, analog capability
DIO_24	37	I/O	Digital or Analog	GPIO, analog capability
DIO_25	38	I/O	Digital or Analog	GPIO, analog capability
DIO_26	39	I/O	Digital or Analog	GPIO, analog capability
DIO_27	40	I/O	Digital or Analog	GPIO, analog capability
DIO_28	41	I/O	Digital or Analog	GPIO, analog capability
DIO_29	42	I/O	Digital or Analog	GPIO, analog capability
DIO_30	43	I/O	Digital or Analog	GPIO, analog capability
EGP	_	_	GND	Ground - exposed ground pad ⁽³⁾
JTAG_TMSC	24	I/O	Digital	JTAG TMSC, high-drive capability
JTAG_TCKC	25	I	Digital	JTAG TCKC
RESET_N	35	I	Digital	Reset, active low. No internal pullup resistor
RF_P	1	_	RF	Positive RF input signal to LNA during RX Positive RF output signal from PA during TX
RF_N	2	_	RF	Negative RF input signal to LNA during RX Negative RF output signal from PA during TX
RX_TX	3	_	RF	Optional bias pin for the RF LNA
VDDR	45	_	Power	Internal supply, must be powered from the internal DC/DC converter or the internal LDO ⁽²⁾ (4) (6)

Product Folder Links: CC1314R10

表 7-1. Signal Descriptions - RGZ Package (continued)

	I/O TYPE		DESCRIPTION		
NO.		1172	DESCRIPTION		
48	_	Power	Internal supply, must be powered from the internal DC/DC converter or the internal LDO ⁽²⁾ (5) (6)		
44	_	Power	1.8 V to 3.8 V main chip supply ⁽¹⁾		
13	_	Power	1.8 V to 3.8 V DIO supply ⁽¹⁾		
22	_	Power	1.8 V to 3.8 V DIO supply ⁽¹⁾		
34	_	Power	1.8 V to 3.8 V DC/DC converter supply		
46	_	Analog	48 MHz crystal oscillator pin N		
47	_	Analog	48 MHz crystal oscillator pin P		
4	_	Analog	32 kHz crystal oscillator pin 1		
5	_	Analog	32 kHz crystal oscillator pin 2		
	48 44 13 22 34 46 47 4	48 — 44 — 13 — 22 — 34 — 46 — 47 — 4 —	NO. Power 44 — Power 13 — Power 22 — Power 34 — Power 46 — Analog 47 — Analog 4 — Analog		

- (1) For more details, see technical reference manual listed in 节 11.2.
- (2) Do not supply external circuitry from this pin.
- (3) EGP is the only ground connection for the device. Good electrical connection to device ground on printed circuit board (PCB) is imperative for proper device operation.
- (4) If internal DC/DC converter is not used, this pin is supplied internally from the main LDO.
- (5) If internal DC/DC converter is not used, this pin must be connected to VDDR for supply from the main LDO.
- (6) Output from internal DC/DC and LDO is trimmed to 1.68 V.

7.3 Connections for Unused Pins and Modules - RGZ Package

表 7-2. Connections for Unused Pins - RGZ Package

FUNCTION	SIGNAL NAME	PIN NUMBER	ACCEPTABLE PRACTICE(1)	PREFERRED PRACTICE ⁽¹⁾
GPIO	DIO_n	6 - 12 14 - 21 26 - 32 36 - 43	NC or GND	NC
32.768 kHz crystal	X32K_Q1	4	NC or GND	NC
32.700 Ki iz Ciystai	X32K_Q2	5	NC OF GND	INC
DC/DC converter ⁽²⁾	DCDC_SW	33	NC	NC
DO/DO CONVENIENCE	VDDS_DCDC	34	VDDS	VDDS

- (1) NC = No connect
- When the DC/DC converter is not used, the inductor between DCDC_SW and VDDR can be removed. VDDR and VDDR_RF must still be connected and the 22 µF DCDC capacitor must be kept on the VDDR net.

Product Folder Links: CC1314R10

Submit Document Feedback

7.4 Pin Diagram - RSK Package (Top View)

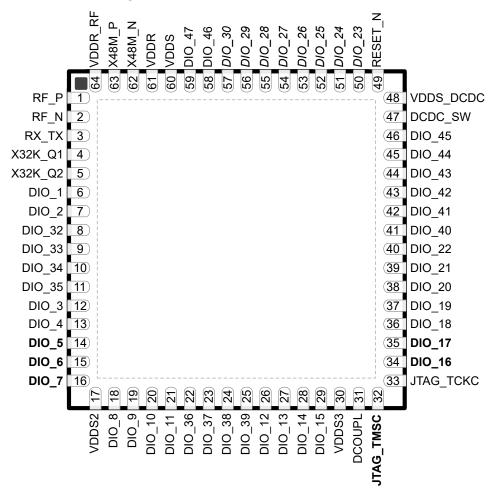


图 7-2. RSK (8 mm × 8 mm) Pinout, 0.4 mm Pitch (Top View)

The following I/O pins marked in 图 7-2 in **bold** have high-drive capabilities:

- Pin 14, DIO_5
- Pin 15, DIO_6
- Pin 16, DIO 7
- Pin 32, JTAG TMSC
- Pin 34, DIO 16
- Pin 35, DIO_17

The following I/O pins marked in 🗵 7-2 in *italics* have analog capabilities:

- Pin 50, DIO 23
- Pin 51, DIO_24
- Pin 52, DIO_25
- Pin 53, DIO_26
- Pin 54, DIO_27
- Pin 55, DIO_28
- Pin 56, DIO 29
- Pin 57, DIO_30

7.5 Signal Descriptions - RSK Package

表 7-3. Signal Descriptions - RSK Package

PI	N	- I/O	TVDE	DESCRIPTION
NAME	NO.	- I/O	TYPE	DESCRIPTION
DCDC_SW	47	_	Power	Output from internal DC/DC converter ⁽¹⁾
DCOUPL	31	_	Power	For decoupling of internal 1.27 V regulated digital-supply (2)
DIO_1	6	I/O	Digital	GPIO
DIO_2	7	I/O	Digital	GPIO
DIO_3	12	I/O	Digital	GPIO
DIO_4	13	I/O	Digital	GPIO
DIO_5	14	I/O	Digital	GPIO, high-drive capability
DIO_6	15	I/O	Digital	GPIO, high-drive capability
DIO_7	16	I/O	Digital	GPIO, high-drive capability
DIO_8	18	I/O	Digital	GPIO
DIO_9	19	I/O	Digital	GPIO
DIO_10	20	I/O	Digital	GPIO
DIO_11	21	I/O	Digital	GPIO
DIO_12	26	I/O	Digital	GPIO
DIO_13	27	I/O	Digital	GPIO
DIO_14	28	I/O	Digital	GPIO
DIO_15	29	I/O	Digital	GPIO
DIO_16	34	I/O	Digital	GPIO, JTAG_TDO, high-drive capability
DIO_17	35	I/O	Digital	GPIO, JTAG_TDI, high-drive capability
DIO_18	36	I/O	Digital	GPIO
DIO_19	37	I/O	Digital	GPIO
DIO_20	38	I/O	Digital	GPIO
DIO_21	39	I/O	Digital	GPIO
DIO_22	40	I/O	Digital	GPIO
DIO_23	50	I/O	Digital or Analog	GPIO, analog capability
DIO_24	51	I/O	Digital or Analog	GPIO, analog capability
DIO_25	52	I/O	Digital or Analog	GPIO, analog capability
DIO_26	53	I/O	Digital or Analog	GPIO, analog capability
DIO_27	54	I/O	Digital or Analog	GPIO, analog capability
DIO_28	55	I/O	Digital or Analog	GPIO, analog capability
DIO_29	56	I/O	Digital or Analog	GPIO, analog capability
DIO_30	57	I/O	Digital	GPIO, analog capability
DIO_32	8	I/O	Digital	GPIO
DIO_33	9	I/O	Digital	GPIO
DIO_34	10	I/O	Digital	GPIO
DIO_35	11	I/O	Digital	GPIO
DIO_36	22	I/O	Digital	GPIO
DIO_37	23	I/O	Digital	GPIO
DIO_38	24	I/O	Digital	GPIO
DIO_39	25	I/O	Digital	GPIO
DIO_40	41	I/O	Digital	GPIO
 DIO_41	42	I/O	Digital	GPIO

Product Folder Links: CC1314R10

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

10

表 7-3. Signal Descriptions - RSK Package (continued)

	-	💢 <i>i -</i> 3. 3iy	nai Descriptions	RSK Package (continued)
PIN		I/O	TYPE	DESCRIPTION
NAME	NO.		ITPE	DESCRIPTION
DIO_42	43	I/O	Digital	GPIO
DIO_43	44	I/O	Digital	GPIO
DIO_44	45	I/O	Digital	GPIO
DIO_45	46	I/O	Digital	GPIO
DIO_46	58	I/O	Digital	GPIO
DIO_47	59	I/O	Digital	GPIO
EGP	_	_	GND	Ground - exposed ground pad ⁽³⁾
JTAG_TMSC	32	I/O	Digital	JTAG TMSC, high-drive capability
JTAG_TCKC	33	I	Digital	JTAG TCKC
RESET_N	49	I	Digital	Reset, active low. No internal pullup resistor
RF_P_SUB_1GHZ	1	_	RF	Positive RF input signal to LNA during RX Positive RF output signal from PA during TX
RF_N_SUB_1GHZ	2	_	RF	Negative RF input signal to LNA during RX Negative RF output signal from PA during TX
RX_TX	3	_	RF	Optional bias pin for the RF LNA
VDDR	61	_	Power	Internal supply, must be powered from the internal DC/DC converter or the internal LDO ⁽²⁾ (4) (6)
VDDR_RF	64	_	Power	Internal supply, must be powered from the internal DC/DC converter or the internal LDO ⁽²⁾ (5) (6)
VDDS	60	_	Power	1.8 V to 3.8 V main chip supply ⁽¹⁾
VDDS2	17	_	Power	1.8 V to 3.8 V DIO supply ⁽¹⁾
VDDS3	30	_	Power	1.8 V to 3.8 V DIO supply ⁽¹⁾
VDDS_DCDC	48	_	Power	1.8 V to 3.8 V DC/DC converter supply
X48M_N	62	_	Analog	48 MHz crystal oscillator pin N
X48M_P	63	_	Analog	48 MHz crystal oscillator pin P
X32K_Q1	4	_	Analog	32 kHz crystal oscillator pin 1
X32K_Q2	5	_	Analog	32 kHz crystal oscillator pin 2

- (1) For more details, see technical reference manual listed in 节 11.2.
- (2) Do not supply external circuitry from this pin.
- (3) EGP is the only ground connection for the device. Good electrical connection to device ground on printed circuit board (PCB) is imperative for proper device operation.
- (4) If internal DC/DC converter is not used, this pin is supplied internally from the main LDO.
- (5) If internal DC/DC converter is not used, this pin must be connected to VDDR for supply from the main LDO.
- (6) Output from internal DC/DC and LDO is trimmed to 1.68 V.

7.6 Connection of Unused Pins and Module - RSK Package

表 7-4. Connections for Unused Pins - RSK Package

FUNCTION	SIGNAL NAME	PIN NUMBER	ACCEPTABLE PRACTICE(1)	PREFERRED PRACTICE ⁽¹⁾
GPIO	DIO_n	6 - 16, 18 - 29 34 - 46, 50 - 59	NC or GND	NC
32.768 kHz crystal	X32K_Q1	4	NC or GND	NC
32.700 KHZ CIYSIAI	X32K_Q2	5	INC OF GIND	NC
DC/DC converter ⁽²⁾	DCDC_SW	47	NC	NC
DO/DO CONVENIENT	VDDS_DCDC	48	VDDS	VDDS

Product Folder Links: CC1314R10

(1) NC = No connect

(2) When the DC/DC converter is not used, the inductor between DCDC_SW and VDDR can be removed. VDDR and VDDR_RF must still be connected and the 22 µF DCDC capacitor must be kept on the VDDR net.

8 Specifications

8.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1) (2)

			MIN	MAX	UNIT
VDDS ⁽³⁾	Supply voltage		- 0.3	4.1	V
	Voltage on any digital pin	(4) (5)	- 0.3	VDDS + 0.3, max 4.1	V
	Voltage on crystal oscilla	tor pins, X32K_Q1, X32K_Q2, X48M_N and X48M_P	- 0.3	VDDR + 0.3, max 2.25	V
	Voltage on ADC input	Voltage scaling enabled	- 0.3	VDDS	
V _{in}		Voltage scaling disabled, internal reference	- 0.3	1.49	V
		Voltage scaling disabled, VDDS as reference		VDDS / 2.9	
	Input level, RF pins			10	dBm
T _{stg}	Storage temperature		- 40	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values are with respect to ground, unless otherwise noted.
- (3) VDDS_DCDC, VDDS2 and VDDS3 must be at the same potential as VDDS.
- (4) Including analog capable DIOs.
- (5) Injection current is not supported on any GPIO pin

8.2 ESD Ratings

			VALUE	UNIT
V _{ESD} Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	All pins	±2000	V
	Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	All pins	±500	V

- (1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process
- (2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process

8.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Operating ambient temperature ^{(1) (3)}		- 40	105	°C
Operating supply voltage (VDDS)		1.8	3.8	V
Operating supply voltage (VDDS), boost mode	VDDR = 1.95 V +14 dBm RF output power	2.1	3.8	V
Rising supply voltage slew rate		0	100	mV/μs
Falling supply voltage slew rate ⁽²⁾		0	20	mV/μs

- (1) Operation at or near maximum operating temperature for extended durations will result in lifetime reduction.
- (2) For small coin-cell batteries, with high worst-case end-of-life equivalent source resistance, a 22 μF VDDS input capacitor must be used to ensure compliance with this slew rate.
- (3) For thermal resistance characteristics refer to Thermal Resistance Characteristics. For application considerations, refer to SPRA953

8.4 Power Supply and Modules

Over operating free-air temperature range (unless otherwise noted)

PARAMETER		MIN	TYP	MAX	UNIT
VDDS Power-on-Reset (POR) threshold		1.1	1 - 1.55		V
VDDS Brown-out Detector (BOD) (1)	Rising threshold		1.77		V
VDDS Brown-out Detector (BOD), before initial boot (2)	Rising threshold		1.70		V
VDDS Brown-out Detector (BOD) (1)	Falling threshold		1.75		V

Product Folder Links: CC1314R10

(1) For boost mode (VDDR =1.95 V), TI drivers software initialization will trim VDDS BOD limits to maximum (approximately 2.0 V)

(2) Brown-out Detector is trimmed at initial boot, value is kept until device is reset by a POR reset or the RESET_N pin

8.5 Power Consumption - Power Modes

When measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.6 V with DC/DC enabled unless otherwise noted.

	PARAMETER	TEST CONDITIONS	TYP	UNIT
Core Curre	ent Consumption			
	Reset and Shutdown	Reset. RESET_N pin asserted or VDDS below power-on-reset threshold	150	nA
	Reset and Shutdown	Shutdown. No clocks running, no retention	171	ΠA
		RTC running, CPU, 256 kB RAM and (partial) register retention. RCOSC_LF	0.98	μΑ
	Standby	RTC running, CPU, 128 kB RAM and (partial) register retention. RCOSC_LF	0.88	μΑ
	without cache retention	RTC running, CPU, 256 kB RAM and (partial) register retention XOSC_LF	1.08	μΑ
		RTC running, CPU, 128 kB RAM and (partial) register retention XOSC_LF	0.99	μΑ
I _{core}		RTC running, CPU, 256 kB RAM and (partial) register retention. RCOSC_LF	2.24	μΑ
*core	Standby	RTC running, CPU, 128 kB RAM and (partial) register retention. RCOSC_LF	2.16	μΑ
	with cache retention	RTC running, CPU, 256 kB RAM and (partial) register retention. XOSC_LF	2.34	μΑ
		RTC running, CPU, 128 kB RAM and (partial) register retention. XOSC_LF	2.25	μΑ
	Idle	Supply Systems and RAM powered RCOSC_HF	635	μΑ
	Active	MCU running CoreMark at 48 MHz with parity enabled RCOSC_HF	3.5	mA
	7 Olive	MCU running CoreMark at 48 MHz with parity disabled RCOSC_HF	3.4	mA
Peripheral	Current Consumption			
	Peripheral power domain	Delta current with domain enabled	62.4	
	Serial power domain	Delta current with domain enabled	5.83	
	RF Core	Delta current with power domain enabled, clock enabled, RF core idle	102.0	
	μDMA	Delta current with clock enabled, module is idle	58.0	
	Timers	Delta current with clock enabled, module is idle ⁽³⁾	97.2	
I _{peri}	I2C	Delta current with clock enabled, module is idle	9.8	μΑ
	12S	Delta current with clock enabled, module is idle	22.2	
	SPI	Delta current with clock enabled, module is idle ⁽²⁾	55.8	
	UART	Delta current with clock enabled, module is idle ⁽¹⁾	114.2	
	CRYPTO (AES)	Delta current with clock enabled, module is idle	15.5	
	PKA	Delta current with clock enabled, module is idle	66.6	
	TRNG	Delta current with clock enabled, module is idle	21.0	
Sensor Co	ntroller Engine Consumption	1		
	Active mode	24 MHz, infinite loop, V _{DDS} = 3.0 V	820	
I _{SCE}	Low-power mode	2 MHz, infinite loop, V _{DDS} = 3.0 V	32	μΑ
		I .	1	

- Only one UART running
- (2) Only one SPI running
- Only one GPTimer running

8.6 Power Consumption - Radio Modes

When measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.6 V with DC/DC enabled unless otherwise noted.

Using boost mode (increasing VDDR up to 1.95 V), will increase system current by 15% (does not apply to TX +14 dBm setting where this current is already included).

Relevant I_{core} and I_{peri} currents are included in below numbers.

PARAMETER		TEST CONDITIONS	TYP	UNIT
	Radio receive current, 868 MHz		5.8	mA
De die treese it some et	0 dBm output power setting 868 MHz	7.5	mA	
	Radio transmit current	+10 dBm output power setting 868 MHz	16.1	mA
	Radio transmit current Boost mode	+14 dBm output power setting 868 MHz	25.8	mA

8.7 Nonvolatile (Flash) Memory Characteristics

Over operating free-air temperature range and V_{DDS} = 3.0 V (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Flash sector size			2		kB
Supported flash erase cycles before failure, full bank ^{(1) (5)}		30			k Cycles
Supported flash erase cycles before failure, single sector ⁽²⁾		60			k Cycles
Maximum number of write operations per row before sector erase ⁽³⁾				83	Write Operations
Flash retention	105 °C	11.4			Years
Flash sector erase current	Average delta current		0.3		mA
Flash sector erase time ⁽⁴⁾	Zero cycles		2.1		ms
Flash sector erase time (*)	30k cycles			4000	ms
Flash write current	Average delta current, 16 bytes at a time		3.0		mA
Flash write time ⁽⁴⁾	16 bytes at a time		21.4		μs

- (1) A full bank erase is counted as a single erase cycle on each sector
- (2) Up to 4 customer-designated sectors can be individually erased an additional 30k times beyond the baseline bank limitation of 30k cycles
- (3) Éach wordline is 2048 bits (or 256 bytes) wide. This limitation corresponds to sequential memory writes of 4 (3.1) bytes minimum per write over a whole wordline. If additional writes to the same wordline are required, a sector erase is required once the maximum number of write operations per row is reached.
- (4) This number is dependent on Flash aging and increases over time and erase cycles
- (5) Aborting flash during erase or program modes is not a safe operation.

8.8 Thermal Resistance Characteristics

		PACI	KAGE	
	THERMAL METRIC (1)	RGZ (VQFN)	RSK(VQFN)	UNIT
		48 PINS	64 PINS	
R _{0 JA}	Junction-to-ambient thermal resistance	23.4	TBD	°C/W ⁽²⁾
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	13.3	TBD	°C/W ⁽²⁾
R _{θ JB}	Junction-to-board thermal resistance	8.0	TBD	°C/W ⁽²⁾
ΨJT	Junction-to-top characterization parameter	0.1	TBD	°C/W ⁽²⁾
ψ ЈВ	Junction-to-board characterization parameter	7.9	TBD	°C/W ⁽²⁾
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	1.7	TBD	°C/W ⁽²⁾

Product Folder Links: CC1314R10

- (1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
- (2) °C/W = degrees Celsius per watt.

Submit Document Feedback

8.9 RF Frequency Bands

Over operating free-air temperature range (unless otherwise noted).

PARAMETER	MIN	TYP MAX	UNIT
	1076	1315	
	861	1054	
Frequency bands	431	527	MHz
	359	439	
	287	351	

Product Folder Links: CC1314R10

8.10 861 MHz to 1054 MHz - Receive (RX)

When Measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V with DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All measurements are performed conducted.

path. All measurements are perform	ed conducted.				
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
General Parameters					
Digital channel filter programmable receive bandwidth		4		4000	kHz
Data rate step size			1.5		bps
Spurious emissions 25 MHz to 1 GHz	868 MHz		< -57		dBm
Spurious emissions 1 GHz to 13 GHz	Conducted emissions measured according to ETSI EN 300 220		< -47		dBm
Wi-SUN, 50 kbps, ±12.5 kHz deviation, 2-G	FSK, 78 kHz RX BW, #1a				
Sensitivity	MRFSK, 866.6 MHz, 10% PER, 250 byte payload		-106		dBm
Saturation limit	10% PER, 250 byte payload, 866.6 MHz		10		dBm
Selectivity, +100 kHz			33		dB
Selectivity, -100 kHz	10% PER, 250 byte payload, 866.6 MHz. Wanted signal 3 dB		31		dB
Selectivity, +200 kHz	above sensitivity level.		38		dB
Selectivity, -200 kHz			37		dB
RSSI dynamic range	Starting from the sensitivity limit		93		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range		±3		dB
Wi-SUN, 50 kbps, ±25 kHz deviation, 2-GFS	SK, 100 kHz RX BW, #1b				
Sensitivity	MRFSK, 918.2 MHz, 10% PER, 250 byte payload		-106		dBm
Saturation limit	10% PER, 250 byte payload, 918.2 MHz		10		dBm
Selectivity, +200 kHz			37		dB
Selectivity, -200 kHz	10% PER, 250 byte payload, 918.2 MHz. Wanted signal 3 dB		35		dB
Selectivity, +400 kHz	above sensitivity level.		42		dB
Selectivity, -400 kHz			41		dB
RSSI dynamic range	Starting from the sensitivity limit		95		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range		±3		dB
Wi-SUN, 100 kbps, ±25 kHz deviation, 2-GF	SK, 135 kHz RX BW, #2a				
Sensitivity	MRFSK, 866.6 MHz, 10% PER, 250 byte payload		-103		dBm
Saturation limit	10% PER, 250 byte payload, 866.6 MHz		10		dBm
Selectivity, +200 kHz			40		dB
Selectivity, -200 kHz	10% PER, 250 byte payload, 866.6 MHz. Wanted signal 3 dB		38		dB
Selectivity, +400 kHz	above sensitivity level.		46		dB
Selectivity, -400 kHz			44		dB
RSSI dynamic range	Starting from the sensitivity limit		95		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range		±3		dB
Wi-SUN, 100 kbps, ±50 kHz deviation, 2-GF	SK, 208 kHz RX BW, #2b				
Sensitivity	MRFSK, 920.9 MHz, 10% PER, 250 byte payload		-102		dBm
Saturation limit	10% PER, 250 byte payload, 920.9 MHz		10		dBm
Selectivity, +400 kHz			42		dB
Selectivity, -400 kHz	10% PER, 250 byte payload, 920.9 MHz. Wanted signal 3 dB		39		dB
Selectivity, +800 kHz	above sensitivity level, modulated blocker.		52		dB
Selectivity, -800 kHz	1		46		dB
RSSI dynamic range	Starting from the sensitivity limit		91		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range		±3		dB
Wi-SUN, 150 kbps, ±37.5 kHz deviation, 2-0	GFSK, 273 kHz RX BW, #3				
Sensitivity	MRFSK, 918.4 MHz, 10% PER, 250 byte payload		-99		dBm
Saturation limit	10% PER, 250 byte payload, 918.4 MHz		10		dBm

Product Folder Links: CC1314R10

Submit Document Feedback

When Measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V with DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All measurements are performed conducted.

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Selectivity, +400 kHz		41		dB
Selectivity, -400 kHz	10% PER, 250 byte payload, 918.4 MHz. Wanted signal 3 dB	39		dB
Selectivity, +800 kHz	above sensitivity level.	50		dB
Selectivity, -800 kHz		46		dB
RSSI dynamic range	Starting from the sensitivity limit	86		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range	±3		dB
Wi-SUN, 200 kbps, ±50 kHz deviatio	n, 2-GFSK, 335 kHz RX BW, #4a			
Sensitivity	MRFSK, 918.4 MHz, 10% PER, 250 byte payload	-99		dBm
Saturation limit	10% PER, 250 byte payload, 918.4 MHz	10		dBm
Selectivity, +400 kHz		42		dB
Selectivity, -400 kHz	10% PER, 250 byte payload, 918.4 MHz. Wanted signal 3 dB	40		dB
Selectivity, +800 kHz	above sensitivity level.	51		dB
Selectivity, -800 kHz		47		dB
RSSI dynamic range	Starting from the sensitivity limit	91		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range	±3		dB
Wi-SUN, 200 kbps, ±100 kHz deviation	on, 2-GFSK, 416 kHz RX BW, #4b			
Sensitivity	MRFSK, 920.8 MHz, 10% PER, 250 byte payload	-98		dBm
Saturation limit	10% PER, 250 byte payload, 920.8 MHz	10		dBm
Selectivity, +600 kHz		46		dB
Selectivity, -600 kHz	10% PER, 250 byte payload, 920.8 MHz. Wanted signal 3 dB	43		dB
Selectivity, +1200 kHz	above sensitivity level, modulated blocker.	54		dB
Selectivity, -1200 kHz		51		dB
RSSI dynamic range	Starting from the sensitivity limit	86		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range	±3		dB
Wi-SUN, 300 kbps, ±75 kHz deviatio	n, 2-GFSK, 496 kHz RX BW, #5			
Sensitivity	MRFSK, 917.6 MHz, 10% PER, 250 byte payload	-97		dBm
Saturation limit	10% PER, 250 byte payload, 917.6 MHz	10		dBm
Selectivity, +600 kHz		42		dB
Selectivity, -600 kHz	10% PER, 250 byte payload, 917.6 MHz. Wanted signal 3 dB	37		dB
Selectivity, +1200 kHz	above sensitivity level.	51		dB
Selectivity, -1200 kHz		40		dB
RSSI dynamic range	Starting from the sensitivity limit	86		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range	±3		dB
802.15.4-2020, 10 kbps, 2-FSK, 26 kl	Hz RX BW, Mode #1a			
Sensitivity	FSK, 915.0 MHz, 20 byte PSDU < 10% PER	-113		dBm
Sensitivity	FSK, 868.3 MHz, 20 byte PSDU < 10% PER	-113		dBm
Saturation limit	PSDU length 20 octets; PER < 10%, 868.3 MHz	10		dBm

Product Folder Links: CC1314R10

When Measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V with DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All measurements are performed conducted.

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Selectivity, +50 kHz		36		dB
Selectivity, -50 kHz		36		dB
Selectivity, +100 kHz		40		dB
Selectivity, -100 kHz		39		dB
Selectivity, +200 kHz		44		dB
Selectivity, -200 kHz	-	37		dB
Blocking, +1 MHz	-	60		dB
Blocking, -1 MHz	PSDU length 20 octets; PER < 10%, 868.3 MHz	59		dB
Blocking, +2 MHz	-	64	dB	
-	_			
Blocking, -2 MHz	_	64		dB
Blocking, +5 MHz	_	75		dB
Blocking, -5 MHz		74		dB dB
Blocking, +10 MHz		79		
Blocking, -10 MHz		79		dB
Selectivity, +50 kHz		35		dB
Selectivity, -50 kHz		35		dB
Selectivity, +100 kHz		39		dB
Selectivity, -100 kHz		38		dB
Selectivity, +200 kHz		44		dB
Selectivity, -200 kHz		44		dB
Blocking, +1 MHz	PSDU length 20 octets; PER < 10%, 868.3 MHz. Wanted signal	58		dB
Blocking, -1 MHz	3 dB above sensitivity level.	58		dB
Blocking, +2 MHz		62		dB
Blocking, -2 MHz		63		dB
Blocking, +5 MHz		74		dB
Blocking, -5 MHz		74		dB
Blocking, +10 MHz		73		dB
Blocking, -10 MHz		78		dB
Blocking + 5% Fc. (45.75 MHz)		-15		dBm
Blocking - 5% Fc. (-45.75 MHz)	10% PER, 20 byte payload, 866.6 MHz 802.15.4g mandatory mode, wanted signal -94 dBm. 3 dB above usable sensitivity limit	-15		dBm
Image rejection (image compensation enabled)	according to ETSI EN 300 220 V3.1.1 (usable sensitivity -97 dBm). Limit is Cat 1.5 requirement.	39		dB
Image rejection (image compensation enabled)	PSDU length 20 octets; PER < 10%, 868.3 MHz	39		dB
Image rejection (image compensation enabled)	-40 to 125℃, 10% PER, 250 byte payload, 866.6 MHz	39		dB
RSSI dynamic range	Starting from the sensitivity limit	100		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range	±3		dB
Frequency error tolerance (ppm)	10% PER, 20 byte payload, measured at 10 dB above sensitivity level. Negative offset	-12		ppm
Frequency error tolerance (ppm)	10% PER, 20 byte payload, measured at 10 dB above sensitivity level. Positive offset	12		ppm
Symbol rate error tolerance (ppm)	10% PER, 20 byte payload, measured at 10 dB above sensitivity level. Negative offset	-1000		ppm
Symbol rate error tolerance (ppm)	1% BER, measured at 10 dB above sensitivity level Positive offset	1000		ppm

Submit Document Feedback

When Measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V with DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All measurements are performed conducted.

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
Sensitivity	FSK, 20 kbps, ±10 kHz deviation, 2-GFSK, 915.0 MHz, 52 kHz RX BW, 20 byte PSDU < 10% PER	-	110	dBm
Sensitivity	FSK, 20 kbps, ±10 kHz deviation, 2-GFSK, 868.3 MHz, 52 kHz RX BW, 20 byte PSDU < 10% PER	-	110	dBm
Saturation limit	20 byte PSDU < 10% PER, 868.3 MHz		10	dBm
Selectivity, +100 kHz			38	dB
Selectivity, -100 kHz			36	dB
Selectivity, +200 kHz			44	dB
Selectivity, -200 kHz			42	dB
Selectivity, +400 kHz			49	dB
Selectivity, -400 kHz			44	dB
Blocking, +1 MHz	20 byte DSDU < 109/ DED 969 2 MHz		58	dB
Blocking, -1 MHz	20 byte PSDU < 10% PER, 868.3 MHz		54	dB
Blocking, -2 MHz			61	dB
Blocking, +2 MHz			61	dB
Blocking, -5 MHz			70	dB
Blocking, +5 MHz			70	dB
Blocking, -10 MHz			75	dB
Blocking, +10 MHz			76	dB
Selectivity, +100 kHz			36	dB
Selectivity, -100 kHz			34	dB
Selectivity, +200 kHz			42	dB
Selectivity, -200 kHz			41	dB
Selectivity, +400 kHz			47	dB
Selectivity, -400 kHz			46	dB
Blocking, +1 MHz	20 byte PSDU < 10% PER, 868.3 MHz. Wanted signal 3 dB		56	dB
Blocking, -1 MHz	above sensitivity level.		55	dB
Blocking, +2 MHz			61	dB
Blocking, -2 MHz			61	dB
Blocking, +5 MHz			71	dB
Blocking, -5 MHz			70	dB
Blocking, +10 MHz			75	dB
Blocking, -10 MHz			75	dB
Blocking + 5% Fc. (45.75 MHz)	20 byte PSDU < 10% PER, 866.6 MHz, wanted signal -94 dBm. 3 dB above usable sensitivity limit according to ETSI EN 300 220		-13	dBm
Blocking - 5% Fc. (-45.75 MHz)	V3.1.1 (usable sensitivity -97 dBm). Limit is Cat 1.5 requirement.		-13	dBm
Image rejection (image compensation enabled)	20 byte PSDU < 10% PER, 866.6 MHz. Wanted signal 3 dB above sensitivity limit.		39	dB
Image rejection (image compensation enabled)	20 byte PSDU < 10% PER, 866.6 MHz ⁽¹⁾		39	dB
Image rejection (image compensation enabled)	-40 to 125℃, 10% PER, 250 byte payload, 866.6 MHz		39	dB
RSSI dynamic range	Starting from the sensitivity limit		100	dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range		±3	dB
Frequency error tolerance (ppm)	20 byte PSDU < 10% PER, measured at 10 dB above sensitivity level. Negative offset		-24	ppm
Frequency error tolerance (ppm)	20 byte PSDU < 10% PER, measured at 10 dB above sensitivity level. Positive offset		24	ppm

When Measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V with DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All measurements are performed conducted.

path. All measurements are perfo	TEST CONDITIONS	MIN TVD	BAAY	THAIL
PARAMETER		MIN TYP	MAX	UNIT
Symbol rate error tolerance (ppm)	20 byte PSDU < 10% PER, measured at 10 dB above sensitivity level. Negative offset	-1000		ppm
Symbol rate error tolerance (ppm)	20 byte PSDU < 10% PER, measured at 10 dB above sensitivity level.	1000		ppm
Cymber rate error terefames (pp)	Negative offset			
802.15.4, 200 kbps, ± 50 kHz deviation, 2	-GFSK, 311 kHz RX BW			
Sensitivity	BER = 10 ⁻² , 868 MHz	- 103		dBm
Sensitivity	BER = 10 ⁻² , 915 MHz	- 103		dBm
Selectivity, +400 kHz	BER = 10 ^{- 2} , 915 MHz. Wanted signal 3 dB above sensitivity limit.	45		dB
Selectivity, -400 kHz	BER = 10 ^{- 2} , 915 MHz. Wanted signal 3 dB above sensitivity limit.	45		dB
Selectivity, +800 kHz	BER = 10 ⁻² , 915 MHz. Wanted signal 3 dB above sensitivity limit.	52		dB
Selectivity, -800 kHz	BER = 10 ^{- 2} , 915 MHz. Wanted signal 3 dB above sensitivity limit.	47		dB
Blocking, +2 MHz	BER = 10 ⁻² , 915 MHz. Wanted signal 3 dB above sensitivity limit.	59		dB
Blocking, -2 MHz	BER = 10 ⁻² , 915 MHz. Wanted signal 3 dB above sensitivity limit.	56		dB
Blocking, +10 MHz	BER = 10 ⁻² , 915 MHz. Wanted signal 3 dB above sensitivity limit.	71		dB
Blocking, -10 MHz	BER = 10 ⁻² , 915 MHz. Wanted signal 3 dB above sensitivity limit.	70		dB
802.15.4, 500 kbps, ±190 kHz deviation,	2-GFSK, 622 kHz RX BW			
Sensitivity 500 kbps	915 MHz, 1% PER, 127 byte payload	-95		dBm
Selectivity, ±1 MHz	915 MHz, 1% PER, 127 byte payload. Wanted signal at -88 dBm	34		dB
Selectivity, ±2 MHz	915 MHz, 1% PER, 127 byte payload. Wanted signal at -88 dBm	46		dB
Co-channel rejection	915 MHz, 1% PER, 127 byte payload. Wanted signal at -71 dBm	-8		dB
SimpleLink™ Long Range 2.5/5 kbps (2	20 ksps), ±5 kHz Deviation, 2-GFSK, 34 kHz RX Bandwidth, FEC = 1	:2, DSSS = 1:4/1:2		
Sensitivity	2.5 kbps, BER = 10 ⁻² , 868 MHz	-121		dBm
Sensitivity	2.5 kbps, BER = 10 ⁻² , 915 MHz	-121		dBm
Sensitivity	5 kbps, BER = 10 ⁻² , 868 MHz	-119		dBm
Sensitivity	5 kbps, BER = 10 ⁻² , 915 MHz	-119		dBm
Saturation limit	2.5 kbps , BER = 10^{-2} , 868 MHz	10		dBm
Selectivity, +100 kHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	49		dB
Selectivity, -100 kHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	49		dB
Selectivity, +200 kHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	52		dB
Selectivity, -200 kHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	48		dB
Selectivity, +300 kHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	54		dB
Selectivity, -300 kHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	48		dB
Blocking, +1 MHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	65		dB
Blocking, -1 MHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	60		dB
Blocking, +2 MHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	70		dB
Blocking, -2 MHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	68		dB
Blocking, +5 MHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	78		dB
Blocking, -5 MHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	77		dB
Blocking, +10 MHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	87		dB
Blocking, -10 MHz	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	92		dB
Dissimily, - 10 Willia	2.0 (Spo, DEIX = 10 , 000 WH IZ: /			40

Product Folder Links: CC1314R10

Submit Document Feedback

When Measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V with DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All measurements are performed conducted.

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Image rejection (image compensation enabled)	2.5 kbps, BER = 10 ⁻² , 868 MHz ⁽¹⁾	47		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range	±3		dB
Frequency error tolerance (ppm)	2.5 kbps, 20 kbaud, DSSS=4, ½ K=7 FEC. measured at -110 dBm.	-24/26		ppm
Symbolrate error tolerance (ppm)	2.5 kbps, 20 kbaud, DSSS=4, ½ K=7 FEC. measured at -110 dBm. Refered to 20 kbaud chip rate.	-90/70		ppm
Narrowband, 9.6 kbps ±2.4 kHz deviation	on, 2-GFSK, 868 MHz, 17.1 kHz RX BW			
Sensitivity	1% BER	-117		dBm
Adjacent Channel Rejection	1% BER. Wanted signal 3 dB above usable sensitivity limit (usable sensitivity -104.6 dBm). Interferer ±20 kHz	42		dB
Alternate Channel Rejection	1% BER. Wanted signal 3 dB above usable sensitivity limit (usable sensitivity -104.6 dBm). Interferer ±40 kHz	42		dB
Blocking, ±1 MHz	1% BER. Wanted signal 3 dB above usable sensitivity limit (usable sensitivity -104.6 dBm).	66		dB
Blocking, ±2 MHz	1% BER. Wanted signal 3 dB above usable sensitivity limit (usable sensitivity -104.6 dBm).	71		dB
Blocking, ±10 MHz	1% BER. Wanted signal 3 dB above usable sensitivity limit (usable sensitivity -104.6 dBm).	85		dB
802.15.4, 50 kbps, ±25 kHz Deviation, 2-	GFSK, 100 kHz RX BW (Legacy)			
Sensitivity	BER = 10 ⁻² , 868 MHz	- 110		dBm
Sensitivity	BER = 10 ⁻² , 915 MHz	- 110		dBm
Saturation limit	BER = 10 ⁻² , 868 MHz	10		dBm
Selectivity, +200 kHz	,	44		dB
Selectivity, -200 kHz		44		dB
Selectivity, +400 kHz		54		dB
Selectivity, -400 kHz		44		dB
Blocking, +1 MHz		57		dB
Blocking, -1 MHz		57		dB
Blocking, +2 MHz	BER = 10^{-2} , 868 MHz ⁽¹⁾	61		dB
Blocking, -2 MHz		61		dB
Blocking, +5 MHz		67		dB
Blocking, -5 MHz		67		dB
Blocking, +10 MHz		76		dB
Blocking, -10 MHz		76		dB
Selectivity, +200 kHz		45		dB
Selectivity, -200 kHz		45		dB
Selectivity, +400 kHz		51		dB
Selectivity, -400 kHz	-	45		dB
Blocking, +1 MHz	-	61		dB
Blocking, -1 MHz	BER = 10 ⁻² , 868 MHz. Wanted signal 3 dB above sensitivity	61		dB
Blocking, +2 MHz	limit.			dB
Blocking, -2 MHz	<u> </u>	63		dB
Blocking, +5 MHz	<u> </u>	67		dB
Blocking, -5 MHz	<u> </u>	67		dB
Blocking, +10 MHz	-	73		dB
Diodining, - 10 Willia	_	13		ab

When Measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V with DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All measurements are performed conducted.

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Blocking + 5% Fc. (43.42 MHz)	BER = 10 ⁻² , 868 MHz	-15		dBm
Blocking - 5% Fc. (-43.42 MHz)	802.15.4g mandatory mode, wanted signal -94 dBm. 3 dB above usable sensitivity limit according to ETSI EN 300 220 V3.1.1 (usable sensitivity -97 dBm). Limit is Cat 1.5 requirement.	-15		dBm
Image rejection (image compensation enabled)	BER = 10 ⁻² , 868 MHz. Wanted signal 3 dB above sensitivity limit.	39		dB
Image rejection (image compensation enabled)	BER = 10 ⁻² , 868 MHz ⁽¹⁾	39		dB
Image rejection (image compensation enabled)	-40 to 125℃. BER = 10 ⁻² , 868 MHz	41		dB
RSSI dynamic range	Starting from the sensitivity limit	95		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range	±3		dB
Frequency error tolerance (ppm)	1% BER, measured at -100 dBm (10 dB above sensitivity level). Negative offset	-30		ppm
Frequency error tolerance (ppm)	1% BER, measured at -100 dBm (10 dB above sensitivity level). Positive offset	25		ppm
Symbol rate error tolerance (ppm)	1% BER, measured at-100 dBm (10 dB above sensitivity level). Negative offset	-2000		ppm
Symbol rate error tolerance (ppm)	1% BER, measured at-100 dBm (10 dB above sensitivity level) Positive offset	2000		ppm
802.15.4, 100 kbps, ±25 kHz deviation, 2	-GFSK, 137 kHz RX BW			
Sensitivity 100 kbps	868 MHz, 1% PER, 127 byte payload	-103		dBm
Selectivity, ±200 kHz	960 MHz 40/ DED 427 byte peylood Wested signal at 06 dDm	38		dB
Selectivity, ±400 kHz	868 MHz, 1% PER, 127 byte payload. Wanted signal at -96 dBm	44		dB
Co-channel rejection	868 MHz, 1% PER, 127 byte payload. Wanted signal at -79 dBm	-9		dB
Generic OOK (16.384 kbps, OOK w / Ma	nchester encoding, 100 kHz RX BW)			
Sensitivity	OOK, 915.0 MHz, 1% BER	-114		dBm
Sensitivity	OOK, 868.8 MHz, 1% BER	-113		dBm
Saturation limit	868.3 MHz	0		dBm
Selectivity, +200 kHz		52		dB
Selectivity, -200 kHz		48		dB
Selectivity, +400 kHz		68		dB
Selectivity, -400 kHz		64		dB
Blocking, +1 MHz		64		dB
Blocking, -1 MHz	868.3 MHz ⁽¹⁾	59		dB
Blocking, +2 MHz	000.3 IVII IZ 7	64		dB
Blocking, -2 MHz		59		dB
Blocking, +5 MHz		72		dB
Blocking, -5 MHz		73		dB
Blocking, +10 MHz		64		dB
Blocking, -10 MHz		58		dB

Product Folder Links: CC1314R10

Submit Document Feedback

When Measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V with DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All measurements are performed conducted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Selectivity, +200 kHz			52		dB
Selectivity, -200 kHz			47		dB
Selectivity, +400 kHz			42		dB
Selectivity, -400 kHz			42		dB
Blocking, +1 MHz			68		dB
Blocking, -1 MHz	060 2 MH = Wented signal 2 dD above consitiuity level		64		dB
Blocking, +2 MHz	868.3 MHz. Wanted signal 3 dB above sensitivity level.		68		dB
Blocking, -2 MHz			64		dB
Blocking, +5 MHz			74		dB
Blocking, -5 MHz			73		dB
Blocking, +10 MHz			68		dB
Blocking, -10 MHz			64		dB
RSSI dynamic range	Starting from the sensitivity limit		95		dB
RSSI accuracy	Starting from the sensitivity limit across the given dynamic range		±3		dB
Frequency error tolerance (ppm)	Measured at 10 dB above sensitivity level. Negative offset		-40		ppm
Frequency error tolerance (ppm)	Measured at 10 dB above sensitivity level. Positive offset		40		ppm
Symbol rate error tolerance (ppm)	Measured at 10 dB above sensitivity level. Negative offset		-2000		ppm
Symbol rate error tolerance (ppm)	Measured at 10 dB above sensitivity level Positive offset		2000		ppm

⁽¹⁾ Wanted signal 3 dB above usable sensitivity limit according to ETSI EN 300 220 v. 3.1.1.

8.11 861 MHz to 1054 MHz - Transmit (TX)

When measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V with DC/DC enabled unless otherwise noted. All measurements are performed at the antenna input with a combined RX and TX path. All measurements are performed conducted. (1)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT	
General parameters						
Max output power, boost n	node	VDDR = 1.95 V Minimum supply voltage (VDDS) for boost mode is 2.1 V 868 MHz and 915 MHz	14		dBm	
Max output power		868 MHz and 915 MHz	12		dBm	
Output power programmat	ole range	868 MHz and 915 MHz, 1dB step size.	34		dB	
Output power variation over	er temperature	+10 dBm setting Over recommended temperature operating range	±2		dB	
Output power variation ove	er temperature Boost mode	+14 dBm setting Over recommended temperature operating range	±1.5		dB	
Spurious emissions and	harmonics					
	30 MHz to 1 GHz	+14 dBm setting ETSI restricted bands	< -54		dBm	
Spurious emissions (excluding harmonics) (3)	00 Mil 2 to 1 Of 12	+14 dBm setting ETSI outside restricted bands	< -36		dBm	
	1 GHz to 12.75 GHz (outside ETSI restricted bands)	+14 dBm setting measured in 1 MHz bandwidth (ETSI)	< -30		dBm	
	30 MHz to 88 MHz (within FCC restricted bands)	+14 dBm setting	< -56		dBm	
	88 MHz to 216 MHz (within FCC restricted bands)	+14 dBm setting	< -52		dBm	
Spurious emissions out- of-band, 915 MHz ⁽³⁾	216 MHz to 960 MHz (within FCC restricted bands)	+14 dBm setting	< -50		dBm	
	960 MHz to 2390 MHz and above 2483.5 MHz (within FCC restricted band)	+14 dBm setting	<-42		dBm	
	1 GHz to 12.75 GHz (outside FCC restricted bands)	+14 dBm setting	< -40		dBm	
	Below 710 MHz (ARIB T-108)	+14 dBm setting	< -36		dBm	
	710 MHz to 900 MHz (ARIB T-108)	+14 dBm setting	< -55		dBm	
Spurious emissions out-	900 MHz to 915 MHz (ARIB T-108)	+14 dBm setting	< -55		dBm	
of-band, 920.6/928 MHz (3)	930 MHz to 1000 MHz (ARIB T-108)	+14 dBm setting	< -55		dBm	
	1000 MHz to 1215 MHz (ARIB T-108)	+14 dBm setting	< -45		dBm	
	Above 1215 MHz (ARIB T-108)	+14 dBm setting	< -30		dBm	
	Second harmonic	+14 dBm setting, 868 MHz	< -30		dPm	
Harmonics	Second Harmonic	+14 dBm setting, 915 MHz	< -30		dBm	
	Third harmonic	+14 dBm setting, 868 MHz	< -30		dBm	
	THING HAITHOUNG	+14 dBm setting, 915 MHz	< -42			
Hamilonios	Fourth harmonic	+14 dBm setting, 868 MHz	< -30		dBm	
	- Carat Haithonic	+14 dBm setting, 915 MHz	< -30			
	Fifth harmonic	+14 dBm setting, 868 MHz	< -30		dBm	
	Filul Harmonic	+14 dBm setting, 915 MHz	< -42		וווטט	

⁽¹⁾ Some combinations of frequency, data rate and modulation format requires use of external crystal load capacitors for regulatory

compliance. More details can be found in the device errata.

Product Folder Links: CC1314R10

Submit Document Feedback

(2) Suitable for systems targeting compliance with EN 300 220, EN 303 131, EN 303 204, FCC CFR47 Part 15, ARIB STD-T108.

8.12 861 MHz to 1054 MHz - PLL Phase Noise Wideband Mode

When measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	±10 kHz offset		- 74		dBc/Hz
	±100 kHz offset		- 97		dBc/Hz
Phase noise in the 868- and 915-MHz bands 20 kHz PLL loop bandwidth	±200 kHz offset		- 107		dBc/Hz
	±400 kHz offset		- 113		dBc/Hz
·	±1000 kHz offset		- 120		dBc/Hz
	±2000 kHz offset		- 127		dBc/Hz
	±10000 kHz offset		- 141		dBc/Hz

8.13 861 MHz to 1054 MHz - PLL Phase Noise Narrowband Mode

When measured on the LP-EM-CC1314R10 reference design with T_c = 25 °C, V_{DDS} = 3.0 V.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	±10 kHz offset		- 96		dBc/Hz
	±100 kHz offset		- 95		dBc/Hz
	±200 kHz offset		- 94		dBc/Hz
Phase noise in the 868- and 915-MHz bands 150 kHz PLL loop bandwith	±400 kHz offset		- 104		dBc/Hz
Too M. 2.1 22 sop bandman	±1000 kHz offset		- 121		dBc/Hz
	±2000 kHz offset		- 130		dBc/Hz
	±10000 kHz offset		- 140		dBc/Hz

8.14 Timing and Switching Characteristics

8.14.1 Reset Timing

PARAMETER	MIN	TYP MAX	UNIT
RESET_N low duration	1		μs

8.14.2 Wakeup Timing

Measured over operating free-air temperature with V_{DDS} = 3.0 V (unless otherwise noted). The times listed here do not include software overhead.

PARAMETER	TEST CONDITIONS	MIN	TYP M	AX	UNIT
MCU, Reset to Active ⁽¹⁾		85	60 - 4000		μs
MCU, Shutdown to Active ⁽¹⁾		85	60 - 4000		μs
MCU, Standby to Active			160		μs
MCU, Active to Standby			39		μs
MCU, Idle to Active			15		μs

(1) The wakeup time is dependent on remaining charge on VDDR capacitor when starting the device, and thus how long the device has been in Reset or Shutdown before starting up again. The wake up time increases with a higher capacitor value.

28

8.14.3 Clock Specifications

8.14.3.1 48 MHz Clock Input (TCXO)

Measured on a Texas Instruments reference design with T_c = 25 °C, V_{DDS} = 3.0 V, unless otherwise noted. (1)

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
Clock frequency			48	MHz
TCXO clipped sine output, peak-to-peak	TCXO clipped sine output connected to pin X48M_P through series capacitor	0.8	1.7	V
TCXO with CMOS output, High input voltage	TCXO with CMOS output	1.3	VDDR	V
TCXO with CMOS output, Low input voltage	directly coupled to pin X48M_P	0	0.3	V

Probing or otherwise stopping the TCXO while the DC/DC converter is enabled may cause permanent damage to the device.

8.14.3.2 48 MHz Crystal Oscillator (XOSC HF)

Measured on a Texas Instruments reference design with T_c = 25 °C, V_{DDS} = 3.0 V, unless otherwise noted. (1)

	PARAMETER	MIN	TYP	MAX	UNIT
	Crystal frequency		48		MHz
ESR	Equivalent series resistance 6 pF < $C_L \le 9$ pF		20	60	Ω
ESR	Equivalent series resistance 5 pF < C _L ≤ 6 pF			80	Ω
L _M	Motional inductance, relates to the load capacitance that is used for the crystal (C _L in Farads) ⁽⁵⁾	< 3 ×	10 ^{- 25} / C _L ²		Н
CL	Crystal load capacitance ⁽⁴⁾	5	7 ⁽³⁾	9	pF
	Start-up time ⁽²⁾		200		μs

- Probing or otherwise stopping the crystal while the DC/DC converter is enabled may cause permanent damage to the device.
- Start-up time using the TI-provided power driver. Start-up time may increase if driver is not used. (2)
- On-chip default connected capacitance including reference design parasitic capacitance. Connected internal capacitance is changed through software in the Customer Configuration section (CCFG).
- Adjustable load capacitance is integrated into the device. External load capacitors are required for systems targeting compliance with certain regulations. See the device errata for further details.
- (5) The crystal manufacturer's specification must satisfy this requirement for proper operation.

8.14.3.3 48 MHz RC Oscillator (RCOSC_HF)

Measured on a Texas Instruments reference design with T_c = 25 °C, V_{DDS} = 3.0 V, unless otherwise noted.

	MIN	TYP	MAX	UNIT
Frequency		48		MHz
Uncalibrated frequency accuracy		±1		%
Calibrated frequency accuracy ⁽¹⁾		±0.25		%
Start-up time		5		μs

Accuracy relative to the calibration source (XOSC HF)

8.14.3.4 2 MHz RC Oscillator (RCOSC MF)

Measured on a Texas Instruments reference design with T_c = 25 °C, V_{DDS} = 3.0 V, unless otherwise noted.

	MIN	TYP	MAX	UNIT
Calibrated frequency		2		MHz
Start-up time		5		μs

8.14.3.5 32.768 kHz Crystal Oscillator (XOSC_LF)

Measured on a Texas Instruments reference design with T_c = 25 °C, V_{DDS} = 3.0 V, unless otherwise noted.

	MIN	TYP	MAX	UNIT
Crystal frequency		32.768		kHz

Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback

8.14.3.5 32.768 kHz Crystal Oscillator (XOSC_LF) (continued)

Measured on a Texas Instruments reference design with T_c = 25 °C, V_{DDS} = 3.0 V, unless otherwise noted.

		MIN	TYP	MAX	UNIT
ESR	Equivalent series resistance		30	100	k Ω
CL	Crystal load capacitance	6	7 ⁽¹⁾	12	pF

⁽¹⁾ Default load capacitance using TI reference designs including parasitic capacitance. Crystals with different load capacitance may be used.

8.14.3.6 32 kHz RC Oscillator (RCOSC_LF)

Measured on a Texas Instruments reference design with $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted.

	MIN	TYP	MAX	UNIT
Calibrated frequency		32.8 ⁽¹⁾		kHz
Temperature coefficient.		50		ppm/°C

⁽¹⁾ When using RCOSC_LF as source for the low frequency system clock (SCLK_LF), the accuracy of the SCLK_LF-derived Real Time Clock (RTC) can be improved by measuring RCOSC_LF relative to XOSC_HF and compensating for the RTC tick speed. This functionality is available through the TI-provided Power driver.

8.14.4 Serial Peripheral Interface (SPI) Characteristics

8.14.4.1 SPI Characteristics

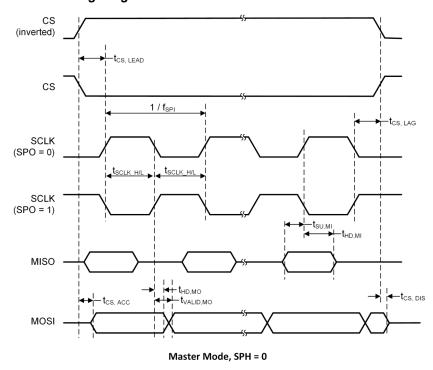
over operating free-air temperature range (unless otherwise noted)

	PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Master Mode 1.8 < VDDS < 3.8			12 8 7	
f _{SCLK} 1/t _{sclk}	SPI clock frequency	Slave Mode 2.7 < VDDS < 3.8				MHz
		Slave Mode VDDS < 2.7				
DC _{SCK}	SCK Duty Cycle		45	50	55	%

8.14.4.2 SPI Master Mode

over operating free-air temperature range (unless otherwise noted)

	PARAMETERS	TEST CONDITIONS	MIN	TYP MA	_
t _{SCLK_H/}	SCLK High or Low time		(t _{SPI} /2) -	t _{SPI} / 2 (t _{SPI} /2)	t 1 ns
t _{CS.LEAD}	CS lead-time, CS active to clock		1		SCLK
t _{CS.LAG}	CS lag time, Last clock to CS inactive		1		SCLK
t _{CS.ACC}	CS access time, CS active to MOSI data out				1 SCLK
t _{CS.DIS}	CS disable time, CS inactive to MOSI high inpedance				1 SCLK
t _{SU.MI}	MISO input data setup time(1)	VDDS = 3.3V	12.5		ns
t _{SU.MI}	MISO input data setup time	VDDS = 1.8V	23.5		ns
t _{HD.MI}	MISO input data hold time		0		ns
t _{VALID.M}	MOSI output data valid time ⁽²⁾	SCLK edge to MOSI valid,CL = 20 pF (4)		1	3 ns
t _{HD.MO}	MOSI output data hold time ⁽³⁾	CL = 20 pF	0	·	ns


- (1) The MISO input data setup time can be fully compensated when delayed sampling feature is enabled.
- (2) Specifies the time to drive the next valid data to the output after the output changing SCLK clock edge

(3)

Specifies how long data on the output is valid after the output changing SCLK clock edge

8.14.4.3 SPI Master Mode Timing Diagrams

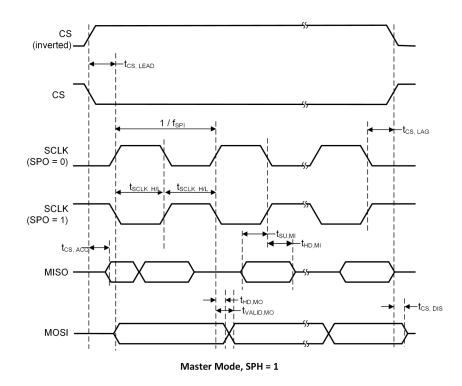
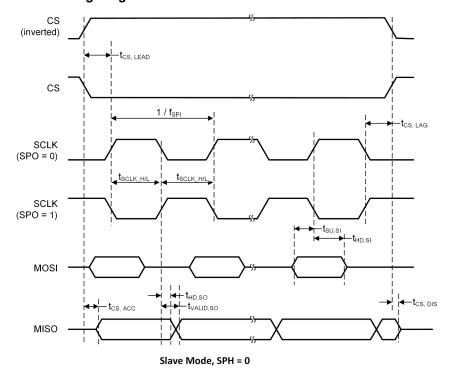


图 8-1. SPI Master Mode Timing

Submit Document Feedback

8.14.4.4 SPI Slave Mode

over operating free-air temperature range (unless otherwise noted)


	PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{CS.LEAD}	CS lead-time, CS active to clock		1			SCLK
t _{CS.LAG}	CS lag time, Last clock to CS inactive		1			SCLK
t _{CS.ACC}	CS access time, CS active to MISO data out	VDDS = 3.3V			56	ns
t _{CS.ACC}	CS access time, CS active to MISO data out	VDDS = 1.8V			70	ns
t _{CS.DIS}	CS disable time, CS inactive to MISO high inpedance	VDDS = 3.3V			56	ns
t _{CS.DIS}	CS disable time, CS inactive to MISO high inpedance	VDDS = 1.8V			70	ns
t _{SU.SI}	MOSI input data setup time		30			ns
t _{HD.SI}	MOSI input data hold time		0			ns
t _{VALID.S} O	MISO output data valid time ⁽¹⁾	SCLK edge to MISO valid,C _L = 20 pF, 3.3V (4)			50	ns
t _{VALID.S} O	MISO output data valid time ⁽¹⁾	SCLK edge to MISO valid,C _L = 20 pF, 1.8V (4)			65	ns
t _{HD.SO}	MISO output data hold time(2)	C _L = 20 pF	0			ns

⁽¹⁾ Specifies the time to drive the next valid data to the output after the output changing SCLK clock edge

⁽²⁾ Specifies how long data on the output is valid after the output changing SCLK clock edge

8.14.4.5 SPI Slave Mode Timing Diagrams

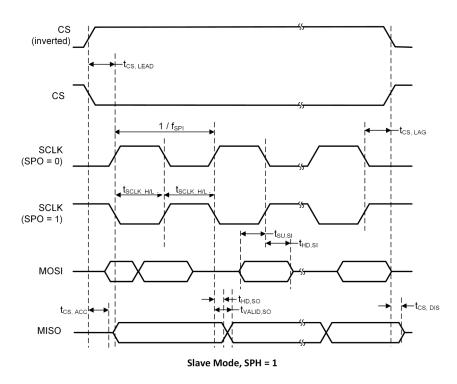


图 8-2. SPI Slave Mode Timing

Submit Document Feedback

8.14.5 UART

8.14.5.1 UART Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER	MIN	TYP	MAX	UNIT
UART rate			3	MBaud

8.15 Peripheral Characteristics

8.15.1 ADC

8.15.1.1 Analog-to-Digital Converter (ADC) Characteristics

 T_c = 25 °C, V_{DDS} = 3.0 V and voltage scaling enabled, unless otherwise noted.⁽¹⁾ Performance numbers require use of offset and gain adjustements in software by TI-provided ADC drivers.

_	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input voltage range		0		VDDS	V
	Resolution			12		Bits
	Sample Rate				200	ksps
	Offset	Internal 4.3 V equivalent reference ⁽²⁾		- 0.24		LSB
	Gain error	Internal 4.3 V equivalent reference ⁽²⁾		7.14		LSB
DNL ⁽⁴⁾	Differential nonlinearity			> - 1		LSB
INL	Integral nonlinearity			±4		LSB
		Internal 4.3 V equivalent reference ⁽²⁾ , 200 kSamples/s, 9.6 kHz input tone		9.8		
		Internal 4.3 V equivalent reference ⁽²⁾ , 200 kSamples/s, 9.6 kHz input tone, DC/DC enabled		9.8		
		VDDS as reference, 200 kSamples/s, 9.6 kHz input tone		10.1		
ENOB	Effective number of bits	Internal reference, voltage scaling disabled, 32 samples average, 200 kSamples/s, 300 Hz input tone		11.1		Bits
		Internal reference, voltage scaling disabled, 14-bit mode, 200 kSamples/s, 300 Hz input tone ⁽⁵⁾		11.3		
		Internal reference, voltage scaling disabled, 15-bit mode, 200 kSamples/s, 300 Hz input tone (5)		11.6		
		Internal 4.3 V equivalent reference ⁽²⁾ , 200 kSamples/s, 9.6 kHz input tone		- 65		
THD	Total harmonic distortion	VDDS as reference, 200 kSamples/s, 9.6 kHz input tone		- 70		dB
		Internal reference, voltage scaling disabled, 32 samples average, 200 kSamples/s, 300 Hz input tone		- 72		
	Signal-to-noise	Internal 4.3 V equivalent reference ⁽²⁾ , 200 kSamples/s, 9.6 kHz input tone		60		
SINAD, SNDR	and	VDDS as reference, 200 kSamples/s, 9.6 kHz input tone		63		dB
CHER	distortion ratio	Internal reference, voltage scaling disabled, 32 samples average, 200 kSamples/s, 300 Hz input tone		68		
		Internal 4.3 V equivalent reference ⁽²⁾ , 200 kSamples/s, 9.6 kHz input tone		70		
SFDR	Spurious-free dynamic range	VDDS as reference, 200 kSamples/s, 9.6 kHz input tone		73		dB
		Internal reference, voltage scaling disabled, 32 samples average, 200 kSamples/s, 300 Hz input tone		75		
	Conversion time	Serial conversion, time-to-output, 24 MHz clock		50		Clock Cycles
	Current consumption	Internal 4.3 V equivalent reference ⁽²⁾		0.42		mA
	Current consumption	VDDS as reference		0.6		mA
	Reference voltage	Equivalent fixed internal reference (input voltage scaling enabled). For best accuracy, the ADC conversion should be initiated through the TI-RTOS API in order to include the gain/offset compensation factors stored in FCFG1	,	4.3 ^{(2) (3)}		V

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

8.15.1.1 Analog-to-Digital Converter (ADC) Characteristics (continued)

 T_c = 25 °C, V_{DDS} = 3.0 V and voltage scaling enabled, unless otherwise noted.⁽¹⁾

Performance numbers require use of offset and gain adjustements in software by TI-provided ADC drivers.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Reference voltage	Fixed internal reference (input voltage scaling disabled). For best accuracy, the ADC conversion should be initiated through the TI-RTOS API in order to include the gain/offset compensation factors stored in FCFG1. This value is derived from the scaled value (4.3 V) as follows: V _{ref} = 4.3 V × 1408 / 4095		1.48		V
Reference voltage	VDDS as reference, input voltage scaling enabled		VDDS		V
Reference voltage	VDDS as reference, input voltage scaling disabled		VDDS / 2.82 ⁽³⁾		V
Input impedance	200 kSamples/s, voltage scaling enabled. Capacitive input, Input impedance depends on sampling frequency and sampling time		>1		МΩ

- Using IEEE Std 1241-2010 for terminology and test methods (1)
- (2) (3) Input signal scaled down internally before conversion, as if voltage range was 0 to 4.3 V
- Applied voltage must be within Absolute Maximum Ratings at all times
- (4) No missing codes
- ADC_output = Σ (4ⁿ samples) >> n, n = desired extra bits

Submit Document Feedback

8.15.2 DAC

8.15.2.1 Digital-to-Analog Converter (DAC) Characteristics

T_c = 25 °C, V_{DDS} = 3.0 V, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
3enera	I Parameters				•	
	Resolution			8		Bits
		Any load, any V _{REF} , pre-charge OFF, DAC charge-pump ON	1.8		3.8	
/ _{DDS}	Supply voltage	External Load ⁽⁴⁾ , any V _{REF} , pre-charge OFF, DAC charge-pump OFF	2.0		3.8	V
		Any load, V _{REF} = DCOUPL, pre-charge ON	2.6		3.8	
-	Clock frequency	Buffer ON (recommended for external load)	16		250	Id I=
DAC	Clock frequency	Buffer OFF (internal load)	16		1000	kHz
	Voltage output settling time	V _{REF} = VDDS, buffer OFF, internal load		13		1/5
	Voltage output settling time	V _{REF} = VDDS, buffer ON, external capacitive load = 20 pF ⁽³⁾		13.8		1 / F _{DAC}
	External capacitive load			20	200	pF
	External resistive load		10			ΜΩ
	Short circuit current				400	μA
		VDDS = 3.8 V, DAC charge-pump OFF		50.8		
		VDDS = 3.0 V, DAC charge-pump ON		51.7		
	Max output impedance Vref =	VDDS = 3.0 V, DAC charge-pump OFF		53.2		
Z _{MAX}	VDDS, buffer ON, CLK 250	VDDS = 2.0 V, DAC charge-pump ON		48.7		$\mathbf{k}\Omega$
	kHz	VDDS = 2.0 V, DAC charge-pump OFF		70.2		
		VDDS = 1.8 V, DAC charge-pump ON		46.3		
		VDDS = 1.8 V, DAC charge-pump OFF		88.9		
Interna	I Load - Continuous Time Com	parator / Low Power Clocked Comparator				
	Differential nonlinearity	V _{REF} = VDDS, load = Continuous Time Comparator or Low Power Clocked Comparator F _{DAC} = 250 kHz		±1		(1)
DNL	Differential nonlinearity	V_{REF} = VDDS, load = Continuous Time Comparator or Low Power Clocked Comparator F_{DAC} = 16 kHz		±1.2		LSB ⁽¹⁾
		V _{REF} = VDDS = 3.8 V		±0.64		
		V _{REF} = VDDS= 3.0 V		±0.81		
	Offset error ⁽²⁾	V _{REF} = VDDS = 1.8 V		±1.27		. 00(1)
	Load = Continuous Time Comparator	V _{REF} = DCOUPL, pre-charge ON		±3.43		LSB ⁽¹⁾
		V _{REF} = DCOUPL, pre-charge OFF		±2.88		
		V _{REF} = ADCREF		±2.37		
		V _{REF} = VDDS= 3.8 V		±0.78		
		V _{REF} = VDDS = 3.0 V		±0.77		
	Offset error ⁽²⁾	V _{REF} = VDDS= 1.8 V		±3.46		40
	Load = Low Power Clocked Comparator	V _{REF} = DCOUPL, pre-charge ON		±3.44		LSB ⁽¹⁾
	Comparator	V _{RFF} = DCOUPL, pre-charge OFF		±4.70		
		V _{RFF} = ADCREF		±4.11		
		V _{REF} = VDDS = 3.8 V		±1.53		
		V _{REF} = VDDS = 3.0 V		±1.71		
	Max code output voltage variation ⁽²⁾	V _{RFF} = VDDS= 1.8 V		±2.10		
	Load = Continuous Time	V _{REF} = DCOUPL, pre-charge ON		±6.00		LSB ⁽¹⁾
	Comparator	V _{REF} = DCOUPL, pre-charge OFF		±3.85		
	14	V _{REF} = ADCREF		±5.84		

8.15.2.1 Digital-to-Analog Converter (DAC) Characteristics (continued)

T_o = 25 °C. V_{DDS} = 3.0 V. unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
		V _{REF} = VDDS= 3.8 V	±2.92		
		V _{REF} =VDDS= 3.0 V	±3.06		
	Max code output voltage variation ⁽²⁾	V _{REF} = VDDS= 1.8 V	±3.91		L CD(1)
	Load = Low Power Clocked	V _{REF} = DCOUPL, pre-charge ON	±7.84		LSB ⁽¹⁾
	Comparator	V _{REF} = DCOUPL, pre-charge OFF	±4.06		
		V _{REF} = ADCREF	±6.94		
		V _{REF} = VDDS = 3.8 V, code 1	0.03		
		V _{REF} = VDDS = 3.8 V, code 255	3.62		
		V _{REF} = VDDS= 3.0 V, code 1	0.02		
		V _{REF} = VDDS= 3.0 V, code 255	2.86		
		V _{REF} = VDDS= 1.8 V, code 1	0.01		
	Output voltage range ⁽²⁾	V _{REF} = VDDS = 1.8 V, code 255	1.71		
	Load = Continuous Time Comparator	V _{REF} = DCOUPL, pre-charge OFF, code 1	0.01		V
		V _{REF} = DCOUPL, pre-charge OFF, code 255	1.21		
		V _{REF} = DCOUPL, pre-charge ON, code 1	1.27		
		V _{REF} = DCOUPL, pre-charge ON, code 255	2.46		
		V _{REF} = ADCREF, code 1	0.01		
		V _{REF} = ADCREF, code 255	1.41		
		V _{REF} = VDDS = 3.8 V, code 1	0.03		
		V _{REF} = VDDS= 3.8 V, code 255	3.61		
		V _{REF} = VDDS= 3.0 V, code 1	0.02		
		V _{REF} = VDDS= 3.0 V, code 255	2.85		
		V _{REF} = VDDS = 1.8 V, code 1	0.01		
	Output voltage range ⁽²⁾	V _{REF} = VDDS = 1.8 V, code 255	1.71		
	Load = Low Power Clocked Comparator	V _{REF} = DCOUPL, pre-charge OFF, code 1	0.01		V
	Comparator	V _{REF} = DCOUPL, pre-charge OFF, code 255	1.21		
		V _{REF} = DCOUPL, pre-charge ON, code 1	1.27		
		V _{REF} = DCOUPL, pre-charge ON, code 255	2.46		
		V _{REF} = ADCREF, code 1	0.01		
		V _{REF} = ADCREF, code 255	1.41		
xtern	al Load (Keysight 34401A Mul	THE			
		V_{RFF} = VDDS, F_{DAC} = 250 kHz	±1		
IL	Integral nonlinearity	V _{REF} = DCOUPL, F _{DAC} = 250 kHz	±1		LSB(1)
		V _{REF} = ADCREF, F _{DAC} = 250 kHz	±1		
NL	Differential nonlinearity	$V_{REF} = VDDS$, $F_{DAC} = 250 \text{ kHz}$	±1		LSB ⁽¹⁾
	,	V _{REF} = VDDS= 3.8 V	±0.20		
		V _{RFF} = VDDS= 3.0 V	±0.25		
		V _{REF} = VDDS = 1.8 V	±0.45		
	Offset error	V _{REF} = DCOUPL, pre-charge ON	±1.55		LSB ⁽¹⁾
		V _{RFF} = DCOUPL, pre-charge OFF	±1.30		
		V _{REF} = ADCREF	±1.10		
		V _{REF} = VDDS= 3.8 V	±0.60		
		V _{REF} = VDDS= 3.0 V	±0.55		
	Max code output voltage variation	V _{REF} = VDDS= 1.8 V	±0.60		
		V _{REF} = DCOUPL, pre-charge ON	±3.45		LSB ⁽¹⁾
		V _{REF} = DCOUPL, pre-charge OFF	±2.10		
			12.10		

Product Folder Links: CC1314R10

Submit Document Feedback

8.15.2.1 Digital-to-Analog Converter (DAC) Characteristics (continued)

 T_c = 25 °C, V_{DDS} = 3.0 V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	V _{REF} = VDDS = 3.8 V, code 1		0.03		
	V _{REF} = VDDS = 3.8 V, code 255		3.61		
	V _{REF} = VDDS = 3.0 V, code 1		0.02		
	V _{REF} = VDDS= 3.0 V, code 255		2.85		
	V _{REF} = VDDS= 1.8 V, code 1		0.02 1.71		
Output voltage range Load = Low Power Clocked	V _{REF} = VDDS = 1.8 V, code 255				
Comparator Clocked	V _{REF} = DCOUPL, pre-charge OFF, code 1		0.02		V
	V _{REF} = DCOUPL, pre-charge OFF, code 255		1.20		
	V _{REF} = DCOUPL, pre-charge ON, code 1		1.27		
	V _{REF} = DCOUPL, pre-charge ON, code 255		2.46 0.02		
	V _{REF} = ADCREF, code 1				
	V _{REF} = ADCREF, code 255		1.42		

- 1 LSB (V_{REF} 3.8 V/3.0 V/1.8 V/DCOUPL/ADCREF) = 14.10 mV/11.13 mV/6.68 mV/4.67 mV/5.48 mV (1)
- (2) (3) (4) Includes comparator offset
- A load > 20 pF will increases the settling time
- Keysight 34401A Multimeter

8.15.3 Temperature and Battery Monitor

8.15.3.1 Temperature Sensor

Measured on a Texas Instruments reference design with T_c = 25 °C, V_{DDS} = 3.0 V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Resolution			2		°C
Accuracy	-40 °C to 0 °C		±4.0		°C
Accuracy	0 °C to 105 °C		±2.5		°C
Supply voltage coefficient ⁽¹⁾			3.6		°C/V

1) The temperature sensor is automatically compensated for VDDS variation when using the TI-provided driver.

8.15.3.2 Battery Monitor

Measured on a Texas Instruments reference design with T_c = 25 °C, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Resolution			25		mV
Range		1.8		3.8	V
Integral nonlinearity (max)			23		mV
Accuracy	VDDS = 3.0 V		22.5		mV
Offset error			-32		mV
Gain error			-1		%

Product Folder Links: CC1314R10

Submit Document Feedback

8.15.4 Comparators

8.15.4.1 Low-Power Clocked Comparator

 $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PARAMETER	TEST CONDITIONS	IVIIIN	IIF	IVIAA	UNIT
Input voltage range		0		V_{DDS}	V
Clock frequency			SCLK_LF		
Internal reference voltage ⁽¹⁾	Using internal DAC with VDDS as reference voltage, DAC code = 0 - 255		0.024 - 2.865		V
Offset	Measured at V _{DDS} / 2, includes error from internal DAC		±5		mV
Decision time	Step from - 50 mV to 50 mV		1		Clock Cycle

⁽¹⁾ The comparator can use an internal 8 bits DAC as its reference. The DAC output voltage range depends on the reference voltage selected. See DAC Characteristics

8.15.4.2 Continuous Time Comparator

 $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input voltage range ⁽¹⁾		0		V _{DDS}	V
Offset	Measured at V _{DDS} / 2		±5		mV
Decision time	Step from - 10 mV to 10 mV		0.78		μs
Current consumption	Internal reference		8.6		μA

⁽¹⁾ The input voltages can be generated externally and connected throughout I/Os or an internal reference voltage can be generated using the DAC

8.15.5 Current Source

8.15.5.1 Programmable Current Source

 $T_c = 25$ °C, $V_{DDS} = 3.0$ V, unless otherwise noted.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Current source programmable output range (logarithmic range)			0.25 - 20		μΑ
Resolution			0.25		μA

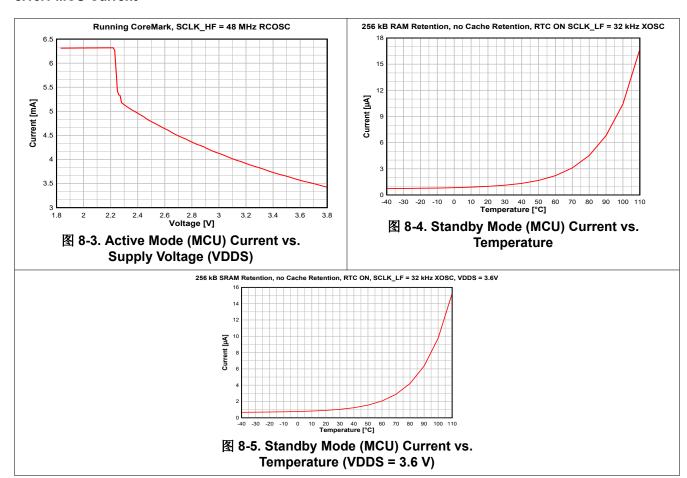
8.15.6 GPIO

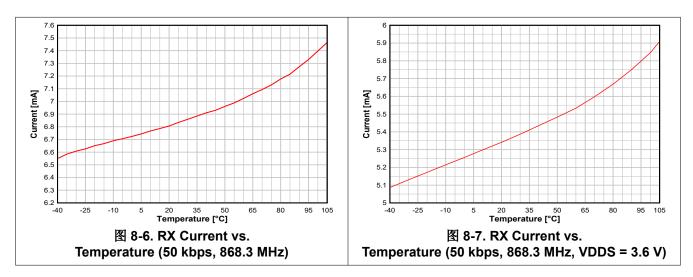
8.15.6.1 GPIO DC Characteristics

PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
T _A = 25 °C, V _{DDS} = 1.8 V				
GPIO VOH at 8 mA load	IOCURR = 2, high-drive GPIOs only		1.56	V
GPIO VOL at 8 mA load	IOCURR = 2, high-drive GPIOs only		0.24	V
GPIO VOH at 4 mA load	IOCURR = 1		1.59	V
GPIO VOL at 4 mA load	IOCURR = 1		0.21	V
GPIO pullup current	Input mode, pullup enabled, Vpad = 0 V		73	μΑ
GPIO pulldown current	Input mode, pulldown enabled, Vpad = VDDS		19	μA
GPIO low-to-high input transition, with hysteresis	IH = 1, transition voltage for input read as 0 → 1		1.08	V
GPIO high-to-low input transition, with hysteresis	IH = 1, transition voltage for input read as 1 → 0		0.73	V
GPIO input hysteresis	IH = 1, difference between 0 → 1 and 1 → 0 points		0.35	V
T _A = 25 °C, V _{DDS} = 3.0 V				
GPIO VOH at 8 mA load	IOCURR = 2, high-drive GPIOs only		2.59	V
GPIO VOL at 8 mA load	IOCURR = 2, high-drive GPIOs only		0.42	V
GPIO VOH at 4 mA load	IOCURR = 1		2.63	V
GPIO VOL at 4 mA load	IOCURR = 1		0.40	V
T _A = 25 °C, V _{DDS} = 3.8 V				
GPIO pullup current	Input mode, pullup enabled, Vpad = 0 V		282	μA
GPIO pulldown current	Input mode, pulldown enabled, Vpad = VDDS		110	μA
GPIO low-to-high input transition, with hysteresis	IH = 1, transition voltage for input read as 0 → 1		1.97	V
GPIO high-to-low input transition, with hysteresis	IH = 1, transition voltage for input read as 1 → 0		1.55	V
GPIO input hysteresis	IH = 1, difference between 0 → 1 and 1 → 0 points		0.42	V
T _A = 25 °C	1			
VIH	Lowest GPIO input voltage reliably interpreted as a High	0.8*V _{DDS}		V
VIL	Highest GPIO input voltage reliably interpreted as a Low		0.2*V _{DDS}	V

Submit Document Feedback

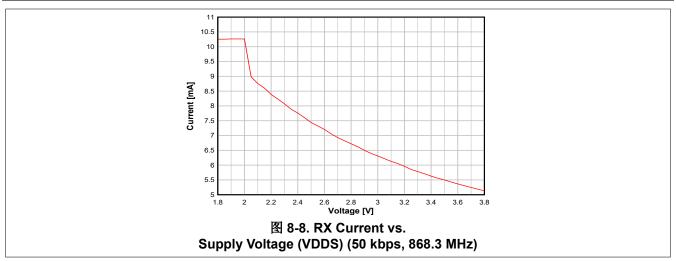
Copyright © 2023 Texas Instruments Incorporated


English Data Sheet: SWRS270

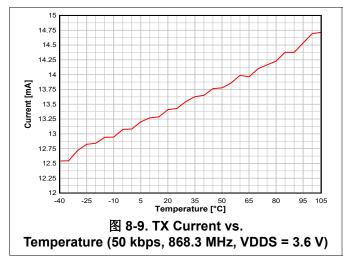

8.16 Typical Characteristics

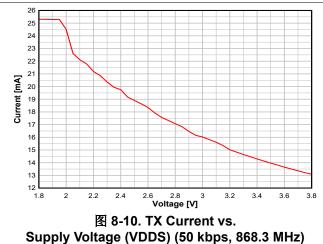
All measurements in this section are done with T_c = 25 °C and V_{DDS} = 3.0 V, unless otherwise noted. See *Recommended Operating Conditions*, \ddagger 8.3, for device limits. Values exceeding these limits are for reference only.

8.16.1 MCU Current



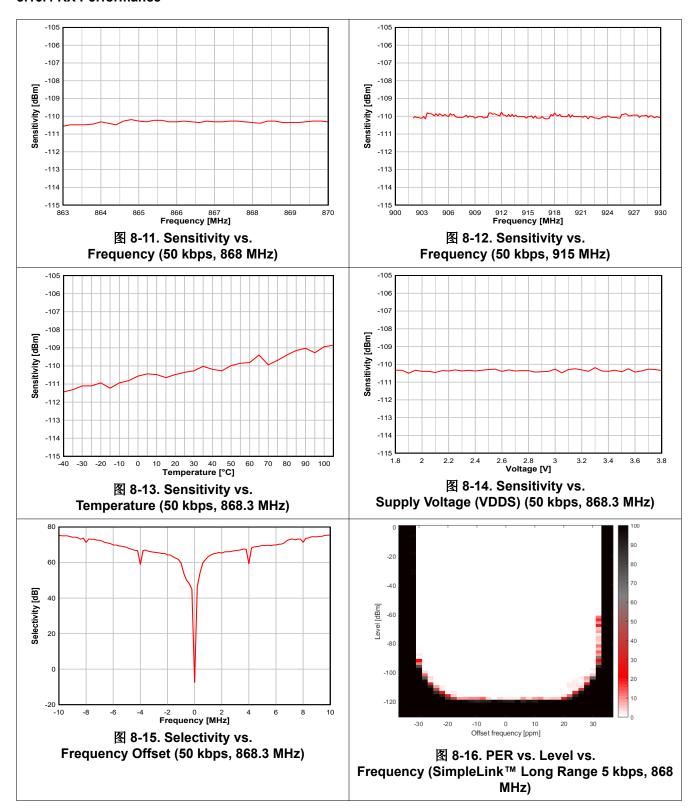
8.16.2 RX Current

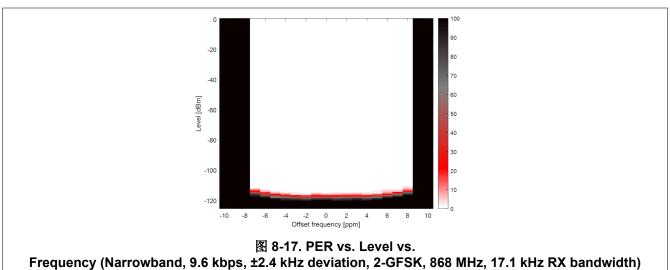

Copyright © 2023 Texas Instruments Incorporated


Submit Document Feedback

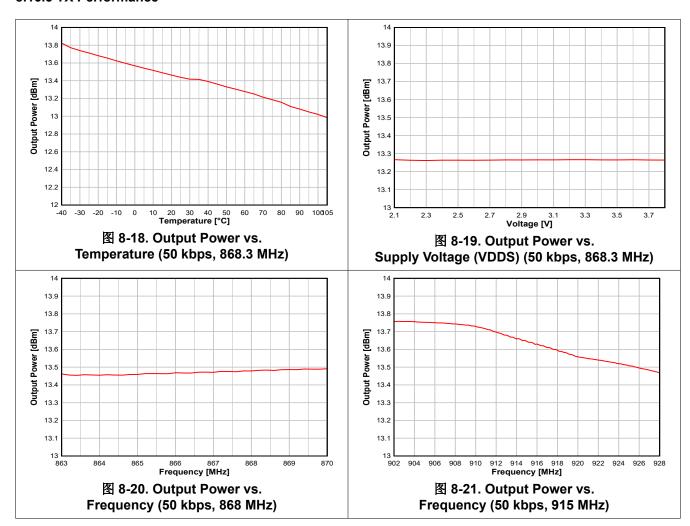
8.16.3 TX Current

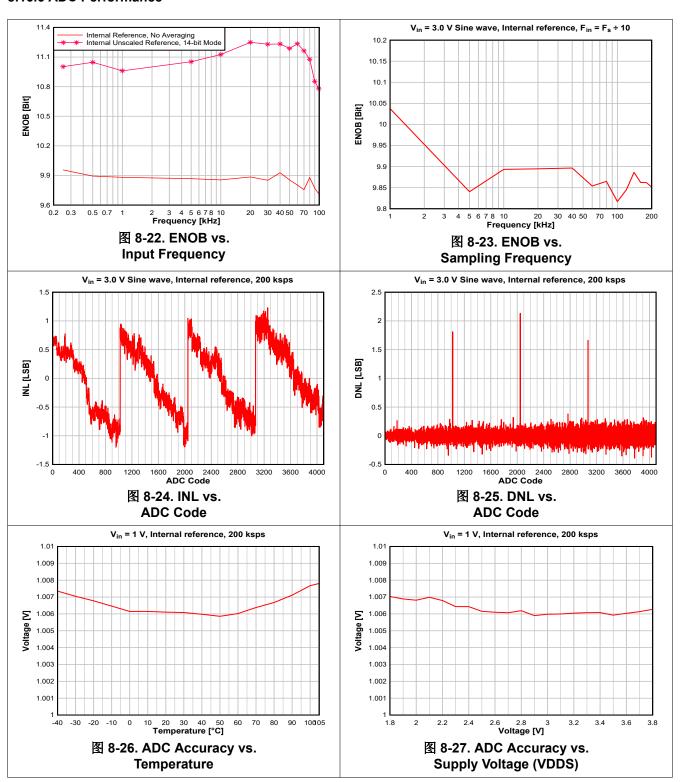
www.ti.com.cn


表 8-1 shows typical TX current and output power for different output power settings. 表 8-1. Typical TX Current and Output Power


	CC1314R10 at 868 MHz, VDDS = 3.6 V (Measured on CC1312-R7EM-XD7793)									
txPower	TX Power Setting (SmartRF Studio)	Typical Output Power [dBm]	Typical Current Consumption [mA]							
0x013F	14	14.6	25							
0xB224	12.5	13.0	18.3							
0x895E	12	12.6	17.4							
0x669A	11	11.6	15.8							
0x3E92	10	10.7	14.2							
0x3EDC	9	9.7	13.3							
0x2CD8	8	9.1	12.4							
0x26D4	7	8.2	11.5							
0x20D1	6	7.2	10.6							
0x1CCE	5	5.9	9.8							
0x16CD	4	5.4	9.4							
0x14CB	3	4.1	8.8							
0x12CA	2	3.3	8.4							
0x12C9	1	2.5	8.0							
0x10C8	0	1.5	7.7							
0x0AC4	-5	-4.6	6.1							
0x0AC2	-10	-10.3	5.4							
0x06C1	-15	-14.8	5.0							
0x04C0	-20	-19.8	4.7							

ADVANCE INFORMATION


8.16.4 RX Performance



8.16.5 TX Performance

8.16.6 ADC Performance

9 Detailed Description

9.1 Overview

节 4 shows the core modules of the CC1314R10 device.

Throughout this section, see the Technical Reference Manual listed in Section 11.2 for more details.

9.2 System CPU

The CC1314R10 SimpleLink[™] Wireless MCU contains an Arm[®] Cortex[®]-M33 system CPU with TrustZone[®], which runs the application and the higher layers of radio protocol stacks.

The system CPU is the foundation of a high-performance, low-cost platform that meets the system requirements of minimal memory implementation, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

Its features include the following:

- ARMv8-M architecture with TrustZone[®] security extension optimized for small-footprint embedded applications
- Arm Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit Arm core in a compact memory size
- 8 regions of non-secure memory protected regions
- 8 regions of secure memory protected regions
- 4 regions of Security Attribute Unit (SAU)
- · Single-cycle multiply instruction and hardware divide
- · Digital-signal-processing (DSP) extension
- IEEE 754-compliant single-precision Floating Point Unit (FPU)
- · Fast code execution permits increased sleep mode time
- Deterministic, high-performance interrupt handling for time-critical applications
- Full debug with data matching for watchpoint generation
 - Data Watchpoint and Trace Unit (DWT)
 - JTAG Debug Access Port (DAP)
 - Flash Patch and Breakpoint Unit (FPB)
- Trace support reduces the number of pins required for debugging and tracing
 - Instrumentation Trace Macrocell Unit (ITM)
 - Trace Port Interface Unit (TPIU) with asynchronous serial wire output (SWO)
- Optimized for single-cycle flash memory access
- Tightly connected to 8 kB 4-way random replacement cache for minimal active power consumption and wait states

Product Folder Links: CC1314R10

- Ultra-low-power consumption with integrated sleep modes
- 48 MHz operation

9.3 Radio (RF Core)

The RF Core is a highly flexible and future proof radio module which contains an Arm Cortex-M0 processor that interfaces the analog RF and base-band circuitry, handles data to and from the system CPU side, and assembles the information bits in a given packet structure. The RF core offers a high level, command-based API to the main CPU that configurations and data are passed through. The Arm Cortex-M0 processor is not programmable by customers and is interfaced through the TI-provided RF driver that is included with the SimpleLink Software Development Kit (SDK).

The RF core can autonomously handle the time-critical aspects of the radio protocols, thus offloading the main CPU, which reduces power and leaves more resources for the user application. Several signals are also available to control external circuitry such as RF switches or range extenders autonomously.

The various physical layer radio formats are partly built as a software defined radio where the radio behavior is either defined by radio ROM contents or by non-ROM radio formats delivered in form of firmware patches with the SimpleLink SDKs. This allows the radio platform to be updated for support of future versions of standards even with over-the-air (OTA) updates while still using the same silicon.

备注

Not all combinations of features, frequencies, data rates, and modulation formats described in this chapter are supported. Over time, TI can enable new physical radio formats (PHYs) for the device and provides performance numbers for selected PHYs in the data sheet. Supported radio formats for a specific device, including optimized settings to use with the TI RF driver, are included in the SmartRF Studio tool with performance numbers of selected formats found in † 8.

Product Folder Links: CC1314R10

Submit Document Feedback

9.3.1 Proprietary Radio Formats

The CC1314R10 radio can support a wide range of physical radio formats through a set of hardware peripherals combined with firmware available in the device ROM, covering various customer needs for optimizing towards parameters such as speed or sensitivity. This allows great flexibility in tuning the radio both to work with legacy protocols as well as customizing the behavior for specific application needs.

表 9-1 gives a simplified overview of features of the various radio formats available in ROM. Other radio formats may be available in the form of radio firmware patches or programs through the Software Development Kit (SDK) and may combine features in a different manner, as well as add other features.

表 9-1. Feature Support

Facture Main 2 (C) FSV Mode Link Date Dates Low Date Dates Simple in LTM Long Dange										
Feature	Main 2-(G)FSK Mode	High Data Rates	Low Data Rates	SimpleLink™ Long Range						
Programmable preamble, sync word and CRC	Yes	Yes	Yes	No						
Programmable receive bandwidth	Yes	Yes	Yes (down to 4 kHz)	Yes						
Data / Symbol rate ⁽³⁾	20 to 1000 kbps	≤ 2 Msps	≤ 100 ksps	≤ 20 ksps						
Modulation format	2-(G)FSK	2-(G)FSK 4-(G)FSK	2-(G)FSK 4-(G)FSK SUN-O-QPSK	2-(G)FSK						
Dual Sync Word	Yes	Yes	No	No						
Carrier Sense (1) (2)	Yes	No	No	No						
Preamble Detection ⁽²⁾	Yes	Yes	Yes	No						
Data Whitening	Yes	Yes	Yes	Yes						
Digital RSSI	Yes	Yes	Yes	Yes						
CRC filtering	Yes	Yes	Yes	Yes						
Direct-sequence spread spectrum (DSSS)	No	No	No	1:2 1:4 1:8						
Forward error correction (FEC)	No	No	No	Yes						
Link Quality Indicator (LQI)	Yes	Yes	Yes	Yes						

⁽¹⁾ Carrier Sense can be used to implement HW-controlled listen-before-talk (LBT) and Clear Channel Assessment (CCA) for compliance with such requirements in regulatory standards. This is available through the CMD_PROP_CS radio API.

²⁾ Carrier Sense and Preamble Detection can be used to implement sniff modes where the radio is duty cycled to save power.

⁽³⁾ Data rates are only indicative. Data rates outside this range may also be supported. For some specific combinations of settings, a smaller range might be supported.

9.4 Memory

The up to 1024 kB nonvolatile (Flash) memory provides storage for code and data. The flash memory is insystem programmable and erasable. The last flash memory sector must contain a Customer Configuration section (CCFG) that is used by boot ROM and TI provided drivers to configure the device. This configuration is done through the ccfg.c source file that is included in all TI provided examples.

The ultra-low leakage system static RAM (SRAM) is split into up to eight 32 kB blocks and can be used for both storage of data and execution of code. Retention of SRAM contents in Standby power mode is enabled by default and included in Standby mode power consumption numbers. Parity checking for detection of bit errors in memory is built-in, which reduces chip-level soft errors and thereby increases reliability. Parity can be disabled for an additional 32 kB which can be allocated for general purpose SRAM. System SRAM is always initialized to zeroes upon code execution from boot.

To improve code execution speed and lower power when executing code from nonvolatile memory, a 4-way nonassociative 8 kB cache is enabled by default to cache and prefetch instructions read by the system CPU. The cache can be used as a general-purpose RAM by enabling this feature in the Customer Configuration Area (CCFG).

There is a 4 kB ultra-low leakage SRAM available for use with the Sensor Controller Engine which is typically used for storing Sensor Controller programs, data and configuration parameters. This RAM is also accessible by the system CPU. The Sensor Controller RAM is not cleared to zeroes between system resets.

The ROM includes a TI-RTOS kernel and low-level drivers, as well as significant parts of selected radio stacks, which frees up flash memory for the application. The ROM also contains a serial (SPI and UART) bootloader that can be used for initial programming of the device.

Product Folder Links: CC1314R10

Submit Document Feedback

9.5 Sensor Controller

The Sensor Controller contains circuitry that can be selectively enabled in both Standby and Active power modes. The peripherals in this domain can be controlled by the Sensor Controller Engine, which is a proprietary power-optimized CPU. This CPU can read and monitor sensors or perform other tasks autonomously; thereby significantly reducing power consumption and offloading the system CPU.

The Sensor Controller Engine is user programmable with a simple programming language that has syntax similar to C. This programmability allows for sensor polling and other tasks to be specified as sequential algorithms rather than static configuration of complex peripheral modules, timers, DMA, register programmable state machines, or event routing.

The main advantages are:

- Flexibility data can be read and processed in unlimited manners while still ensuring ultra-low power
- 2 MHz low-power mode enables lowest possible handling of digital sensors
- Dynamic reuse of hardware resources
- 40-bit accumulator supporting multiplication, addition and shift
- · Observability and debugging options

Sensor Controller Studio is used to write, test, and debug code for the Sensor Controller. The tool produces C driver source code, which the System CPU application uses to control and exchange data with the Sensor Controller. Typical use cases may be (but are not limited to) the following:

- Read analog sensors using integrated ADC or comparators
- Interface digital sensors using GPIOs, SPI, UART, or I²C (UART and I²C are bit-banged)
- Capacitive sensing
- Waveform generation
- Very low-power pulse counting (flow metering)
- Key scan

The peripherals in the Sensor Controller include the following:

- The low-power clocked comparator can be used to wake the system CPU from any state in which the comparator is active. A configurable internal reference DAC can be used in conjunction with the comparator. The output of the comparator can also be used to trigger an interrupt or the ADC.
- Capacitive sensing functionality is implemented through the use of a constant current source, a time-to-digital
 converter, and a comparator. The continuous time comparator in this block can also be used as a higheraccuracy alternative to the low-power clocked comparator. The Sensor Controller takes care of baseline
 tracking, hysteresis, filtering, and other related functions when these modules are used for capacitive
 sensing.
- The ADC is a 12-bit 200 ksps ADC with eight inputs and a built-in voltage reference. The ADC can be triggered by many different sources including timers, I/O pins, software, and comparators.
- The analog modules can connect to up to eight different GPIOs
- Dedicated SPI master with up to 6 MHz clock speed

The peripherals in the Sensor Controller can also be controlled from the main application processor.

9.6 Cryptography

The CC1314R10 device comes with a wide set of modern cryptography-related hardware accelerators, drastically reducing code footprint and execution time for cryptographic operations. It also has the benefit of being lower power and improves availability and responsiveness of the system because the cryptography operations runs in a background hardware thread.

Together with a large selection of open-source cryptography libraries provided with the Software Development Kit (SDK), this allows for secure and future proof IoT applications to be easily built on top of the platform. The hardware accelerator modules are:

- True Random Number Generator (TRNG) module provides a true, nondeterministic noise source for the purpose of generating keys, initialization vectors (IVs), and other random number requirements. The TRNG is built on 24 ring oscillators that create unpredictable output to feed a complex nonlinear-combinatorial circuit
- Secure Hash Algorithm 2 (SHA-2) with support for SHA224, SHA256, SHA384, and SHA512
- · Advanced Encryption Standard (AES) with 128, 192 and 256 bit key lengths
- Public Key Accelerator Hardware accelerator supporting mathematical operations needed for elliptic curves up to 512 bits

Through use of these modules and the TI provided cryptography drivers, the following capabilities are available for an application or stack:

- Key Agreement Schemes
 - Elliptic Curve Diffie Hellman with static or ephemeral keys (ECDH and ECDHE)
 - Elliptic curve Password Authenticated Key Exchange by Juggling (ECJ-PAKE)
- Signature Processing
 - Elliptic curve Diffie-Hellman Digital Signature Algorithm (ECDSA)
 - Edwards-curve Digital Signature Algorithm (EdDSA)
- Curve Support
 - Short Weierstrass form, such as:
 - NIST-P224 (secp224r1), NIST-P256 (secp256r1), NIST-P384 (secp384r1), NIST-P521 (secp521r1)
 - Brainpool-256R1, Brainpool-384R1, Brainpool-512R1
 - Montgomery form, such as:
 - Curve25519
 - Twisted Edwards form, such as:
 - Ed25519
- Message Authentication Codes
 - AEC CBC-MAC
 - AES CMAC
 - HMAC with SHA224, SHA256, SHA384 and SHA512
- · Block cipher mode of operation
 - AES CCM and AES CCM-Star
 - AES GCM
 - AES ECB
 - AES CBC
 - AES CTR
- Hash Algorithm
 - SHA224
 - SHA256
 - SHA384
 - SHA512
- True random number generation

Submit Document Feedback

Product Folder Links: CC1314R10

Other capabilities, such as RSA encryption and signatures (using keys as large as 2048 bits) as well as other ECC curves such as Curve1174, can be implemented using the provided public key accelerator but are not part of the TI SimpleLink SDK for the CC1314R10 device.

9.7 Timers

A large selection of timers are available as part of the CC1314R10 device. These timers are:

Real-Time Clock (RTC)

A 70-bit 3-channel timer running on the 32 kHz low frequency system clock (SCLK_LF) This timer is available in all power modes except Shutdown. The timer can be calibrated to compensate for frequency drift when using the LF RCOSC as the low frequency system clock. If an external LF clock with frequency different from 32.768 kHz is used, the RTC tick speed can be adjusted to compensate for this. When using TI-RTOS, the RTC is used as the base timer in the operating system and should thus only be accessed through the kernel APIs such as the Clock module. The real time clock can also be read by the Sensor Controller Engine to timestamp sensor data and also has dedicated capture channels. By default, the RTC halts when a debugger halts the device.

General Purpose Timers (GPTIMER)

The four flexible GPTIMERs can be used as either 4× 32 bit timers or 8× 16 bit timers, all running on up to 48 MHz. Each of the 16- or 32-bit timers support a wide range of features such as one-shot or periodic counting, pulse width modulation (PWM), time counting between edges and edge counting. The inputs and outputs of the timer are connected to the device event fabric, which allows the timers to interact with signals such as GPIO inputs, other timers, DMA and ADC. The GPTIMERs are available in Active and Idle power modes.

Sensor Controller Timers

The Sensor Controller contains 3 timers:

AUX Timer 0 and 1 are 16-bit timers with a 2^N prescaler. Timers can either increment on a clock or on each edge of a selected tick source. Both one-shot and periodical timer modes are available.

AUX Timer 2 is a 16-bit timer that can operate at 24 MHz, 2 MHz or 32 kHz independent of the Sensor Controller functionality. There are 4 capture or compare channels, which can be operated in one-shot or periodical modes. The timer can be used to generate events for the Sensor Controller Engine or the ADC, as well as for PWM output or waveform generation.

Radio Timer

A multichannel 32-bit timer running at 4 MHz is available as part of the device radio. The radio timer is typically used as the timing base in wireless network communication using the 32-bit timing word as the network time. The radio timer is synchronized with the RTC by using a dedicated radio API when the device radio is turned on or off. This ensures that for a network stack, the radio timer seems to always be running when the radio is enabled. The radio timer is in most cases used indirectly through the trigger time fields in the radio APIs and should only be used when running the accurate 48 MHz high frequency crystal is the source of SCLK HF.

Watchdog timer

The watchdog timer is used to regain control if the system operates incorrectly due to software errors. It is typically used to generate an interrupt and reset the device for the case where periodic monitoring of the system components and tasks fails to verify proper functionality. The watchdog timer runs on a 1.5 MHz clock rate and cannot be stopped once enabled. The watchdog timer continues to run in Standby power mode but pauses when a debugger halts the device.

Always On Watchdog Timer (AON_WDT)

The Always On Watchdog Timer is used during standby to regain control when the system has failed due to a software error or failure of an external device to respond in the expected way. It generates a reset when its configured time-out counter reaches zero and cannot be stopped once started, unless by asserting a device reset. The Always-on watchdog timer runs in Standby power mode and may pause when a debugger halts the device.

Submit Document Feedback

9.8 Serial Peripherals and I/O

The SPI interface provides a standardized synchronous serial interface to communicate with devices compatible with SPI (3 and 4 wire), MICROWIRE and TI Synchronous Serial Format. The SPIs support master/slave operation up to 12 MHz, programmable clock bit rate with prescaler, as well as configurable phase and polarity.

The UART interface implements universal asynchronous receiver and transmitter functions. The UART supports flexible baud-rate generation up to a maximum of 3 Mbps with FIFO, multiple data sizes, stop and parity bits as well as hardware handshake.

The I²S interface provides a standardized interface to exchange digital audio with devices compatible with this standard, including ADCs, DACs and CODECs. The I²S can also receive pulse-density modulation (PDM) data from devices such as digital microphones and perform conversion to PCM data.

The I²C interface enables low speed serial communications with devices compatible with the I²C standard. The I²C interface can handle both standard (100 kHz) and fast (400 kHz) speeds, as well as four modes of operation: master transmit/receive and slave transmit/receive.

The I/O controller (IOC) controls the digital I/O pins and contains multiplexer circuitry to allow a set of peripherals to be assigned to I/O pins in a flexible manner. All digital I/Os are interrupt and wake-up capable, have a programmable pullup and pulldown function, and can generate an interrupt on a negative or positive edge (configurable). When configured as an output, pins can function as either push-pull or open-drain. Five GPIOs have high-drive capabilities, which are marked in **bold** in † 7. All digital peripherals can be connected to any digital pin on the device.

9.9 Battery and Temperature Monitor

A combined temperature and battery voltage monitor is available in the CC1314R10 device. The battery and temperature monitor allows an application to continuously monitor on-chip temperature and supply voltage and respond to changes in environmental conditions as needed. The module contains window comparators to interrupt the system CPU when temperature or supply voltage go outside defined windows. These events can also be used to wake up the device from Standby mode through the Always-On (AON) event fabric.

9.10 µDMA

The device includes a direct memory access (μ DMA) controller. The μ DMA controller provides a way to offload data-transfer tasks from the system CPU, thus allowing for more efficient use of the processor and the available bus bandwidth. The μ DMA controller can perform a transfer between memory and peripherals. The μ DMA controller has dedicated channels for each supported on-chip module and can be programmed to automatically perform transfers between peripherals and memory when the peripheral is ready to transfer more data.

Some features of the µDMA controller include the following (this is not an exhaustive list):

- Highly flexible and configurable channel operation of up to 32 channels
- Transfer modes: memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-peripheral
- · Data sizes of 8, 16, and 32 bits
- · Ping-pong mode for continuous streaming of data

9.11 Debug

The debug subsystem implements two IEEE standards for debug and test purposes:

IEEE 1149.7 Class 4: Reduced-pin and Enhanced-functionality Test Access Port and Boundary-scan Architecture. This is known by the acronym cJTAG (compact JTAG) and this device uses only two pins to communicate to the target: TMS (JTAG TMSC) and TCK (JTAG TCKC). This is the default mode of operation.

IEEE standard 1149.1: Test Access Port and Boundary Scan Architecture Test Access Port (TAP). This standard is known by the acronym JTAG and this device uses four pins to communicate to the target: TMS (JTAG_TMSC), TCK (JTAG_TCKC), TDI (JTAG_TDI) and TDO (JTAG_TDO).

Product Folder Links: CC1314R10

The debug subsystem also implements a user-configurable firewall to control unauthorized access to debug/test ports.

9.12 Power Management

To minimize power consumption, the CC1314R10 supports a number of power modes and power management features (see 表 9-2).

表 9-2. Power Modes

	SOFTV	RESET PIN				
MODE	ACTIVE	IDLE	STANDBY	SHUTDOWN	HELD	
CPU	Active Off		Off	Off	Off	
Flash	On	On Available Off Off		Off	Off	
SRAM	On	On	Retention	Off	Off	
Supply System	On	On	Duty Cycled	Off	Off	
Register and CPU retention	Full	Full	Partial	No	No	
SRAM retention	Full	Full	Full	No	No	
48 MHz high-speed clock (SCLK_HF)	XOSC_HF or RCOSC_HF	XOSC_HF or RCOSC_HF	Off	Off	Off	
2 MHz medium-speed clock (SCLK_MF)	RCOSC_MF	RCOSC_MF	Available	Off	Off	
32 kHz low-speed clock (SCLK_LF)	XOSC_LF or RCOSC_LF	XOSC_LF or RCOSC_LF	XOSC_LF or RCOSC_LF	Off	Off	
Peripherals	Available	Available	Off	Off	Off	
Sensor Controller	Available	Available	Available	Off	Off	
Wake-up on RTC	Available	Available	Available	Off	Off	
Wake-up on pin edge	Available	Available	Available	Available	Off	
Wake-up on reset pin	On	On	On	On	On	
Brownout detector (BOD)	On	On	Duty Cycled	Off	Off	
Power-on reset (POR)	On	On	On	Off	Off	
Watchdog timer (WDT)	Available	Available	Paused	Off	Off	
Always-on Watchdog timer (AON_WDT)	Available	Available	Available	Off	Off	

In **Active** mode, the application system CPU is actively executing code. Active mode provides normal operation of the processor and all of the peripherals that are currently enabled. The system clock can be any available clock source (see 表 9-2).

In **Idle** mode, all active peripherals can be clocked, but the Application CPU core and memory are not clocked and no code is executed. Any interrupt event brings the processor back into active mode.

In **Standby** mode, only the always-on (AON) domain is active. An external wake-up event, RTC event, or Sensor Controller event is required to bring the device back to active mode. MCU peripherals with retention do not need to be reconfigured when waking up again, and the CPU continues execution from where it went into standby mode. All GPIOs are latched in standby mode.

In **Shutdown** mode, the device is entirely turned off (including the AON domain and Sensor Controller), and the I/Os are latched with the value they had before entering shutdown mode. A change of state on any I/O pin defined as a *wake from shutdown pin* wakes up the device and functions as a reset trigger. The CPU can differentiate between reset in this way and reset-by-reset pin or power-on reset by reading the reset status register. The only state retained in this mode is the latched I/O state and the flash memory contents.

The Sensor Controller is an autonomous processor that can control the peripherals in the Sensor Controller independently of the system CPU. This means that the system CPU does not have to wake up, for example to perform an ADC sampling or poll a digital sensor over SPI, thus saving both current and wake-up time that would otherwise be wasted. The Sensor Controller Studio tool enables the user to program the Sensor Controller, control its peripherals, and wake up the system CPU as needed. All Sensor Controller peripherals can also be controlled by the system CPU.

备注

The power, RF and clock management for the CC1314R10 device require specific configuration and handling by software for optimized performance. This configuration and handling is implemented in the TI-provided drivers that are part of the CC1314R10 software development kit (SDK). Therefore, TI highly recommends using this software framework for all application development on the device. The complete SDK with TI-RTOS (optional), device drivers, and examples are offered free of charge in source code.

9.13 Clock Systems

The CC1314R10 device has several internal system clocks.

The 48 MHz SCLK_HF is used as the main system (MCU and peripherals) clock. This can be driven by the internal 48 MHz RC Oscillator (RCOSC_HF) or an external 48 MHz crystal (XOSC_HF). Radio operation requires an external 48 MHz crystal.

SCLK_MF is an internal 2 MHz clock that is used by the Sensor Controller in low-power mode and also for internal power management circuitry. The SCLK_MF clock is always driven by the internal 2 MHz RC Oscillator (RCOSC_MF).

SCLK_LF is the 32.768 kHz internal low-frequency system clock. It can be used by the Sensor Controller for ultra-low-power operation and is also used for the RTC and to synchronize the radio timer before or after Standby power mode. SCLK_LF can be driven by the internal 32.8 kHz RC Oscillator (RCOSC_LF), a 32.768 kHz watch-type crystal, or a clock input on any digital IO.

When using a crystal or the internal RC oscillator, the device can output the 32 kHz SCLK_LF signal to other devices, thereby reducing the overall system cost.

9.14 Network Processor

Depending on the product configuration, the CC1314R10 device can function as a wireless network processor (WNP - a device running the wireless protocol stack with the application running on a separate host MCU), or as a system-on-chip (SoC) with the application and protocol stack running on the system CPU inside the device.

In the first case, the external host MCU communicates with the device using SPI or UART. In the second case, the application must be written according to the application framework supplied with the wireless protocol stack.

Product Folder Links: CC1314R10

Submit Document Feedback

10 Application, Implementation, and Layout

各沖

Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

For general design guidelines and hardware configuration guidelines, refer to CC13xx/CC26xx Hardware Configuration and PCB Design Considerations Application Report.

10.1 Reference Designs

The following reference designs should be followed closely when implementing designs using the CC1314R10 device.

Special attention must be paid to RF component placement, decoupling capacitors and DCDC regulator components, as well as ground connections for all of these.

CC1312-R7EM-XD7793 Design Files The CC1312-R7EM-XD7793 reference design provides schematic, layout and production files for the characterization board used for deriving the performance number found in this document.

LP-EM-CC1314R10 Design Files

The CC1314R10 LaunchPad Design Files contain detailed schematics and layouts to build application specific boards using the CC1314R10 device.

Sub-1 GHz and 2.4 GHz Antenna Kit for LaunchPad™ Development Kit and SensorTag The antenna kit allows real-life testing to identify the optimal antenna for your application. The antenna kit includes 16 antennas for frequencies from 169 MHz to 2.4 GHz, including:

- PCB antennas
- Helical antennas
- Chip antennas
- Dual-band antennas for 868 MHz and 915 MHz combined with 2.4 GHz

The antenna kit includes a JSC cable to connect to the Wireless MCU LaunchPad Development Kits and SensorTags.

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

10.2 Junction Temperature Calculation

This section shows the different techniques for calculating the junction temperature under various operating conditions. For more details, see Semiconductor and IC Package Thermal Metrics.

There are three recommended ways to derive the junction temperature from other measured temperatures:

1. From package temperature:

$$T_I = \psi_{\rm IT} \times P + T_{\rm case} \tag{1}$$

2. From board temperature:

$$T_{J} = \psi_{JB} \times P + T_{board} \tag{2}$$

3. From ambient temperature:

$$T_I = R_{\Theta IA} \times P + T_A \tag{3}$$

P is the power dissipated from the device and can be calculated by multiplying current consumption with supply voltage. Thermal resistance coefficients are found in \ddagger 8.8.

For various application use cases current consumption for other modules may have to be added to calculate the appropriate power dissipation. For example, the MCU may be running simultaneously as the radio, peripheral modules may be enabled, etc. Typically, the easiest way to find the peak current consumption, and thus the peak power dissipation in the device, is to measure as described in Measuring CC13xx and CC26xx current consumption.

Submit Document Feedback

11 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed as follows.

11.1 Tools and Software

The CC1314R10 device is supported by a variety of software and hardware development tools.

Development Kit

CC1314R10 LaunchPad™ Development Kit

The CC1314R10 LaunchPad ™ Development Kit enables development of high-performance Sub-1 GHz wireless applications that benefit from low-power operation. The kit features the CC1314R10 Sub-1 GHz SimpleLink Wireless MCU. The kit works with the LaunchPad ecosystem, easily enabling additional functionality like sensors, display, and more.

LP-XDS110 LaunchPad™ Debug Probe

The LP-XDS110 LaunchPad™ Debug Probe enables development of high-performance wireless applications in the entire family of LP-EM LaunchPad™ development boards. Featuring a seamless connection with the new 20-pin LP-EM Debug connector, it supports not only multiple standards such as JTAG/cJTAG/SWD but also a UART backchannel for maximum debugging flexibility. It also features an Arm® 10-pin Debug connector to perform debugging in any custom board.

LP-XDS110ET LaunchPad™ Debug Probe

The LP-XDS110ET LaunchPad ™ Debug Probe enables development of high-performance wireless applications in the entire family of LP-EM LaunchPad ™ development boards. Featuring a seamless connection with the new 20-pin LP-EM Debug connector, it supports not only multiple standards such as JTAG/cJTAG/SWD but also a UART backchannel for maximum debugging flexibility. In addition, it also features an Arm® 10-pin Debug connector to perform debugging in any custom board. This Debug Probe also features the XDS110 EnergyTrace™ technology, which is a new method for measuring the current consumption that captures the complete operational profile of the wireless MCU.

TMDSEMU110-U Debug Probe

The TMDSEMU110-U Debug Probe enables development of high-performance wireless applications in the entire family of SimpleLink LaunchPad™ development boards. Featuring a convenient enclosure, which grants the proper mechanical robustness for field and production environments, it supports not only multiple standards such as JTAG/cJTAG/SWD but also a UART backchannel and four GPIOs for maximum debugging flexibility. In addition, the expansion connector allows using the TMDSEMU110-ETH add-on (sold separately), which adds the full featured XDS110 EnergyTrace™ technology with variable supply voltage from 1.8V to 3.6V and up to 800 mA of supply current. The XDS110 EnergyTrace™ technology is a new method for measuring the current consumption that captures the complete operational profile of the wireless MCU.

Software

SimpleLink™ LOWPOWER F2 SDK

The SimpleLink LOWPOWER F2 Software Development Kit (SDK) provides a complete package for the development of wireless applications on the CC13XX / CC26XX family of devices. The SDK includes a comprehensive software package for the CC1314R10 device, including the following protocol stacks:

- Bluetooth Low Energy 4 and 5.3
- Thread (based on OpenThread)
- TI Z-Stack (Zigbee 3.0)

- TI 15.4-Stack an IEEE 802.15.4-based star networking solution for Sub-1 GHz and 2.4 GHz
- EasyLink a large set of building blocks for building proprietary RF software stacks
- Multiprotocol support concurrent operation between stacks using the Dynamic Multiprotocol Manager (DMM)
- · TI Wi-SUN FAN Stack
- Matter

The SimpleLink LOWPOWER F2 SDK is part of TI's SimpleLink MCU platform, offering a single development environment that delivers flexible hardware, software and tool options for customers developing wired and wireless applications. For more information about the SimpleLink MCU Platform, visit ti.com/simplelink.

Development Tools

Code Composer Studio™ Integrated Development Environment (IDE)

Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through each step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse® software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers.

CCS has support for all SimpleLink Wireless MCUs and includes support for EnergyTrace[™] software (application energy usage profiling). A real-time object viewer plugin is available for TI-RTOS, part of the SimpleLink SDK.

Code Composer Studio is provided free of charge when used in conjunction with the XDS debuggers included on a LaunchPad Development Kit.

Code Composer Studio™ Cloud IDE

Code Composer Studio (CCS) Cloud is a web-based IDE that allows you to create, edit and build CCS and Energia™ projects. After you have successfully built your project, you can download and run on your connected LaunchPad. Basic debugging, including features like setting breakpoints and viewing variable values is now supported with CCS Cloud.

IAR Embedded Workbench® for Arm®

IAR Embedded Workbench[®] is a set of development tools for building and debugging embedded system applications using assembler, C and C++. It provides a completely integrated development environment that includes a project manager, editor, and build tools. IAR has support for all SimpleLink Wireless MCUs. It offers broad debugger support, including XDS110, IAR I-jet[™] and Segger J-Link[™]. A real-time object viewer plugin is available for TI-RTOS, part of the SimpleLink SDK. IAR is also supported out-of-the-box on most software examples provided as part of the SimpleLink SDK.

A 30-day evaluation or a 32 kB size-limited version is available through iar.com.

SmartRF™ Studio

SmartRF™ Studio is a Windows® application that can be used to evaluate and configure SimpleLink Wireless MCUs from Texas Instruments. The application will help designers of RF systems to easily evaluate the radio at an early stage in the design process. It is especially useful for generation of configuration register values and for practical testing and debugging of the RF system. SmartRF Studio can be used either as a standalone application or together with applicable evaluation boards or debug probes for the RF device. Features of the SmartRF Studio include:

Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated

- Link tests send and receive packets between nodes
- · Antenna and radiation tests set the radio in continuous wave TX and RX states
- Export radio configuration code for use with the TI SimpleLink SDK RF driver
- Custom GPIO configuration for signaling and control of external switches

Sensor Controller Studio

Sensor Controller Studio is used to write, test and debug code for the Sensor Controller peripheral. The tool generates a Sensor Controller Interface driver, which is a set of C source files that are compiled into the System CPU application. These source files also contain the Sensor Controller binary image and allow the System CPU application to control and exchange data with the Sensor Controller. Features of the Sensor Controller Studio include:

- Ready-to-use examples for several common use cases
- Full toolchain with built-in compiler and assembler for programming in a C-like programming language
- Provides rapid development by using the integrated sensor controller task testing and debugging functionality, including visualization of sensor data and verification of algorithms

UniFlash

UniFlash is a standalone tool used to program on-chip flash memory on TI MCUs. UniFlash has a GUI, command line, and scripting interface. UniFlash is available free of charge.

11.1.1 SimpleLink™ Microcontroller Platform

The SimpleLink microcontroller platform sets a new standard for developers with the broadest portfolio of wired and wireless Arm® MCUs (System-on-Chip) in a single software development environment. Delivering flexible hardware, software and tool options for your IoT applications. Invest once in the SimpleLink software development kit and use throughout your entire portfolio. Learn more on ti.com/simplelink.

11.2 Documentation Support

To receive notification of documentation updates on data sheets, errata, application notes and similar, navigate to the device product folder on ti.com/product/CC1314R10. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

The current documentation that describes the MCU, related peripherals, and other technical collateral is listed as follows.

TI Resource Explorer

TI Resource Explorer Software examples, libraries, executables, and documentation are available for your device and development board.

Errata

CC1314R10 Silicon Errata

The silicon errata describes the known exceptions to the functional specifications for each silicon revision of the device and description on how to recognize a device revision.

Application Reports

All application reports for the CC1314R10 device are found on the device product folder at: ti.com/product/ CC1314R10/technicaldocuments.

Technical Reference Manual (TRM)

CC13x4, CC26x4 SimpleLink™ Wireless MCU Technical Reference Manual

The TRM provides a detailed description of all modules and peripherals available in the device family.

11.3 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

11.4 Trademarks

SimpleLink[™], LaunchPad[™], EnergyTrace[™], Code Composer Studio[™], and TI E2E[™] are trademarks of Texas Instruments.

I-jet[™] is a trademark of IAR Systems AB.

J-Link™ is a trademark of SEGGER Microcontroller Systeme GmbH.

TrustZone®, Arm®, and Cortex® are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

CoreMark® is a registered trademark of Embedded Microprocessor Benchmark Consortium Corporation.

Wi-SUN® is a registered trademark of Wi-SUN Alliance.

mioty® is a registered trademark of Fraunhofer-Gesellschaft.

Wi-Fi® is a registered trademark of Wi-Fi Alliance.

Arm Thumb® are registered trademarks of Arm Limited (or its subsidiaries).

is a registered trademark of Arm Limited.

Eclipse® is a registered trademark of Eclipse Foundation.

IAR Embedded Workbench® is a registered trademark of IAR Systems AB.

Windows® is a registered trademark of Microsoft Corporation.

所有商标均为其各自所有者的财产。

11.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.6 术语表

TI术语表本本术语表列出并解释了术语、首字母缩略词和定义。

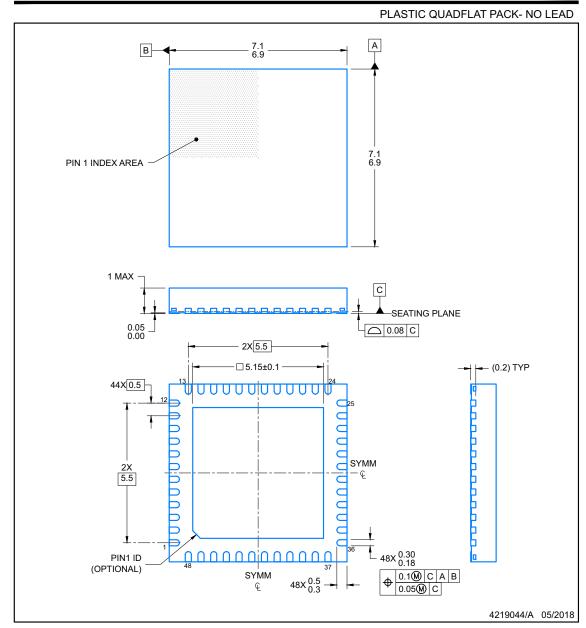
Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated

12 Mechanical, Packaging, and Orderable Information 12.1 Packaging Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

各注

The RSK (S-PQVFN-N64) package drawings in this datasheet are preliminary and will change for the production release of this IC. The change will be related to the exposed thermal pad size of the IC. The current sample has a 3.7 mm x 3.7 mm thermal ground pad. Production devices will have a 4.7 mm x 4.7mm thermal ground pad. It is recommended to design the thermal ground pad to be 4.7 mm x 4.7 mm, with a stencil opening of 3.7 mm x 3.7mm for pre-production devices. For production devices, only the stencil will need to change to 4.7 mm x 4.7 mm. No change to the PCB will be required.


Product Folder Links: CC1314R10

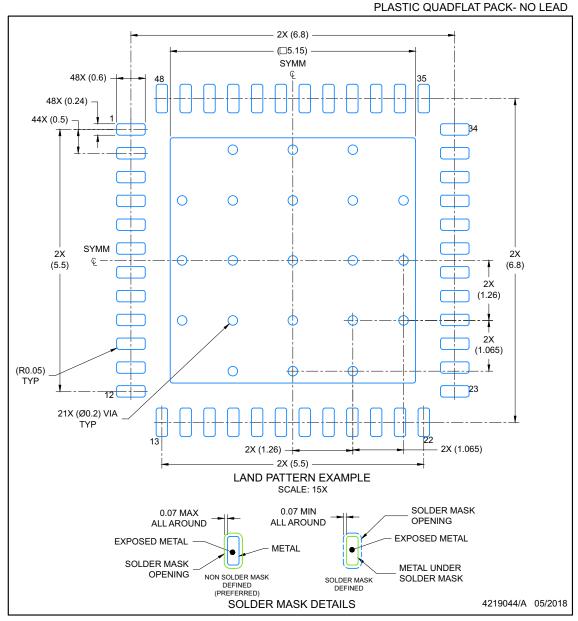
PACKAGE OUTLINE

RGZ0048A

VQFN - 1 mm max height

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.


Submit Document Feedback

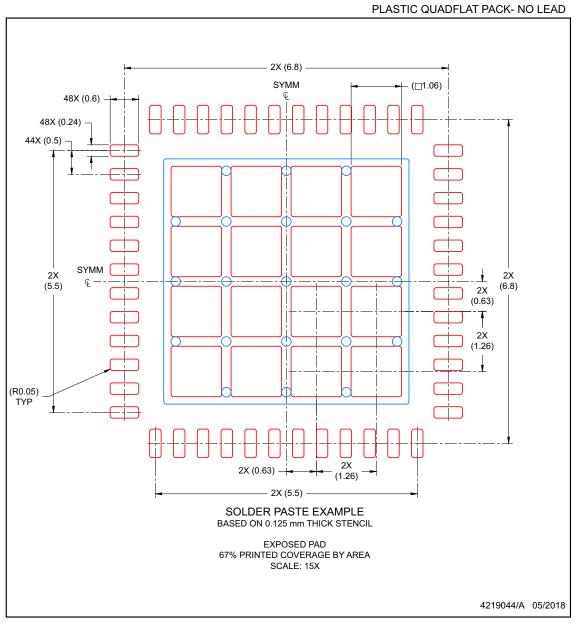
EXAMPLE BOARD LAYOUT

RGZ0048A

VQFN - 1 mm max height

NOTES: (continued)

- This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

RGZ0048A

VQFN - 1 mm max height

NOTES: (continued)

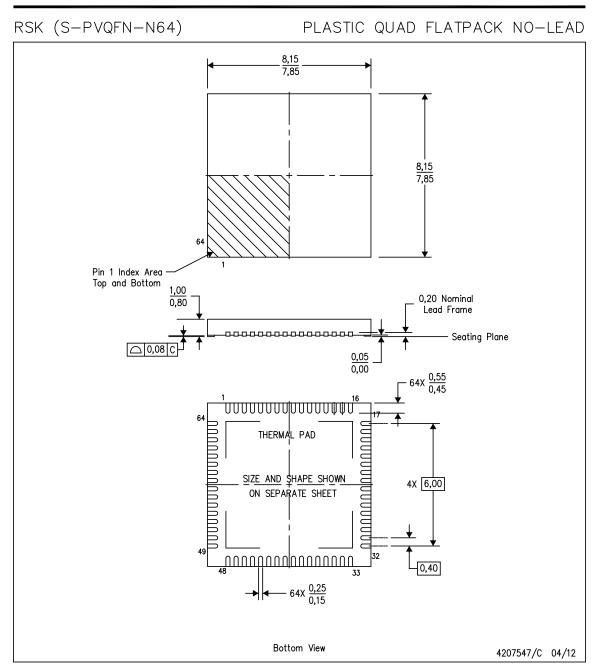
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

Submit Document Feedback

LAND PATTERN DATA

RSK (S-PVQFN-N64) PLASTIC QUAD FLATPACK NO-LEAD Example Stencil Design Example Board Layout 0.125 Thick Stencil or Thinner (Note D) -l I---60x0,40 -60x0,4064x 0,2 0 0 8,75 -0,30 8,8 0 0 0 3,70 6,95 0 0 0 6,9 1,50 0 8.75 (65% Printed Solder Coverage by Area) 8,8 Example Non Solder Mask Defined Pad Example Via Layout Design Via layout may vary depending on layout constraints (Note C, E) Example 12x1,0 Solder Mask Opening (Note E) P -0,95 0 0 0 12x1,0 Example 0 0 Pad Geometry -0,200,05 16xø0,20 All Around

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com www.ti.com.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for any larger diameter vias placed in the thermal pad.

4211472-3/D 08/14

MECHANICAL DATA

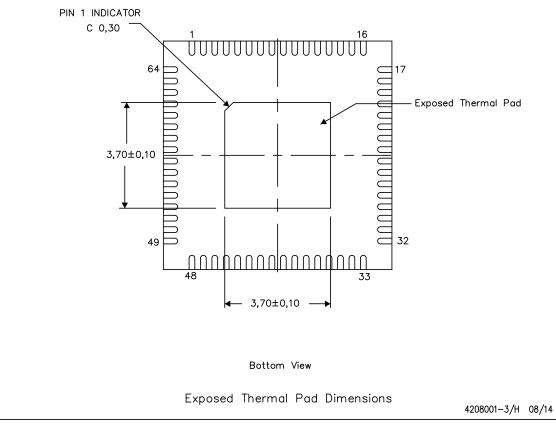
NOTES: A. B. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5—1994.

- This drawing is subject to change without notice. QFN (Quad Flatpack No-Lead) Package configuration. The package thermal pad must be soldered to the board for thermal and mechanical performance.
- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

Submit Document Feedback

THERMAL PAD MECHANICAL DATA

RSK (S-PVQFN-N64)


PLASTIC QUAD FLATPACK NO-LEAD

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

NOTE: A. All linear dimensions are in millimeters

Product Folder Links: CC1314R10

www.ti.com 28-Jun-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
XCC1314R106T0RGZ	ACTIVE	VQFN	RGZ	48	260	TBD	Call TI	Call TI	-40 to 105		Samples
XCC1314R106T0RSK	ACTIVE	VQFN	RSK	64	4000	TBD	Call TI	Call TI	-40 to 105		Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

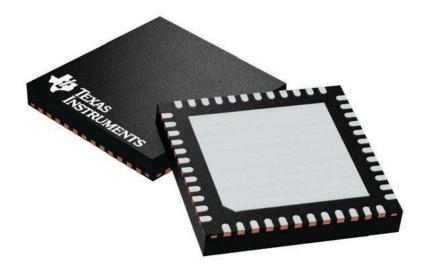
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

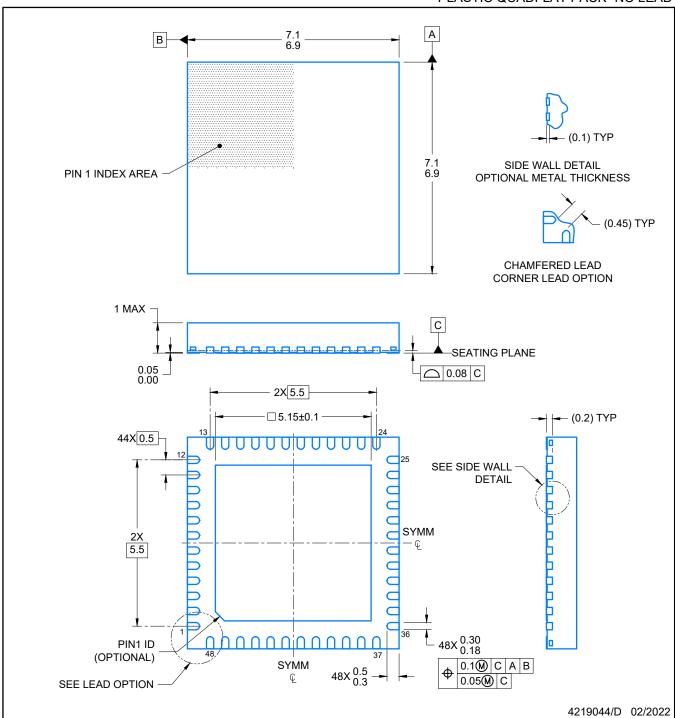


PACKAGE OPTION ADDENDUM

www.ti.com 28-Jun-2023

7 x 7, 0.5 mm pitch

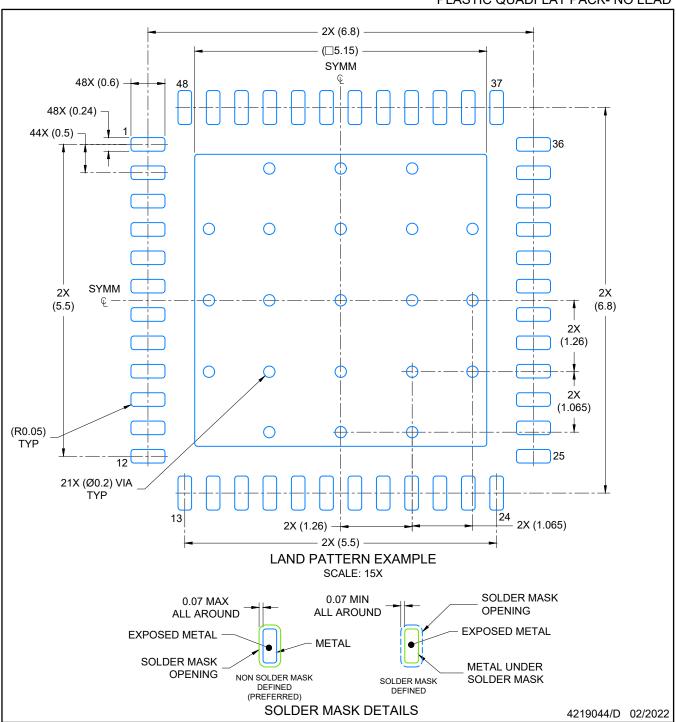
PLASTIC QUADFLAT PACK- NO LEAD



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224671/A

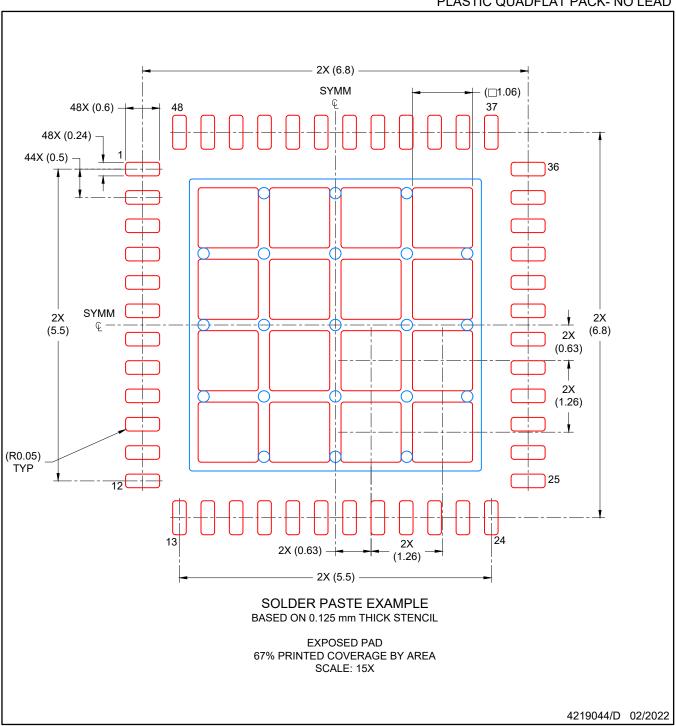
PLASTIC QUADFLAT PACK- NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

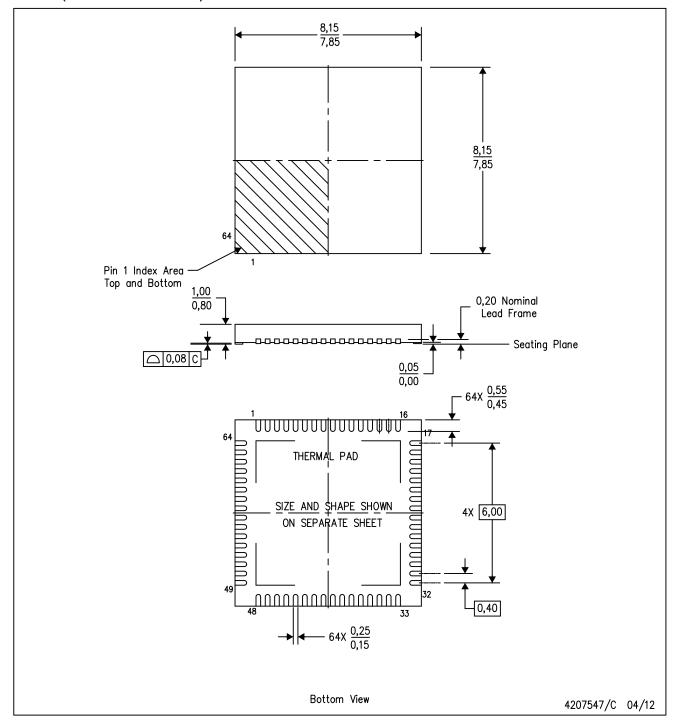
PLASTIC QUADFLAT PACK- NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUADFLAT PACK- NO LEAD


NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

RSK (S-PVQFN-N64)

PLASTIC QUAD FLATPACK NO-LEAD

NOTES: All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5—1994.

- This drawing is subject to change without notice.
- QFN (Quad Flatpack No-Lead) Package configuration.
 The package thermal pad must be soldered to the board for thermal and mechanical performance.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司