具有 LVDS，JESD 输出的 ADS52J90 10 位， 12 位， 14 位多通道低功耗高速 ADC

1 特性
－ 16 通道 ADC，可配置为转换
8，16或32路输入

- 10 位， 12 位和 14 位三种分辨率模式
- 最大 ADC 转换速率：
- 10 位模式下为 100 MSPS
- 12 位模式下为 80MSPS
- 14 位模式下为 65MSPS
- 16 个 ADC 经配置可进行下列转换：
- 8 个输入，采样率为 ADC 转换速率的 2 倍
－ 16 个输入，采样率与 ADC 转换速率相同
－ 32 个输入，采样率为
ADC 转换速率的一半
－支持 10／12／14／16 倍串行化的低压差分信令（LVDS）输出
- 5Gbps JESD 接口：
- 在 16 输入和 32 输入模式下受支持
- JESD204B子类0，1和2
- 每条 JESD 信道包含2，4或8条通道
- 可选的数字 I－Q 解调器（1）
- 电源： $1.2 \mathrm{~V}, ~ 1.8 \mathrm{~V}$
- $2 \mathrm{~V}_{\mathrm{PP}}$ 差分输入， 0.8 V 共模
- 差分或单端输入时钟
- 信噪比（SNR）：
- 10 位模式下为 61 dBFS
- 12 位模式下为 70 dBFS
- 14 位模式下为 73.5 dBFS
- 100MSPS 转换速率下的功耗： $41 \mathrm{~mW} /$ 通道
- 封装：NFBGA－198（ $9 \mathrm{~mm} \times 15 \mathrm{~mm}$ ）
- 无铅（符合 RoHS 标准）绿色

2 应用

- 超声波成像
- 便携式仪表
- 声纳和雷达
- 高速多通道数据采集

3 说明

ADS52J90 是一款低功耗，高性能，16 通道的模数转换器（ADC）。每个 ADC 在 10 位模式下的转换速率最高可达 100MSPS。ADC 分辨率越高，最高转换速率越低。

该器件可配置为接受 8，16或32个输入。在 32 位模式下，每个 ADC 以值为 ADC 转换速率一半的有效采样率对两个不同输入交替进行采样并转换。在 8 位输入模式下，两个 ADC 以交错方式对同一输入进行转换，这种情况下的有效采样率为 ADC 转换速率的 2倍。ADC 设计为根据转换速率调整其功耗。

器件信息		
器件型号	封装	封装尺寸（标称值）
ADS52J90	NFBGA（198）	$9.00 \mathrm{~mm} \times 15.00 \mathrm{~mm}$

（1）如需了解所有可用封装，请参阅数据表末尾的可订购产品附录。

（1）本文档中未详细介绍。如需详细信息，请联系工厂。

目录

1 特性 1
2 应用 1
3 说明 1
4 修订历史记录 2
5 说明（续） 4
6 Pin Configuration and Functions 5
7 Specifications 9
7．1 Absolute Maximum Ratings 9
7．2 ESD Ratings 9
7．3 Recommended Operating Conditions 10
7．4 Thermal Information 10
7．5 Electrical Characteristics． 11
7．6 Digital Characteristics 13
7．7 Timing Requirements：Signal Chain 14
7．8 Timing Requirements：JESD Interface 15
7．9 Timing Requirements：Serial Interface 15
7．10 Typical Characteristics 17
7．11 Typical Characteristics：JESD Interface． 24
7．12 Typical Characteristics：Contour Plots 26
8 Detailed Description 28
8．1 Overview 28
8．2 Functional Block Diagrams 28
8．3 Feature Description 29
8．4 Device Functional Modes 73
8．5 Programming． 76
9 Application and Implementation 77
9．1 Application Information 77
9．2 Typical Application 78
9．3 Do＇s and Don＇ts 90
10 Power Supply Recommendations 90
10．1 Power Sequencing and Initialization 90
11 Layout． 92
11．1 Power Supply，Grounding，and Bypassing 92
11．2 Layout Guidelines 92
11．3 Layout Example 93
12 Register Map 94
12．1 ADC Registers 94
12．2 JESD Serial Interface Registers 134
13 器件和文档支持 149
13.1 文档支持 149
13.2 社区资源 149
13.3 商标 149
13.4 静电放电警告 149
13.5 术语表 149
14 机械，封装和可订购信息 150

4 修订历史记录

Changes from Revision B（August 2015）to Revision C Page
－已更改 HPF＿ROUND＿ENABLE register bit（register 15，bit 5）to HPF＿ROUND＿EN＿CH1－8 and HPF＿ROUND＿EN＿CH9－16 bits in last paragraph of Digital HPF section 40
－已更改 Masking of the Various Reset Operations Resulting from SYNC～or SYSREF table 59
－已添加 Interfacing SYNC～and SYSREF Between the FPGA and ADCs section 65
－已更改 Mapping of Analog Inputs to LVDS Outputs（8－Input Mode，1X Data Rate）table 84
－已更改 Mapping of Analog Inputs to LVDS Outputs（8－Input Mode，2X Data Rate）table 85
－已更改 description for the value 001 in Pattern Mode Bit Description table． 99
－已更改 bit 5 from HPF＿ROUND＿EN to HPF＿ROUND＿EN＿CH1－8 in Register 15 109
－已更改 bit 5 from 0 to HPF＿ROUND＿EN＿CH9－16 in Register 2Dh 123
－已更改 description for JESD＿RESET1 in Register 70 135
－已更改 description of JESD＿RESET2 and JESD＿RESET3 in Register 74 137
Changes from Revision A（June 2015）to Revision B Page
－已更改文档标题以包含 LVDS 和 JESD 输出 1
－已添加 JESD 接口 可选解调器和 特性 要点 1
－更改简化原理图 1
－已添加 JESD 接口信息至说明 部分中添加了＂概述＂部分 4
－Added footnote 1 to Pin Functions table 6
－Changed description of SPI＿DIG＿EN pin in Pin Functions table 8
－Changed title of Current Consumption with LVDS Interface Enabled section of Electrical Characteristics table 12
－Changed Current Consumption with JESD Interface Enabled section of Electrical Characteristics table． 12
－Added SPI＿DIG＿EN to Digital Inputs section title of Digital Characteristics table 13
－Changed $\mathrm{V}_{\text {Oc－cml }}$ parameter name in JESD Interface Timing Requirements table． 15
－Added 图 47 25
－Added LVDS，JESD discussion to second paragraph of Overview section 51
－添加了社区资源部分 149
Changes from Original（May 2015）to Revision A Page
－已投入量产 1－已更改 Circuit to Level－Shift the Common－Mode Voltage From 1.2 V at the Driver Output to 0.7 V at the ADC Inputfigure65
－已更改 AC－Coupling Scheme for SYSREF figure 66

ADS52J90

www．ti．com．cn

5 说明（续）

ADC 输出会进行串行化，并与帧时钟和高速位时钟一起通过低压差分信令（LVDS）接口输出。
该器件还具有一个可选的 JESD204B 接口，同时可在 16 输入和 32 输入模式下工作。该接口的运行速率最高可达 5Gbps。

ADS52J90 采用间距为 0.8 mm 的 $9 \mathrm{~mm} \times 15 \mathrm{~mm}$ NFBGA－198 封装，额定工作温度范围为 $-40^{\circ} \mathrm{C}$ 至 $+85^{\circ} \mathrm{C}$ 。

ADS52J90
www.ti.com.cn

6 Pin Configuration and Functions

	ZZE Package NFBGA-198 (15 mm $\times 9 \mathrm{~mm}$) Top View										
	1	2	3	4	5	6	7	8	9	10	11
A	INM2	INP2	INP1	AVDD_1P8	SDIN	RESET	DVDD_1P2	DVSS	CML1_OUTP	CML1_OUTM	CML2_OUTP
B	INM3	INP3	INM1	AVSS	SEN	SPI_DIG_EN	SCLK	DVDD_1P2	DOUTP1	DOUTM1	CML2_OUTM
C	INM5	INP5	INP4	AVSS	SDOUT	PDN_FAST	PDN_GBL	DVDD_1P2	DOUTP2	DOUTM2	CML3_OUTP
D	INM6	INP6	INM4	AVSS	NC	TX_TRIG	DVSS	DVDD_1P2	DOUTP3	DOUTM3	CML3_OUTM
E	INM7	INP7	INM8	INP8	NC	AVDD_1P8	DVSS	DVDD_1P8	DOUTP4	DOUTM4	CML4_OUTP
F	INM9	INP9	INM10	INP10	VCM	AVDD_1P8	DVDD_1P2	DVDD_1P8	DOUTP5	DOUTM5	CML4_OUTM
G	INM11	INP11	INM12	INP12	AVDD_1P8	AVDD_1P8	DVDD_1P2	DVDD_1P8	DOUTP6	DOUTM6	DOUTM8
H	INM13	INP13	INM14	INP14	AVSS	AVSS	DVSS	DVSS	DOUTP7	DOUTM7	DOUTP8
	INM15	INP15	INM16	INP16	AVSS	AVSS	DVSS	DVSS	FCLKP	DVDD_1P8	DCLKP
k	INM17	INP17	INM18	INP18	AVSS	AVSS	DVSS	DVSS	FCLKM	DVSS	DCLKM
	INM19	INP19	INM20	INP20	AVSS	AVSS	DVSS	DVSS	DOUTP10	DOUTM10	DOUTP9
M	INM21	INP21	INM22	INP22	AVDD_1P8	AVDD_1P8	DVDD_1P2	DVDD_1P8	DOUTP11	DOUTM11	DOUTM9
N	INM23	INP23	INM24	INP24	NC	AVDD_1P8	DVDD_1P2	DVDD_1P8	DOUTP12	DOUTM12	CML8_OUTM
	INM25	INP25	INM26	INP26	NC	AVDD_1P8	SYNCM	DVDD_1P8	DOUTP13	DOUTM13	CML8_OUTP
R	INM27	INP27	INM28	AVSS	AVSS	DVSS	SYNCP SERDES	DVDD_1P2	DOUTP14	DOUTM14	CML7_OUTM
T	INM29	INP29	INP28	AVSS	AVSS	DVDD_1P2	SYSREFM SERDES	DVDD_1P2	DOUTP15	DOUTM15	CML7_OUTP
U	INM30	INP30	INM32	AVSS	CLKM	AVSS	SYSREFP SERDES	DVDD_1P2	DOUTP16	DOUTM16	CML6_OUTM
v	INM31	INP31	INP32	AVDD_1P8	CLKP	AVSS	DVDD_1P2	DVSS	CML5_OUTP	CML5_OUTM	CML6_OUTP

Pin Functions ${ }^{(1)}$			
PIN		1/0	DESCRIPTION
NAME	NO.		
AVDD_1P8	$\begin{gathered} \text { A4, E6, F6, G5, G6, M5, } \\ \text { M6, N6, P6, V4 } \end{gathered}$	P	1.8-V analog supply voltage
AVSS	B4, C4, D4, H5, H6, J5, J6, K5, K6, L5, L6, R4, R5, T4, T5, U4, U6, V6	G	Analog ground
CLKM	U5	1	Differential clock input pins. A single-ended clock is also supported. See the Clock Input section for further details.
CLKP	V5		
CML1_OUTM	A10	O	JESD output lane 1
CML1_OUTP	A9		
CML2_OUTM	B11	O	JESD output lane 2
CML2_OUTP	A11		
CML3_OUTM	D11	O	JESD output lane 3
CML3_OUTP	C11		
CML4_OUTM	F11	0	JESD output lane 4
CML4_OUTP	E11		
CML5_OUTM	V10	0	JESD output lane 5
CML5_OUTP	V9		
CML6_OUTM	U11	O	JESD output lane 6
CML6_OUTP	V11		
CML7_OUTM	R11	0	JESD output lane 7
CML7_OUTP	T11		
CML8_OUTM	N11	O	JESD output lane 8
CML8_OUTP	P11		
DCLKM	K11	0	LVDS bit clock output
DCLKP	J11		
DOUTM1	B10	0	LVDS data lane 1
DOUTP1	B9		
DOUTM2	C10	O	LVDS data lane 2
DOUTP2	C9		
DOUTM3	D10	0	LVDS data lane 3
DOUTP3	D9		
DOUTM4	E10	0	LVDS data lane 4
DOUTP4	E9		
DOUTM5	F10	0	LVDS data lane 5
DOUTP5	F9		
DOUTM6	G10	0	LVDS data lane 6
DOUTP6	G9		
DOUTM7	H10	0	LVDS data lane 7
DOUTP7	H9		
DOUTM8	G11	0	LVDS data lane 8
DOUTP8	H11		
DOUTM9	M11	O	LVDS data lane 9
DOUTP9	L11		
DOUTM10	L10	O	LVDS data lane 10
DOUTP10	L9		
DOUTM11	M10	O	LVDS data lane 11
DOUTP11	M9		
DOUTM12	N10	0	LVDS data lane 12
DOUTP12	N9		

(1) If the JESD interface is not used, then do not connect the CMLx, SYNCx, and SYSREFx pins. If the LVDS interface is not used, then do not connect DOUTx, DCLKx, and FCLKx.

ADS52J90
www．ti．com．cn
ZHCSDS3C－MAY 2015－REVISED APRIL 2018
Pin Functions ${ }^{(1)}$（continued）

PIN		1／0	DESCRIPTION
NAME	NO．		
DOUTM13	P10	O	LVDS data lane 13
DOUTP13	P9		
DOUTM14	R10	0	LVDS data lane 14
DOUTP14	R9		
DOUTM15	T10	O	LVDS data lane 15
DOUTP15	T9		
DOUTM16	U10	O	LVDS data lane 16
DOUTP16	U9		
DVDD＿1P2	$\begin{aligned} & \text { A7, B8, C8, D8, F7, G7, } \\ & \text { M7, N7, R8, T6, T8, U8, } \\ & \text { V7 } \end{aligned}$	P	1．2－V digital supply voltage
DVDD＿1P8	$\begin{gathered} \text { E8, F8, G8, J10, M8, N8, } \\ \text { P8 } \end{gathered}$	P	1．8－V digital supply voltage
DVSS	$\begin{gathered} \text { A8, D7, E7, H7, H8, J7, } \\ \text { J8, K7, K8, K10, L7, L8, } \\ \text { R6, V8 } \end{gathered}$	G	Digital ground
FCLKM	K9	O	LVDS frame clock output
FCLKP	J9		
INM1	B3	1	Differential analog input 1 pins；see 表 1 for mapping to external inputs in 8－，16－，and 32－input modes
INP1	A3		
INM2	A1	1	Differential analog input 2 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP2	A2		
INM3	B1	1	Differential analog input 3 pins；see 表 1 for mapping to external inputs in 8－，16－，and 32－input modes
INP3	B2		
INM4	D3	1	Differential analog input 4 pins；see 表 1 for mapping to external inputs in 8－，16－，and 32－input modes
INP4	C3		
INM5	C1	1	Differential analog input 5 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP5	C2		
INM6	D1	1	Differential analog input 6 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP6	D2		
INM7	E1	1	Differential analog input 7 pins；see 表 1 for mapping to external inputs in 8－，16－，and 32－input modes
INP7	E2		
INM8	E3	1	Differential analog input 8 pins；see 表 1 for mapping to external inputs in 8 －， 16 －，and 32－input modes
INP8	E4		
INM9	F1	1	Differential analog input 9 pins；see 表 1 for mapping to external inputs in 8－，16－，and 32－input modes
INP9	F2		
INM10	F3	1	Differential analog input 10 pins；see 表 1 for mapping to external inputs in $8-$－， 16 －，and 32－input modes
INP10	F4		
INM11	G1	1	Differential analog input 11 pins；see 表 1 for mapping to external inputs in 8－，16－，and 32－input modes
INP11	G2		
INM12	G3	1	Differential analog input 12 pins；see 表 1 for mapping to external inputs in $8-$－， 16 －，and 32－input modes
INP12	G4		
INM13	H1	1	Differential analog input 13 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP13	H2		
INM14	H3	1	Differential analog input 14 pins；see 表 1 for mapping to external inputs in 8－，16－，and 32－input modes
INP14	H4		
INM15	J1	I	Differential analog input 15 pins；see 表 1 for mapping to external inputs in 8－，16－，and 32－input modes
INP15	J2		
INM16	J3	I	Differential analog input 16 pins；see 表 1 for mapping to external inputs in 8－，16－，and 32－input modes
INP16	J4		
INM17	K1	I	Differential analog input 17 pins；see 表 1 for mapping to external inputs in 8 －， 16 －，and 32－input modes
INP17	K2		

Pin Functions ${ }^{(1)}$（continued）

PIN		1／0	DESCRIPTION
NAME	NO．		
INM18	K3	I	Differential analog input 18 pins；see 表 1 for mapping to external inputs in $8-, 16$－，and 32－input modes
INP18	K4		
INM19	L1	1	Differential analog input 19 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP19	L2		
INM20	L3	1	Differential analog input 20 pins；see 表 1 for mapping to external inputs in $8-, 16-$ ，and 32－input modes
INP20	L4		
INM21	M1	1	Differential analog input 21 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP21	M2		
INM22	M3	1	Differential analog input 22 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP22	M4		
INM23	N1	1	Differential analog input 23 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP23	N2		
INM24	N3	1	Differential analog input 24 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP24	N4		
INM25	P1	1	Differential analog input 25 pins；see 表 1 for mapping to external inputs in $8-, 16$－，and 32－input modes
INP25	P2		
INM26	P3	1	Differential analog input 26 pins；see 表 1 for mapping to external inputs in $8-, 16$－，and 32－input modes
INP26	P4		
INM27	R1	1	Differential analog input 27 pins；see 表 1 for mapping to external inputs in $8-, 16$－，and 32－input modes
INP27	R2		
INM28	R3	1	Differential analog input 28 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP28	T3		
INM29	T1	1	Differential analog input 29 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP29	T2		
INM30	U1	1	Differential analog input 30 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP30	U2		
INM31	V1	1	Differential analog input 31 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP31	V2		
INM32	U3	1	Differential analog input 32 pins；see 表 1 for mapping to external inputs in 8 －，16－，and 32－input modes
INP32	V3		
NC	D5，E5，N5，P5	－	Do not connect；leave floating．
PDN＿FAST	C6	1	Fast power－down control pin（active high）with an internal pulldown resistor of $20 \mathrm{k} \Omega$ ． For active high，a $1.8-\mathrm{V}$ logic level is recommended．
PDN＿GBL	C7	I	Global power－down control input（active high）with an internal pulldown resistor of 20 $\mathrm{k} \Omega$ ．For active high，a $1.8-\mathrm{V}$ logic level is recommended．
SPI＿DIG＿EN	B6	1	Reserved for digital functionality．This pin can be left floating or be connected to the $1.8-\mathrm{V}$ supply．This pin has an internal pullup resistor of $20 \mathrm{k} \Omega$ ．
RESET	A6	I	Hardware reset pin（active high）with an internal pulldown resistor of $20 \mathrm{k} \Omega$ ．For active high，a $1.8-\mathrm{V}$ logic level is recommended．
SCLK	B7	1	Serial interface clock input with an internal pulldown resistor of $20 \mathrm{k} \Omega$ ．For active high， a $1.8-\mathrm{V}$ logic level is recommended．
SDIN	A5	I	Serial interface data input with an internal pulldown resistor of $20 \mathrm{k} \Omega$ ．For active high，a $1.8-\mathrm{V}$ logic level is recommended．
SDOUT	C5	0	Serial interface data readout．High impedance when readout is disabled．1．8－V logic level is recommended．
SEN	B5	I	Serial interface enable with an internal pullup resistor of $20 \mathrm{k} \Omega$ ．1．8－V logic level is recommended．
TX＿TRIG	D6	1	1．8－V logic；a pulse on TX＿TRIG must be applied after power－up to ensure that all internal clock dividers are synchronized ${ }^{(2)}$ ．Has an internal pull－down resistor of $20 \mathrm{k} \Omega$ to ground．
SYNCM＿SERDES	P7	1	Frame synchronization input as per JESD204B standard
SYNCP＿SERDES	R7		

（2）See the Device Synchronization Using TX＿TRIG section for more details on synchronization using TX＿TRIG．

Pin Functions ${ }^{(1)}$ (continued)

PIN		I/O	DESCRIPTION		
NAME	NO.		Frame clock and local multiframe clock (LMFC) synchronization input as per JESD204B, subclass 1 standard		
SYSREFM_SERDES	T7	U7	O		Common-mode output pin for biasing analog input signals. Connect a 10- μ F capacitor
:---					
to ground.					

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

$\mathrm{V}_{(\text {(ESD })}$			Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ${ }^{(1)}$

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

ADS52J90

ZHCSDS3C -MAY 2015-REVISED APRIL 2018
www.ti.com.cn

7.3 Recommended Operating Conditions

	PARAMETER	TEST CONDITIONS	MIN	NOM	MAX	UNIT
TEMPERATURE						
$\mathrm{T}_{\text {A }}$	Ambient		-40		85	${ }^{\circ} \mathrm{C}$
SUPPLIES						
$\mathrm{V}_{(\text {(AVDD_1P8) }}$	1.8-V analog supply voltage		1.7	1.8	1.9	V
$\mathrm{V}_{\text {(DVDD_1P8) }}$	$1.8-\mathrm{V}$ digital supply voltage		1.7	1.8	1.9	V
$\mathrm{V}_{\text {(DVDD_1P2) }}$	1.2-V digital supply voltage		1.15	1.2	1.25	V
ANALOG INPUT						
$\mathrm{V}_{(\mathrm{IN} \times)}$	Voltage range at analog input pins		VCM - 0.5		$\mathrm{VCM}+0.5$	V
$\mathrm{V}_{\text {IN(CM) }}$	Input common-mode range at analog input pins		0.7	0.8	0.9	V
$\mathrm{V}_{\text {IN(FS }}$	Input differential full-scale voltage			2		V_{PP}
$\mathrm{F}_{\text {IN }}$	Analog input frequency range ${ }^{(1)}$		0		70	MHz
ANALOG OUTPUT						
$\mathrm{I}_{\text {(VCM) }}$	External loading on VCM pin	$\pm 50-\mathrm{mV}$ change in VCM			100	$\mu \mathrm{A}$
CLOCK INPUT						
f_{s}	System clock frequency	16-input mode, 10-bit ADC resolution	5		100	MSPS
		16-input mode, 12-bit ADC resolution	5		80	
		16-input mode, 14-bit ADC resolution	5		65	
		32-input mode, 10-bit ADC resolution	5		100	
		32-input mode, 12-bit ADC resolution	5		80	
		32-input mode, 14-bit ADC resolution	5		65	
		8 -input mode, 10-bit ADC resolution	10		200	
$\mathrm{V}_{\text {CLKP }}-\mathrm{V}_{\text {CLKM }}$	Differential clock amplitude	Sine-wave, ac-coupled	0.7			$V_{\text {PP }}$
		LVPECL, ac-coupled		1.6		
		LVDS, ac-coupled	0.35	0.7		
$\mathrm{V}_{\text {CLKP }}$	Single-ended clock amplitude	LVCMOS on CLKP with CLKM grounded		1.8		V_{PP}
	Input clock duty cycle		40\%	50\%	60\%	
DIGITAL INPUTS						
V_{IH}	Digital input minimum, high level		$\begin{array}{\|l} \hline 0.75 \times \\ \text { DVDD_1P8 } \end{array}$	1.8		V
VIL	Digital input maximum, low level			0	$\begin{array}{r} 0.25 \times \\ \text { DVDD_1P8 } \end{array}$	V
DIGITAL OUTPUT (LVDS)						
$\mathrm{R}_{\text {LOAD }}$	Differential load resistance	Between DOUTP and DOUTM		100		Ω
DIGITAL OUTPUT (CML)						
$\mathrm{R}_{\text {CML }}$	Load resistance from each CML out	t to a common mode		50		Ω

(1) Performance degradation may be seen at high input frequencies.

7.4 Thermal Information

THERMAL METRIC ${ }^{(1)}$		ADS52J90 ZZE (NFBGA) 198 PINS	UNITS
$\mathrm{R}_{\text {өJA }}$	Junction-to-ambient thermal resistance	33.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) thermal resistance	4.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJB }}$	Junction-to-board thermal resistance	14.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ψ JT	Junction-to-top characterization parameter	0.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\psi_{\text {JB }}$	Junction-to-board characterization parameter	14.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {өJC(bot) }}$	Junction-to-case (bottom) thermal resistance	N/A	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Typical values are across ADC resolution and input modes, unless otherwise specified. Typical values are at $25^{\circ} \mathrm{C}$, AVDD_1P8 = DVDD_1P8 = 1.8 V, DVDD_1P2 = 1.2 V. External 100- Ω differential load between LVDS outputs, 4-pF load capacitor from each LVDS output to ground, and 1X data rate mode.
All ADCs are powered up and the input signal is a $-1-\mathrm{dBFS}$ tone at 5 MHz applied on one channel at a time.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
ADC						
$\mathrm{Nacc}_{\text {adc }}$	ADC resolution	32-channel input, 16-channel input	10		14	Bits
		8-channel input		10		
	Number of ADCs			16		ADCs
CLOCK DOMAINS						
f_{C}	Conversion rate of each ADC (conversion clock frequency)	10-bit ADC resolution			100	MSPS
		12-bit ADC resolution			80	
		14-bit ADC resolution			65	
f_{S}	System clock frequency in terms of f_{C}	16-input mode		f_{C}		MSPS
		32-input mode		f_{C}		
		8-input mode		$2 \times \mathrm{f}_{\mathrm{C}}$		
$\mathrm{f}_{\text {SAMP }}$	Effective sampling rate of each input channel in terms of f_{C}	16-input mode		f_{C}		MSPS
		32-input mode		$5 \times \mathrm{f}_{\mathrm{C}}$		
		8 -input mode		$2 \times \mathrm{f}_{\mathrm{C}}$		
PERFORMANCE						
$\mathrm{G}_{\text {MATCH }}$	Gain matching	Same device, across channels		± 0.1		dB
		Same channel, across devices		± 0.1		
$\mathrm{G}_{\text {DRIFT }}$	Gain drift with temperature over full temperature range			0.1		dB
$\mathrm{V}_{\text {OFF }}$	Offset error			7 to 7		mV
DNL	Differential nonlinearity of the ADC	10-bit resolution		to 0.5		LSB
		12-bit resolution		to 0.9		
		14-bit resolution		1 to 2		
INL	Integral nonlinearity of the ADC	10-bit resolution		to 0.5		LSB
		12-bit resolution		1 to 1		
		14-bit resolution		3 to 3		
SNR	Signal-to-noise ratio: excludes first 9 harmonics as well as spurs at ($\mathrm{f}_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{IN}}$), $\left(\mathrm{f}_{\mathrm{S}} / 4 \pm \mathrm{f}_{\mathrm{IN}}\right.$), $\mathrm{f}_{\mathrm{S}} / 2$, and $\mathrm{f}_{\mathrm{S}} / 4$	10-bit, 16-channel input mode, $\mathrm{f}_{\text {SAMP }}=100 \mathrm{MSPS}$		61.3		dBFS
		10-bit, 32-channel input mode, $\mathrm{f}_{\text {SAMP }}=50 \mathrm{MSPS}$		61.3		
		10 -bit mode, 8 -channel input, $\mathrm{f}_{\text {SAMP }}=200 \mathrm{MSPS}$	56	60		
		10 -bit mode, 8 -channel input, $\mathrm{f}_{\text {SAMP }}=130 \mathrm{MSPS}$	58.2	61		
		12-bit mode, 16 - channel input, $\mathrm{f}_{\text {SAMP }}=80 \mathrm{MSPS}$		69.5		
		12-bit mode, 32-channel input, $\mathrm{f}_{\text {SAMP }}=40 \mathrm{MSPS}$	65	69.5		
		12-bit mode, 32-channel input, $\mathrm{f}_{\text {SAMP }}=20 \mathrm{MSPS}$	67.5	70.2		
		14-bit mode, 16 - channel input, $\mathrm{f}_{\text {SAMP }}=65 \mathrm{MSPS}$	65.9	72.5		
		14-bit mode, 16 - channel input, $\mathrm{f}_{\text {SAMP }}=50 \mathrm{MSPS}$	67.9	73.5		
		14-bit mode, 32-channel input, $\mathrm{f}_{\text {SAMP }}=32.5 \mathrm{MSPS}$		73		
HD2	Second-order harmonic distortion	All input modes and resolutions		-80		dBc
HD3	Third-order harmonic distortion	All input modes and resolutions		-80		dBc
THD	Total harmonic distortion	All input modes and resolutions		-76		dBc
Magnitude of spur at ($\mathrm{f}_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{IN}}$)		16-input mode; 10-,12-,14-bit resolutions		-73		dBc
		8 -input mode, 10-bit resolution		-62		
	Magnitude of spur at ($\mathrm{f}_{\mathrm{S}} / 4 \pm \mathrm{f}_{\mathrm{IN}}$)	8 -input mode, 10-bit resolution		-65		dBc
	Crosstalk	Input spur on neighboring channel with one channel excited at $5 \mathrm{MHz},-1 \mathrm{dBFS}$		-80		dBc

Electrical Characteristics (continued)

Typical values are across ADC resolution and input modes, unless otherwise specified. Typical values are at $25^{\circ} \mathrm{C}$, AVDD_1P8 = DVDD_1P8 = 1.8 V , DVDD_1P2 $=1.2 \mathrm{~V}$. External $100-\Omega$ differential load between LVDS outputs, $4-p F$ load capacitor from each LVDS output to ground, and 1 X data rate mode.
All ADCs are powered up and the input signal is a $-1-\mathrm{dBFS}$ tone at 5 MHz applied on one channel at a time.

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
PERFORMANCE (continued)					
$\mathrm{PSRR}_{100 \mathrm{kHz}}$	AC power-supply rejection ratio: tone at output relative to tone on supply	$100-\mathrm{mV}$ PP, $100-\mathrm{kHz}$ tone on supply	-70		dBc
$\mathrm{PSMR}_{100 \mathrm{kHz}}$	AC power-supply modulation ratio: intermodulation tone at output resulting from tones at supply and input measured relative to input tone	$100-\mathrm{mV}$ PP, $100-\mathrm{kHz}$ tone on supply and $-1-\mathrm{dBFS}$, $5-\mathrm{MHz}$ tone on input	-80		dBc
CMRR	AC common-mode rejection ratio: tone at output relative to the common-mode tone applied at the analog input pins	$50-\mathrm{mV}$ PP common-mode tone at input pins with a frequency of 5 MHz	-40		dBc
TRANSIENT BEHAVIOR					
Noverload	Input overload recovery	5-MHz overload input, 6-dBFS overload	1		Conversion clock
$t_{\text {PDN_GBL }}$	Recovery time from global power-down mode	PDN_GBL from high to low	1		ms
tpdn_FAST	Recovery time from fast powerdown mode (standby mode)	PDN_FAST from high to low	15		Conversion clocks
CURRENT CONSUMPTION WITH LVDS INTERFACE ENABLED					
	Current consumption in global power-down mode (PDN_GBL = 1)	AVDD_1P8 current	3		mA
		DVDD_1P8 current	3		
		DVDD_1P2 current	25		
	Current consumption in standby mode (PDN_FAST $=1$) at $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MSPS}$	AVDD_1P8 current	80		mA
		DVDD_1P8 current	35		
		DVDD_1P2 current	70		
	Current consumption in active mode at $\mathrm{f}_{\mathrm{C}}=100$ MSPS $^{(1)}$	AVDD_1P8 current	190		mA
		DVDD_1P8 current	100		
		DVDD_1P2 current	110		
P_{CH}	Power dissipation in active mode per input channel at $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MSPS}$	16-channel input mode	41		mW/channel
		32-channel input mode	20.5		
		8-channel input mode	82		
CURRENT CONSUMPTION WITH JESD INTERFACE ENABLED					
$I_{\text {JESD }}$	Supply currents: JESD204B interface enabled, LVDS interface disabled at 12-bit, 80MSPS, 4 ADCs per lane mode	AVDD_1P8 current ${ }^{(1)}$	170		mA
		DVDD_1P2 current ${ }^{(1)}$	260		
		DVDD_1P8 current ${ }^{(1)}$	40		
$\mathrm{P}_{\text {JESD_CH }}$	Power dissipation in active mode per input channel: $\mathrm{f}_{\mathrm{C}}=80$ MSPS, 12-bit mode, LVDS interface disabled, JESD interface enabled (4 ADCs per lane mode)	16-channel input mode	43.1		
		32-channel input mode	21.6		mW/channel

(1) See the Power Supply Recommendations section for guidelines on designing the supplies.

7.6 Digital Characteristics

The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1 . Typical values are at $25^{\circ} \mathrm{C}$, AVDD_1P8 = DVDD_1P8 $=1.8 \mathrm{~V}$, DVDD_1P2 $=1.2 \mathrm{~V}$, and external differential load resistance between the LVDS output pair ($\mathrm{R}_{\text {LOAD }}=100 \Omega$), unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL INPUTS (PDN_FAST, PDN_GBL, RESET, SCLK, SDIN, SEN, TX_TRIG, SPI_DIG_EN)						
V_{IH}	High-level input voltage		1.35			V
V_{IL}	Low-level input voltage				0.45	V
	High-level input current			150		$\mu \mathrm{A}$
	Low-level input current			150		$\mu \mathrm{A}$
C_{i}	Input capacitance			4		pF
DIGITAL OUTPUTS (SDOUT)						
V_{OH}	High-level output voltage		1.6	1.8		V
V_{OL}	Low-level output voltage			0	0.2	V
z_{0}	Output impedance			50		Ω
LVDS DIGITAL OUTPUTS (DOUTPI, DOUTMI) ${ }^{(1)}$						
\|VODI	Output differential voltage	$100-\Omega$ external load connected differentially across DOUTP ${ }_{1}$ and DOUTM	320	400	480	mV
$\mathrm{V}_{\text {os }}$	Output offset voltage (common-mode voltage of DOUTP ${ }^{\prime}$ and DOUTM ${ }^{\prime}$)	$100-\Omega$ external load connected differentially across DOUTP ${ }_{1}$ and DOUTM	0.9	1.03	1.15	V

(1) All digital specifications are characterized across operating temperature range but are not tested at production.

7．7 Timing Requirements：Signal Chain

Typical values are at $25^{\circ} \mathrm{C}$ ．AVDD＿1P8＝DVDD＿1P8 $=1.8 \mathrm{~V}$ ，DVDD＿1P2 $=1.2 \mathrm{~V}$ ，and external differential load resistance between the LVDS output pair（ $\mathrm{R}_{\text {LOAD }}=100 \Omega$ ），unless otherwise noted．A capacitive load of 4 pF is on the LVDS outputs．

（1）See 图 64 to 图 68 for the definition of $t_{\text {PROP }}$ in various operating modes．
（2）See 图 1.
（3）The specification for the minimum data valid window is larger than the sum of the minimum setup and hold times because there can be a skew between the ideal transitions of the serial output data with respect to the transition of the bit clock．This skew can vary across channels and across devices．A mechanism to correct this skew can therefore improve the setup and hold timing margins．For example， the LVDS＿DCLK＿DELAY＿PROG control can be used to shift the relative timing of the bit clock with respect to the data．
（4）TX＿TRIGD is the internally delayed version of TX＿TRIG that gets latched on the rising edge of the system clock．
（5）t_{s} is the system clock period in ns．

ADS52J90
www.ti.com.cn

7.8 Timing Requirements: JESD Interface

Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{AVDD}_{2} 1 \mathrm{P} 8=1.8 \mathrm{~V}$, DVDD_1P2 $=1.2 \mathrm{~V}$, DVDD_1P8 $=1.8 \mathrm{~V}$, differential ADC clock, $\mathrm{R}_{\mathrm{LOAD}}=$ 50Ω from each CML pin to DVDD_1P2, 12-bit ADC resolution, sample rate, and $\mathrm{f}_{\mathrm{C}}=80 \mathrm{MSPS}$, unless otherwise noted. Minimum and maximum values are across the full temperature range of $T_{M I N}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$. The JESD204B interface operates in default mode after setting the JESD_EN bit to 1 (12-bit ADC resolution, 12-bit serialization, 4 ADCs per lane, and scrambling disabled).

		MIN	TYP	MAX	UNIT
TIMING CHARACTERISTICS					
$\mathrm{f}_{\text {JESD }}$	Serial output data rate in terms of F (number of octets per frame) and f_{C} (ADC clock frequency in MHz)	$0.01 \times \mathrm{F} \times \mathrm{f}_{\mathrm{C}}$			Gbps
UI	Unit interval	200	1000 / fJESD	2000	ps
Tj	Total jitter: $\mathrm{f}_{\text {JESD }}=5 \mathrm{Gbps}, \mathrm{PRE}$ EMP $=7, \mathrm{INC}$ _JESD_VDD $=1$		0.27		p-p UI
t_{R}, t_{F}	Rise and fall time: 20% to 80%, each pin loaded by $C_{\text {LOAD }}=1.2 \mathrm{pF}$ to DVDD_1P2		85		ps
SAMPLING TIMING					
$t_{\text {SU_S }}$	Setup time for SYSREF with respect to the device clock rising edge		3		ns
$\mathrm{t}_{\mathrm{H} \text { S }}$	Hold time for SYSREF with respect to the device clock rising edge		2		ns
$t_{\text {SU_T }}$	Setup time for SYNC \sim with respect to the device clock rising edge		3		ns
$t_{\text {H_T }}$ T	Hold time for SYNC~ with respect to the device clock rising edge		2		ns
JESD LATENCY					
$\mathrm{N}_{\text {__SYNC }}$ ~	Latency from SYNC~ assertion (falling) edge to start of CGS phase (K28.5) in subclass 0, 1, and 2		17		Device clock cycles
$\mathrm{N}_{\text {D_SYNC }}$ ~	Latency from the first LMFC boundary after SYNC~ deassertion (rising) edge to start of ILA phase (K28.0) in subclass 1		11		Device clock cycles
NLAT_JESD	Latency from the device clock falling edge sampling the analog input of ADC1 to the appearance of the corresponding octets on the JESD outputs		14.5		Device clock cycles
JESD DIGITAL OUTPUTS					
$\mathrm{V}_{\mathrm{OH}-\mathrm{CML}}$	High-level output voltage of the CML output (CMLx_OUTP, CMLx_OUTM)	DVDD_1P2			V
$\mathrm{V}_{\text {OL-CML }}$	Low-level output voltage of the CML output (CMLx_OUTP, CMLx_OUTM)	DVDD_1P2-0.4			V
\| $\mathrm{V}_{\text {OD-CML }}$ \|	Differential output voltage of CMLx_OUT	0.4			V
$\mathrm{V}_{\text {OC-CML }}$	Common-mode output voltage of CMLx_OUTP, CMLx_OUTM	DVDD_1P2-0.2			V
z_{OS}	Single-ended output impedance	$50 \pm 25 \%$			Ω
$\mathrm{C}_{\text {CML }}$	Output capacitance inside device from either CML output to ground	1			pF
	Transmitter short-circuit current: transmitter terminals shorted to any voltage between -0.25 V and 1.45 V	± 100			mA

7.9 Timing Requirements: Serial Interface ${ }^{(1)(2)}$

	MIN	TYP	MAX	UNIT
$\mathrm{t}_{\text {SCLK }}$ SCLK period	50			ns
$t_{\text {SCLK_H }} \quad$ SCLK high time	20			ns
tSCLK_L SCLK low time	20			ns
$\mathrm{t}_{\text {DSU }}$ Data setup time	5			ns
$\mathrm{t}_{\text {DHO }} \quad$ Data hold time	5			ns
$\mathrm{t}_{\text {SEN_SU }}$ SEN falling edge to SCLK rising edge	8			ns
$\mathrm{t}_{\text {SEN_HO }}$ Time between last SCLK rising edge to SEN rising edge	8			ns
tout_dV SDOUT delay	12	20	28	ns

(1) Characterized in lab over operating temperature range, not tested at production testing.
(2) See 图 92 and 图 93.

图 1．LVDS Output Signals Timing Diagram in 16－Input Mode with 12－Bit Serialization，LSB－First，1X Data Rate Mode

ADS52J90
www.ti.com.cn

7.10 Typical Characteristics

At $25^{\circ} \mathrm{C}$, AVDD_IP8 = DVDD_1P8 $=1.8 \mathrm{~V}$, and DVDD_1P2 $=1.2 \mathrm{~V}$, unless otherwise noted. All LVDS outputs are active with $100-\Omega$ differential terminations and a $4-\mathrm{pF}$ load capacitor from each LVDS output pin to ground. A $-1-\mathrm{dBFS}$ input signal at 5 MHz is applied to the input channel under test. SNR is computed by ignoring the power contained in the first nine harmonic bins, the $f_{\mathrm{S}} / 2$ and $\mathrm{f}_{\mathrm{S}} / 4$ frequency bins as well as the bins corresponding to the intermodulation frequencies between the input and the clock. A LVPECL clock is used as the clock source.

Typical Characteristics（接下页）

At $25^{\circ} \mathrm{C}$, AVDD＿IP8 $=$ DVDD＿1P8 $=1.8 \mathrm{~V}$ ，and $\operatorname{DVDD} _1 \mathrm{P} 2=1.2 \mathrm{~V}$ ，unless otherwise noted．All LVDS outputs are active with $100-\Omega$ differential terminations and a $4-\mathrm{pF}$ load capacitor from each LVDS output pin to ground．A $-1-\mathrm{dBFS}$ input signal at 5 MHz is applied to the input channel under test．SNR is computed by ignoring the power contained in the first nine harmonic bins，the $f_{S} / 2$ and $f_{S} / 4$ frequency bins as well as the bins corresponding to the intermodulation frequencies between the input and the clock．A LVPECL clock is used as the clock source．

$\begin{gathered} \mathrm{f}_{\mathrm{IN}}=5 \mathrm{MHz}, \mathrm{f}_{\mathrm{C}}=65 \mathrm{MSPS}, \mathrm{SNR}=73.4 \mathrm{dBFS}, \mathrm{SFDR}=80.2 \mathrm{dBc}, \\ \mathrm{HD} 2=-88.7 \mathrm{dBc}, \mathrm{HD} 3=-93.9 \mathrm{dBc} \end{gathered}$ 图 8．FFT of 14－Bit，16－Input Mode		$\mathrm{f}_{\text {SAMP }}=50 \mathrm{MSPS}$ 图 9．Signal－to－Noise Ratio vs f_{IN} in 10－Bit，32－Input Mode
 图 10．Signal－to－Noise Ratio vs f_{fN} in 10－Bit，16－Input Mode		$\mathrm{f}_{\mathrm{SAMP}}=200 \mathrm{MSPS}$ 图 11．Signal－to－Noise Ratio vs $\boldsymbol{f}_{\mathrm{IN}}$ in 10－Bit，8－Input Mode
 图 12．Signal－to－Noise Ratio vs $f_{I N}$ in 12－Bit，32－Input Mode		$\mathrm{f}_{\text {SAMP }}=80 \mathrm{MSPS}$ 图 13．Signal－to－Noise Ratio vs $\boldsymbol{f}_{\mathrm{IN}}$ in 12－Bit，16－Input Mode

Typical Characteristics（接下页）

At $25^{\circ} \mathrm{C}$, AVDD＿IP8 $=$ DVDD＿1P8 $=1.8 \mathrm{~V}$ ，and $\operatorname{DVDD} _1 \mathrm{P} 2=1.2 \mathrm{~V}$ ，unless otherwise noted．All LVDS outputs are active with $100-\Omega$ differential terminations and a $4-\mathrm{pF}$ load capacitor from each LVDS output pin to ground．A -1 －dBFS input signal at 5 MHz is applied to the input channel under test．SNR is computed by ignoring the power contained in the first nine harmonic bins，the $f_{S} / 2$ and $f_{S} / 4$ frequency bins as well as the bins corresponding to the intermodulation frequencies between the input and the clock．A LVPECL clock is used as the clock source．

Typical Characteristics（接下页）

At $25^{\circ} \mathrm{C}$, AVDD＿IP8 $=$ DVDD＿1P8 $=1.8 \mathrm{~V}$ ，and $\operatorname{DVDD} _1 \mathrm{P} 2=1.2 \mathrm{~V}$ ，unless otherwise noted．All LVDS outputs are active with $100-\Omega$ differential terminations and a $4-\mathrm{pF}$ load capacitor from each LVDS output pin to ground．A $-1-\mathrm{dBFS}$ input signal at 5 MHz is applied to the input channel under test．SNR is computed by ignoring the power contained in the first nine harmonic bins，the $f_{S} / 2$ and $f_{S} / 4$ frequency bins as well as the bins corresponding to the intermodulation frequencies between the input and the clock．A LVPECL clock is used as the clock source．

图 20．Input－Clock Intermodulation Spur at（ $f_{S} / 2 \pm f_{I N}$ ）vs $f_{\text {IN }}$ in 16－Input Mode

16 －input mode， 14 －bit resolution， $\mathrm{f}_{\text {SAMP }}=65$ MSPS
图 22．Signal－to－Noise Ratio vs $\mathrm{A}_{\text {IN }}$

16 －input mode， 14 －bit resolution， $\mathrm{f}_{\text {SAMP }}=65$ MSPS
图 24．Signal－to－Noise Ratio vs Input Common－Mode Voltage（INPCM）

图 21．Input－Clock Intermodulation Spur at（ $f_{S} / 4 \pm f_{I N}$ ）vs $f_{\text {IN }}$ in 8－Input Mode

32 －input mode， 14 －bit resolution， $\mathrm{f}_{\text {SAMP }}=32.5 \mathrm{MSPS}$
图 23．Spurious－Free Dynamic Range vs $A_{\text {IN }}$

16 －input mode， 14 －bit resolution， $\mathrm{f}_{\mathrm{SAMP}}=65 \mathrm{MSPS}$
图 25．Signal－to－Noise Ratio vs Amplitude of Differential Sine－Wave Input Clock

Typical Characteristics（接下页）

At $25^{\circ} \mathrm{C}$, AVDD＿IP8 $=$ DVDD＿1P8 $=1.8 \mathrm{~V}$ ，and DVDD＿1P2 $=1.2 \mathrm{~V}$ ，unless otherwise noted．All LVDS outputs are active with $100-\Omega$ differential terminations and a $4-\mathrm{pF}$ load capacitor from each LVDS output pin to ground．A $-1-\mathrm{dBFS}$ input signal at 5 MHz is applied to the input channel under test．SNR is computed by ignoring the power contained in the first nine harmonic bins，the $f_{S} / 2$ and $f_{S} / 4$ frequency bins as well as the bins corresponding to the intermodulation frequencies between the input and the clock．A LVPECL clock is used as the clock source．

16－input mode， 14 －bit resolution， $\mathrm{f}_{\mathrm{SAMP}}=65 \mathrm{MSPS}$

图 26．Signal－to－Noise Ratio vs Differential Input Clock Duty Cycle

32 －input mode， 14 －bit resolution， $\mathrm{f}_{\text {SAMP }}=32.5 \mathrm{MSPS}$
图 28．Integral Nonlinearity

32 －input mode， 14 －bit resolution， $\mathrm{f}_{\mathrm{SAMP}}=32.5 \mathrm{MSPS}, 100-\mathrm{mV} \mathrm{VP}_{\mathrm{PP}}$ tone on supply

图 30．Power－Supply Rejection Ratio vs Frequency of Signal on Supply

32 －input mode， 14 －bit resolution， $\mathrm{f}_{\text {SAMP }}=32.5$ MSPS，-1 －dBFS tone applied on one channel and spur on neighboring channel measured as crosstalk

图 27．Crosstalk vs f_{IN}

32 －input mode， 14 －bit resolution， $\mathrm{f}_{\text {SAMP }}=32.5 \mathrm{MSPS}$
图 29．Differential Nonlinearity

32 －input mode； 14 －bit resolution； $\mathrm{f}_{\text {SAMP }}=32.5 \mathrm{MSPS} ; 100-\mathrm{mV}$ PP tone on supply； $5-\mathrm{MHz},-1-\mathrm{dBFS}$ tone on input；PSMR is intermodulation tone referred to input tone amplitude

图 31．Power－Supply Modulation Ratio vs Frequency of Signal on Supply

Typical Characteristics（接下页）

At $25^{\circ} \mathrm{C}$, AVDD＿IP8 $=$ DVDD＿1P8 $=1.8 \mathrm{~V}$ ，and $\operatorname{DVDD} _1 \mathrm{P} 2=1.2 \mathrm{~V}$ ，unless otherwise noted．All LVDS outputs are active with $100-\Omega$ differential terminations and a $4-\mathrm{pF}$ load capacitor from each LVDS output pin to ground．A -1 －dBFS input signal at 5 MHz is applied to the input channel under test．SNR is computed by ignoring the power contained in the first nine harmonic bins，the $f_{S} / 2$ and $f_{S} / 4$ frequency bins as well as the bins corresponding to the intermodulation frequencies between the input and the clock．A LVPECL clock is used as the clock source．

32－input mode， 14 －bit resolution， $\mathrm{f}_{\mathrm{SAMP}}=32.5 \mathrm{MSPS}, 50-\mathrm{mV}$ PP common－mode tone applied at the inputs，output tone referred to the input tone

图 32．Common－Mode Rejection Ratio vs
Frequency of Common－Mode Input Signal
图 32．Common－Mode Rejection Ratio vs
Frequency of Common－Mode Input Signal

图 34．DVDD＿1P8 Current vs Conversion Clock Frequency

图 36．Total Power vs Conversion Clock Frequency
32 －input mode，10－bit resolution

32 －input mode，10－bit resolution

图 33．AVDD＿1P8 Current vs Conversion Clock Frequency

图 35．DVDD＿1P2 Current vs Conversion Clock Frequency

图 37．Digital High－Pass Filter Response

Typical Characteristics（接下页）

At $25^{\circ} \mathrm{C}$, AVDD＿IP8 $=$ DVDD＿1P8 $=1.8 \mathrm{~V}$ ，and DVDD＿1P2 $=1.2 \mathrm{~V}$ ，unless otherwise noted．All LVDS outputs are active with $100-\Omega$ differential terminations and a $4-\mathrm{pF}$ load capacitor from each LVDS output pin to ground．A -1 －dBFS input signal at 5 MHz is applied to the input channel under test．SNR is computed by ignoring the power contained in the first nine harmonic bins，the $f_{S} / 2$ and $f_{S} / 4$ frequency bins as well as the bins corresponding to the intermodulation frequencies between the input and the clock．A LVPECL clock is used as the clock source．

图 39．Low－Frequency Noise With and Without Chopper Enabled

7．11 Typical Characteristics：JESD Interface

 50Ω from each CML pin to DVDD＿1P2，12－bit ADC resolution，sample rate，and $\mathrm{f}_{\text {CLKIN }}=80 \mathrm{MSPS}$ ，unless otherwise noted． Minimum and maximum values are across the full temperature range of $T_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\mathrm{MAX}}=85^{\circ} \mathrm{C}$ ．The JESD204B interface operates in default mode after setting the JESD＿EN bit to 1 （12－bit ADC resolution，12－bit serialization， 4 ADCs per lane，and scrambling disabled）．

Typical Characteristics：JESD Interface（接下页）

Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, AVDD＿1P8 $^{2} 1.8 \mathrm{~V}$ ，DVDD＿1P2 $=1.2 \mathrm{~V}$ ，DVDD＿1P8 $=1.8 \mathrm{~V}$ ，differential ADC clock，R $\mathrm{R}_{\mathrm{LOAD}}=$ 50Ω from each CML pin to DVDD＿1P2，12－bit ADC resolution，sample rate，and $\mathrm{f}_{\text {CLKIN }}=80 \mathrm{MSPS}$ ，unless otherwise noted． Minimum and maximum values are across the full temperature range of $T_{\text {MIN }}=-40^{\circ} \mathrm{C}$ to $\mathrm{T}_{\text {MAX }}=85^{\circ} \mathrm{C}$ ．The JESD204B interface operates in default mode after setting the JESD＿EN bit to 1 （12－bit ADC resolution，12－bit serialization， 4 ADCs per lane，and scrambling disabled）．

图 46．DVDD＿1P2 Current vs ADC Sample Rate

ADC resolution $=12,14$ bits；across lane modes
图 47．DVDD＿1P8 Current vs ADC Sample Rate

7．12 Typical Characteristics：Contour Plots

At $25^{\circ} \mathrm{C}$, AVDD＿IP8 $=$ DVDD＿1P8 $=1.8 \mathrm{~V}$ ，and DVDD＿1P2 $=1.2 \mathrm{~V}$ ，unless otherwise noted．All LVDS outputs are active with $100-\Omega$ differential terminations and a $4-\mathrm{pF}$ load capacitor from each LVDS output pin to ground．A $-1-\mathrm{dBFS}$ input signal at 5 MHz is applied to the input channel under test．SNR is computed by ignoring the power contained in the first nine harmonic bins，the $f_{\mathrm{S}} / 2$ and $\mathrm{f}_{\mathrm{S}} / 4$ frequency bins as well as the bins corresponding to the intermodulation frequencies between the input and the clock．An LVPECL clock is used as the clock source．

图 48．Signal－to－Noise Ratio in 10－Bit，32－Input Mode

图 50．Signal－to－Noise Ratio in 10－Bit，8－Input Mode

图 49．Signal－to－Noise Ratio in 10－Bit，16－Input Mode

图 51．Signal－to－Noise Ratio in 12－Bit，32－Input Mode

Typical Characteristics：Contour Plots（接下页）

At $25^{\circ} \mathrm{C}$, AVDD＿IP8 $=$ DVDD＿1P8 $=1.8 \mathrm{~V}$ ，and $\operatorname{DVDD_ 1P2~}=1.2 \mathrm{~V}$ ，unless otherwise noted．All LVDS outputs are active with $100-\Omega$ differential terminations and a $4-\mathrm{pF}$ load capacitor from each LVDS output pin to ground．A $-1-\mathrm{dBFS}$ input signal at 5 MHz is applied to the input channel under test．SNR is computed by ignoring the power contained in the first nine harmonic bins，the $f_{S} / 2$ and $f_{S} / 4$ frequency bins as well as the bins corresponding to the intermodulation frequencies between the input and the clock．An LVPECL clock is used as the clock source．

图 52．Signal－to－Noise Ratio in 12－Bit，16－Input Mode

图 53．Signal－to－Noise Ratio in 14－Bit，32－Input Mode

图 54．Signal－to－Noise Ratio in 14－Bit，16－Input Mode

8 Detailed Description

8．1 Overview

A block diagram of the device is shown in 图55．图 56 illustrates the signal flow for the device while operating with the LVDS output interface．The device consists of 16 ADCs configurable to convert $8-16$－，or 32 －inputs．All ADCs run off the external clocks（provided on the CLKP，CLKM pins）．The references needed for the ADCs are internally generated．The reference voltage that can be used to set the common mode voltage of the analog input comes out on the VCM pin．The output data from the 16 ADCs are serialized and output on the LVDS interface．The device also has an optional JESD204B interface．The device is controlled using an SPI interface．

8．2 Functional Block Diagrams

图 55．Block Diagram

ADS52J90
www．ti．com．cn

Functional Block Diagrams（接下页）

图 56．Signal Flow Diagram

8．3 Feature Description

The device has 16 synchronously operating ADCs（ADC1 to ADC16）and can be configured to accept and convert 8，16，or 32 active differential external analog inputs（AIN1 to AIN32）．The converted digital outputs can be made to come out on either 16 pairs of low－voltage differential signaling（LVDS）outputs or compressed into eight pairs．The device operates from a single clock input．This input is referred to as the system clock and its frequency is denoted by f_{s} ．The recommended mode of driving the clock is with a differential low－voltage positive－referenced emitter coupled logic（LVPECL）clock．The system clock can be also driven by a differential sine－wave or LVDS，or can be driven with a single－ended low voltage complementary metal oxide semiconductor （LVCMOS）clock．The various aspects of the signal chain are discussed in the following sections．

Feature Description（接下页）

8．3．1 Connection of the External Inputs to the Input Pins

The effective conversion rate per input changes depending on the input mode．The methodology of connecting the external inputs（AINx）to the input pins（INx）is shown in 表 1 for the 16－，32－and 8 －channel input modes．In表 1，AIN1 refers to the differential input signal（AINP1，AINM1）and IN1 refers to the input pair（INP1，INM1）． The voltage that gets sampled and converted by the device is（AINP1－AINM1）．

表1．Scheme of Driving the Input Pins（16－，32－，8－Channel Input Modes）

INPUT PAIR	CONNECTION TO THE EXTERNAL ANALOG INPUT SIGNAL		
	16－CHANNEL INPUT MODE ${ }^{(1)(2)}$	32－CHANNEL INPUT MODE	8－CHANNEL INPUT MODE ${ }^{(1)}$
IN1	AIN1	AIN1	AIN1
IN2	－	AIN2	－
IN3	AIN2	AIN3	AIN1
IN4	－	AIN4	－
IN5	AIN3	AIN5	AIN2
IN6	－	AIN6	－
IN7	AIN4	AIN7	AIN2
IN8	－	AIN8	－
IN9	AIN5	AIN9	AIN3
IN10	－	AIN10	－
IN11	AIN6	AIN11	AIN3
IN12	－	AIN12	－
IN13	AIN7	AIN13	AIN4
IN14	－	AIN14	－
IN15	AIN8	AIN15	AIN4
IN16	－	AIN16	－
IN17	AIN9	AIN17	AIN5
IN18	－	AIN18	－
IN19	AIN10	AIN19	AIN5
IN20	－	AIN20	－
IN21	AIN11	AIN21	AIN6
IN22	－	AIN22	－
IN23	AIN12	AIN23	AIN6
IN24	－	AIN24	－
IN25	AIN13	AIN25	AIN7
IN26	－	AIN26	－
IN27	AIN14	AIN27	AIN7
IN28	－	AIN28	－
IN29	AIN15	AIN29	AIN8
IN30	－	AIN30	－
IN31	AIN16	AIN31	AIN8
IN32	－	AIN32	－

（1）$-=$ do not connect．
（2）To switch ADCx to convert the even numbered inputs，use register control IN＿16CH＿ADCx．

8．3．2 Input Multiplexer and Sampler

The input multiplexer determines the mapping of the input pins（IN1 to IN32）to the inputs that are sampled and converted by the ADCs（ADC1 to ADC16）．Each ADC has two sets of sampling circuits（termed odd and even） and alternately converts the inputs presented to them．

The sampling windows for the odd and even sampling circuits of each ADC are derived from the system clock．A pair of ADCs are used in 图57，图58，and 图 59 to illustrate how the odd and even sampling phases are derived for each ADC in each input mode．AIN1（ t_{1} ）refers to the AIN1 input sampled the the t_{1} instant．ADC1o refers to the odd sample converted by ADC1 and ADC1e refers to the even sample converted by ADC1．The input sampling and conversion schemes for the 32－，16－，and 8 －input modes are illustrated in 图57，图58，and 图59， respectively．

图 57．Input Sampling and Conversion Scheme（32－Input Mode）

58. Input Sampling and Conversion Scheme (16-Input Mode)

8－Channel Input Mode

图 59．Input Sampling and Conversion Scheme（8－Input Mode）
Mapping the inputs of the odd and even sampling circuits of subsequent－numbered ADCs to subsequent－ numbered sets of input pairs repeats in a similar manner．
The sampling rate（ $\mathrm{f}_{\text {SAMP }}$ ）can be defined as the rate at which the device converts each analog input presented to it．The relationship between the sampling rate and the system clock frequency is listed in 表 2 for the three input modes．

表 2．Sampling Rate and Input Clock Frequency

ANALOG INPUT MODE（Number of Input Channels）	SAMPLING RATE $\left(f_{\text {SAMP }}\right)$
16	f_{S}
32	$0.5 \times \mathrm{f}_{\mathrm{S}}$
8	f_{S}

In 16 －input mode，each ADC converts one input at a sampling rate equal to the system clock．In 32 －input mode， one ADC alternately converts two sets of inputs，each at a sampling rate that is half the system clock．In the 8－ input mode，two ADCs convert the same input in interleaved manner．
In 16－input mode，a ping－pong operation exists between two sampling circuits of one ADC that are sampling the same input．The mismatch between the two sampling circuit bandwidths can result in an interleaving spur at （ $f_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{IN}}$ ），where f_{S} is the frequency of the system clock and f_{IN} is the frequency of the input signal．
In 8 －input mode，additional interleaving across two adjacent ADCs is present in addition to the ping－pong operation between the two sampling circuits of the same ADC．This increased mismatch can result in significant interleaving spurs at（ $\mathrm{f}_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{I}}$ ）and（ $\mathrm{f}_{\mathrm{S}} / 4 \pm \mathrm{f}_{\mathrm{IN}}$ ）．The offset mismatch between the four sets of sampling circuits can result in a spur at $\mathrm{f}_{\mathrm{S}} / 4$ ．

For the 32 －input mode，the sampling instants of the even－numbered input signals are offset from the sampling instants of the odd－numbered input signals by one system clock period．The magnitude of the interleaving spurs increases when the input frequency is increased because the sampling bandwidth mismatch across the different sampling circuits results in larger phase error mismatches when the input frequency is increased．

8．3．3 Analog－to－Digital Converter（ADC）

The device has 16 synchronous ADCs that provide a digital representation of the input in twos complement format．Each ADC converts at a rate of f_{C} using a conversion clock that is internally generated from the system clock．Every cycle of a conversion clock corresponds to a new ADC conversion．
The mapping of the ADC conversions to the analog input is described in 表 3 ．See 图57，图58，and 图 59 for the naming conventions．

表 3．Mapping of the ADC Conversions to the Analog Inputs and Sampling Instants

ADC SAMPLE	INPUT CONVERTED BY THE ADC		
	16－INPUT MODE	32－INPUT MODE	8－INPUT MODE
ADC1o	AIN1 $\left(t_{1}\right)$	AIN1 $\left(t_{1}\right)$	AIN1 $\left(t_{1}\right)$
ADC20	AIN2 $\left(t_{1}\right)$	AIN3 $\left(t_{1}\right)$	AIN1 $\left(t_{2}\right)$
ADC1e	AIN1 $\left(t_{2}\right)$	AIN2 $\left(t_{2}\right)$	AIN1 $\left(t_{3}\right)$
ADC2e	AIN2 $\left(t_{2}\right)$	AIN4 $\left(t_{2}\right)$	AIN1 $\left(t_{4}\right)$

The ADC resolution（the number of bits in the signals marked as ADCOUT1 to ADCOUT16）can be programmed as 10,12 ，or 14 bits using the ADC＿RES bits．The maximum conversion clock of the ADC depends on the ADC resolution setting，as shown in 表 4.

表 4．Maximum Conversion Rate of the ADC for Different ADC Resolutions

ADC RESOLUTION（Bits）	MAXIMUM CONVERSION CLOCK（ $\mathbf{f}_{\mathbf{C}(\max)}$, MSPS）
10	100
12	80
14	65

The relationship between the system clock and sampling clock rates to the ADC conversion clock is shown in 表 5．Note that the maximum conversion rate of the ADC is fixed for the three resolution modes．In 表 5 ，sampling rate refers to the effective rate of sampling each active analog input．

表 5．System Clock and Sampling Clock Relationship to the ADC Conversion Clock

ANALOG INPUT MODE （Number of Input Channels）	SYSTEM CLOCK RATE（ f_{S} ）	SAMPLING RATE（ $\left.\mathbf{f}_{\text {SAMP }}\right)^{(1)}$	ADC RESOLUTIONS SUPPORTED
16	f_{C}	f_{C}	$10,12,14$
32	f_{C}	$0.5 \times \mathrm{f}_{\mathrm{C}}$	$10,12,14$
8	$2 \times \mathrm{f}_{\mathrm{C}}$	$2 \times \mathrm{f}_{\mathrm{C}}$	10

（1）Sampling rate is also the effective conversion rate of each input channel．

8．3．4 Device Synchronization Using TX＿TRIG

The device has multiple PLLs and clock dividers that are used to generate the programmable ADC resolutions and LVDS synchronization factors as well as to synchronize LVDS test patterns．

The TX＿TRIG input is used to synchronize clock dividers inside the device．The synchronization achieved using TX＿TRIG also enables multiple parallel devices to operate synchronously．
For the 32 －input mode，the same ADC alternates between converting two inputs．The TX＿TRIG signal provides the mechanism to determine the sampling instants of the odd and even input signals with respect to the system clock，as shown in 图 60.

图 60．Odd－and Even－Channel Sampling Instant Definition Mechanism in 32－Input Mode with the TX＿TRIG Signal

For the 8 －input mode，the conversion clock is obtained by dividing the system clock by 2 ．The phase of the division is again determined by the TX＿TRIG signal，as shown in 图 61.

图 61．Conversion Clock Deriving Mechanism from Division of the Sampling Clock in 8－Input Mode
Applying a pulse on TX＿TRIG is a mandatory part of the power－up and initialization sequence；see the Power Sequencing and Initialization section．
In case a TX＿TRIG is not applied，the device can possibly behave in an unexpected manner．The identified cases are shown in 表 6.

表 6．Device Behavior Cases：TX＿TRIG is Not Applied

SCENARIO	ISSUE	INPUT MODE WHERE ISSUE OCCURS （8－，16－，32－Channel Input Modes）
Multiple devices operating in parallel	Frame clock across devices is not synchronized	8 －and 32－channel input modes
	LVDS patterns across devices are not synchronized	8 －，16－，and 32－channel input modes
	Framing of data words within a frame clock is not defined	8 －and 32－channel input modes

The TX＿TRIG pulse resets the phase of the test pattern generator，the odd and even sampling phase selection， and the phase of the frame clock．As a result of this phase reset operation，the ADC data can be corrupted for four to six clocks immediately after applying TX＿TRIG．The phase reset from TX＿TRIG can be disabled using MASK＿TX＿TRIG．

8．3．5 Digital Processing

The ADC outputs go to a digital processing block that can be used to enhance ADC performance．Some of the operations done in the digital processing block can enhance the effective signal to noise ratio at its output．For this reason，the number of bits at the DIGOUT1 to DIGOUT16 signals are considered to be 16．However，some of the LSBs of this 16 －bit word may be zero．For example，when the digital processing block is bypassed，the number of non－zero bits in DIGOUT is the same as the ADC resolution－the extra LSBs of the 16 －bit word are zero．

The digital processing block results in additional latency that can be avoided by using the low latency mode （programmed using the LOW＿LATENCY＿EN bit）that bypasses the entire digital processing block without introducing extra latency．The various features available in the digital processing block are shown in 图 62 and are explained in the subsequent sections．

图 62．ADC Digital Block Diagram

8．3．5．1 Digital Offset

Digital functionality provides for channel offset correction．Setting the DIG＿OFFSET＿EN bit to 1 enables the subtraction of the offset value from the ADC output．There are two offset correction modes，as shown in 图 63.

图 63．Digital Offset Correction Block Diagram

8．3．5．1．1 Manual Offset Correction

If the channel offset is known or estimated，it can be written into a 10－bit register and can be subtracted from the ADC output．There are 32 sets of manual offset controls．To enable per－channel offset correction in the 32－input mode，the offset values for the odd and even data streams of each of the 16 ADCs can be independently controlled．The registers OFFSET＿ADCxo and OFFSET＿ADCxe correspond to the offsets subtracted from the odd and even data streams of ADCX．Write the offset values in twos complement format．

8．3．5．1．2 Auto Offset Correction Mode（Offset Correction using a Built－In Offset Calculation Function）

The auto offset calculation module can be used to calculate the channel offset that is then subtracted from the ADC output．To enable the auto offset correction mode，set the OFFSET＿REMOVAL＿SELF bit and DIG＿OFFSET＿EN bit to 1 ．
In auto offset correction mode the dc component of the ADC output（assumed to be the channel offset）is estimated using a digital accumulator．The ADC output sample set used by the accumulator is determined by a start time or first sample and number of samples to be used．A high pulse on the TX＿TRIG pin or setting the OFFSET＿REMOVAL＿START＿MANUAL register can be used to determine the first sample to the accumulator． To set the number of samples，the AUTO＿OFFSET＿REMOVAL＿ACC＿CYCLES register must be programmed according to 表 7.
If a pulse on the TX＿TRIG pin is used to set the first sample，additional flexibility in setting the first sample is provided．A programmable delay between the TX＿TRIG pulse and the first sample can be set by writing to the OFFSET＿CORR＿DELAY＿FROM＿TX＿TRIG register．
The determined offset value can be read out for each channel．Set the channel number in the AUTO＿OFFSET＿REMOVAL＿VAL＿RD＿CH＿SEL register and read the offset value for the corresponding channel in the AUTO＿OFFSET＿REMOVAL＿VAL＿RD register．Note that the offset estimation is done separately for the odd and even data streams of each of the 16 ADCs and results in 32 sets of offset estimates that can be read out．

表 7．Auto Offset Removal Accumulator Cycles

AUTO＿OFFSET＿REMOVAL＿ACC＿CYCLES（Bits 3－0）	NUMBER OF SAMPLES USED FOR OFFSET VALUE EVALUATION
0	2047
1	127
2	255
3	511
4	1023
5	2045
6	4095
7	8191
8	16383
9	32767
10 to 15	65535

8．3．5．1．3 Digital Averaging

The data from two adjacent ADCs（ADC1 and ADC2，ADC3 and ADC4，and so forth）can be averaged by enabling the AVG＿EN bit．A scenario where this feature can be useful is where the same analog input is fed to two channels and their outputs are averaged to achieve approximately a $3-\mathrm{dB}$ improvement in SNR．The mapping of DIGOUT to the ADC data is shown in 表 8.

表 8．Mapping of the DIGOUT Words to the ADC Outputs when Using Digital Averaging

DIGOUT	RELATIONSHIP TO ADC DATA	LVDS PAIR THE DATA COME OUT ON	
		2X DATA RATE MODE	
DIGOUT1	Average of ADC1 and ADC2	DOUT1	DOUT1
DIGOUT2	Average of ADC3 and ADC4	DOUT2	
DIGOUT3	Average of ADC5 and ADC6	DOUT3	DOUT2
DIGOUT4	Average of ADC7 and ADC8	DOUT4	
DIGOUT5	Ignore	-	-
DIGOUT6	Ignore	-	-
DIGOUT7	Ignore	-	-
DIGOUT8	Ignore	-	－
DIGOUT9	Average of ADC9 and ADC10	DOUT9	DOUT9
DIGOUT10	Average of ADC11 and ADC12	DOUT10	DOUT10
DIGOUT11	Average of ADC13 and ADC14	DOUT11	-
DIGOUT12	Average of ADC15 and ADC16	DOUT12	-
DIGOUT13	Ignore	-	-
DIGOUT14	Ignore	-	-
DIGOUT15	Ignore	-	-

8．3．5．1．4 Digital Gain

The digital gain block can be enabled using the DIG＿GAIN＿EN bit．When enabled，a digital gain programmable from 0 dB to 6 dB in steps of 0.2 dB can be applied．To enable individual digital gain control for each input in 32－ input mode，a separate digital gain control is provided for the odd and even sample of each ADC．Therefore， there are 32 gain controls．When using 16 －input mode，set the odd and even gain controls of the same ADC to the same value．When using 8 －input mode，four sets of gain controls are to be set to the same value（the odd and even gains of adjacent ADCs；for instance，ADC1 and ADC2）．

8．3．5．1．5 Digital HPF

A digital high－pass filter（HPF）can be enabled in the path of each ADC word．The enable control is shared between sets of four consecutive－numbered ADCs（ADC1－ADC4，ADC5－ADC8，ADC9－ADC12，and ADC13－ ADC16）．For example，DIG＿HPF＿EN＿ADC1－4 enables the HPF in the paths of ADCOUT1，ADCOUT2， ADCOUT3，and ADCOUT4．The digital high－pass transfer function is determined by 公式 1：

$$
\begin{equation*}
Y(n)=\frac{2^{k}}{2^{k}+1}[x(n)-x(n-1)+y(n-1)] \tag{1}
\end{equation*}
$$

When DIG＿HPF＿EN＿ADC1－4 is set，the value of K in 公式 1 is set by the HPF＿CORNER＿ADC1－4 bits．The value of K can be programmed from 2 to 10 ．表 9 shows the cutoff frequency as a function of \bar{K} ．

表 9．Digital HPF，－1－dB Corner Frequency versus K and f_{S}

CORNER FREQUENCY（k） （HPF＿CORNER＿ADCx Register）	CORNER FREQUENCY（kHz）		
	$\mathbf{f}_{\mathbf{S}}=\mathbf{4 0} \mathbf{~ M S P S}$	$\mathbf{f}_{\mathbf{S}}=\mathbf{5 0} \mathbf{~ M S P S}$	$\mathbf{f}_{\mathbf{S}}=\mathbf{6 5} \mathbf{~ M S P S}$
2	2780	3480	4520
3	1490	1860	2420
4	738	230	1200
5	369	461	600
6	185	230	300
7	111	138	180
8	49	61	80
9	25	30	40
10	12	15	20

By default the HPF output is truncated to 14 bits．To enable the rounding operation to map the HPF output to the ADC resolution，set the HPF＿ROUND＿EN＿CH1－8 and HPF＿ROUND＿EN＿CH9－16 bits to 1.

8．3．6 Data Formatting

The data formatting block does two functions：truncation and test pattern insertion．The serialization block following the data formatting block performs a parallel－to－serial conversion of the input word．The serialization factor is programmable to $10,12,14$ ，or 16 ．The truncation block truncates the DIGOUT signal to the number of bits specified by the serialization factor．The number of bits in DIGRES1 to DIGRES16 is therefore determined by the serialization factor．Again，some of the bits in DIGRES may always be zero，depending on the combination of ADC resolution，what digital features are enabled or disabled，and the serialization factor that is programmed．To aid the FPGA in capturing and deserializing the serial output，the device includes provisions to replace the ADC data with test patterns．The SERIAL＿IN1 to SERIAL＿IN16 signals are the same as the DIGRES1 to DIGRES16 signals during normal operation．When a test pattern is programmed，the DIGRES signals are replaced with the appropriate test pattern．The manner in which a given test pattern actually comes out of the LVDS lines can be altered based on the serializer operating mode because the serializer itself has multiple modes（LSB－，MSB－first modes and 1X，2X data rate modes）．

8．3．7 Serializer and LVDS Interface

By default，each serializer takes in one SERIAL＿IN word and performs a parallel－to－serial conversion．This mode is referred to as the $1 X$ data rate mode．In the 1 X data rate mode，all 16 LVDS pairs are active and each pair corresponds to the data coming out of one ADC．In the 2X data rate mode（set using the LVDS＿RATE＿2X bit）， the data from a pair of ADCs（two SERIAL＿IN words）is packed into the same serial stream．In 2X mode，half the LVDS pairs are idle and can be powered down．The 2 X data rate mode causes the LVDS interface to run at twice the rate but results in power saving．See the Timing Requirements：Signal Chain table for speed restrictions when using the 1 X and 2 X data rate modes．

The LVDS interface is a clock－data－frame（CDF）format，and has a frame clock and a high－speed bit clock in addition to the serial data lines．

The frequency of the bit clock with respect to the conversion clock frequency depends on the serialization factor （set using the SER＿DATA＿RATE bits），as shown in 表 10．Note that the serialized data are meant to be captured on both the rising and falling edges of the bit clock．Thus，the serialized data rate is twice the bit clock frequency．

表 10．Bit Clock Rate Relationship to the Conversion Clock and System Clock Rates

SERIALIZATION FACTOR	DATA RATE MODE	BIT CLOCK RATE （ f_{B} in Terms of f_{C} ）	BIT CLOCK RATE（ f_{B} in Terms of f_{S} ）		
			16－INPUT MODE	32－INPUT MODE	8－INPUT MODE
10	1X	$5 \times \mathrm{f}_{\mathrm{C}}$	$5 \times \mathrm{f}_{\text {S }}$	$5 \times \mathrm{f}_{\text {S }}$	$2.5 \times \mathrm{f}_{S}$
	2X	$10 \times \mathrm{f}_{\mathrm{C}}$	$10 \times \mathrm{f}_{\text {S }}$	$10 \times \mathrm{f}_{\text {s }}$	$5 \times \mathrm{f}_{\text {S }}$
12	1X	$6 \times \mathrm{f}_{\mathrm{C}}$	$6 \times \mathrm{f}_{\text {S }}$	$6 \times \mathrm{f}_{\text {S }}$	$3 \times \mathrm{f}_{\text {S }}$
	2 X	$12 \times \mathrm{f}_{\mathrm{C}}$	$12 \times \mathrm{f}_{\mathrm{S}}$	$12 \times \mathrm{f}_{\text {S }}$	$6 \times \mathrm{f}_{\text {S }}$
14	1X	$7 \times \mathrm{f}_{\mathrm{C}}$	$7 \times \mathrm{f}_{\text {S }}$	$7 \times \mathrm{f}_{\text {S }}$	$3.5 \times \mathrm{f}_{\text {S }}$
	2X	$14 \times \mathrm{f}_{\mathrm{C}}$	$14 \times \mathrm{f}_{\text {S }}$	$14 \times \mathrm{f}_{\text {S }}$	$7 \times \mathrm{f}_{\text {S }}$
16	1X	$8 \times \mathrm{f}_{\mathrm{C}}$	$8 \times \mathrm{f}_{\text {S }}$	$8 \times \mathrm{f}_{\text {S }}$	$4 \times \mathrm{f}_{\text {S }}$
	2 X	$16 \times \mathrm{f}_{\mathrm{C}}$	$16 \times \mathrm{f}_{\text {S }}$	$16 \times \mathrm{f}_{\text {S }}$	$8 \times \mathrm{f}_{\text {S }}$

The relationship of the frame clock frequency to the conversion clock frequency for the three input modes is as shown in 表 11．The relationship of the frame clock frequency to the system clock（and conversion clock） frequencies is the same between the 1 X and 2 X data rate modes．

表 11．Relation of Frame Clock Rate to the Conversion Clock and System Clock Rates

ANALOG INPUT MODE （Number of Channels）	FRAME CLOCK RATE $\left(\mathrm{f}_{\mathrm{F}}\right.$ in Terms of $\left.\mathrm{f}_{\mathrm{C}}\right)$	FRAME CLOCK RATE $\left(\mathrm{f}_{\mathrm{F}}\right.$ in Terms of $\left.\mathrm{f}_{\mathrm{S}}\right)$	DATA RATE MODES SUPPORTED
16	f_{C}	f_{S}	$1 \mathrm{x}, 2 \mathrm{X}$
32	$0.5 \times \mathrm{f}_{\mathrm{C}}$	$0.5 \times \mathrm{f}_{\mathrm{S}}$	1 X
8	f_{C}	$0.5 \times \mathrm{f}_{\mathrm{S}}$	$1 \mathrm{X}, 2 \mathrm{X}$

The serialization schemes for the various modes are illustrated in 图 64 to 图 68．Note that although the signals marked ADCx Conversion in 图 64 to 图 68 represent a multi－bit digital word，the SERIAL＿OUTx signals are actually serialized representations of the correspondingly colored signals．For example，the blue－colored section in the SERIAL＿OUT1 signal in 图 64 contains the serial stream of data that originated from the word corresponding to ADC1o．

图 64．ADC to Output Mapping in 16－Input，1X Mode in LVDS Interface Mode

图 65．ADC to Output Mapping in 8－Input，1X Mode in LVDS Interface Mode

图 66．ADC to Output Mapping in 16－Input，2X Mode in LVDS Interface Mode
www．ti．com．cn

图 67．ADC to Output Mapping in 8－Input，2X Mode in LVDS Interface Mode

图 68．ADC to Output Mapping in 32－Input，1X Mode in LVDS Interface Mode
The mapping of the subsequent－numbered ADC signals to subsequent－numbered SERIAL＿OUT signals follows the same pattern as indicated previously．
The serialized stream in SERIAL＿OUT is a serialized representation of SERIAL＿IN，which is the input word coming into the serializer．By default，serialization is done LSB－first．By setting the MSB＿FIRST bit，serialization can be set to MSB－first．
The alignment of the frame clock，bit clock，and the serialized output data is illustrated in 图 1 for 16 －input mode where the serialization factor is set to 12 bit，serialization is LSB－first，and the data rate is set to 1 X mode．

Another case is shown in 图 69 for 16 －input mode．Here，the serialization factor is set to 14 bit，serialization is MSB－first，and the data rate is set to 2 X mode．

图 69．LVDS Output Signals Timing Diagram in 16－Input Mode with 14－Bit Serialization，MSB－First，2X Data Rate Mode

The serialized signals come out on the DOUT pins as indicated in 表 12．The buffers marked Idle can be powered down using the appropriate register bits to save power．

表 12．Mapping of the Serialized Outputs to the DOUT Pins

LVDS OUTPUT PIN（DOUT）	OUTPUT SIGNAL	
	1X DATA RATE MODE	2X DATA RATE MODE
DOUT1	SERIAL＿OUT1	SERIAL＿OUT1
DOUT2	SERIAL＿OUT2	SERIAL＿OUT3
DOUT3	SERIAL＿OUT3	SERIAL＿OUT5
DOUT4	SERIAL＿OUT4	SERIAL＿OUT7
DOUT5	SERIAL＿OUT5	Idle
DOUT6	SERIAL＿OUT6	Idle
DOUT7	SERIAL＿OUT7	Idle
DOUT8	SERIAL＿OUT8	Idle
DOUT9	SERIAL＿OUT9	SERIAL＿OUT9
DOUT10	SERIAL＿OUT10	SERIAL＿OUT11
DOUT11	SERIAL＿OUT11	SERIAL＿OUT13
DOUT12	SERIAL＿OUT12	SERIAL＿OUT15
DOUT13	SERIAL＿OUT13	Idle
DOUT14	SERIAL＿OUT14	Idle
DOUT15	SERIAL＿OUT15	Idle
DOUT16	SERIAL＿OUT16	Idle

8．3．8 LVDS Buffers

A graphical representation of the 18 LVDS output buffers is shown in 图 70 ．

图 70．LVDS Output

The equivalent circuit of each LVDS output buffer is shown in 图 71．The buffer is designed for a differential output impedance of 100Ω（ROUT）．The differential outputs can be terminated at the receiver end by a $100-\Omega$ termination．The buffer output impedance functions like a source－side series termination．By absorbing reflections from the receiver end，the buffer output impedance helps improve signal integrity．

NOTE：When either the high or low switches are closed，differential R RUT $=100 \Omega$ ．
图 71．LVDS Output Circuit

8．3．9 JESD204B Interface

8．3．9．1 Overview

When operating in 16 －input and 32 －input modes，the device supports a multi－lane output interface based on the JEDEC standard：JESD204B（serial interface for data converters）．This interface runs up to 5 Gbps and provides a compact way of routing the data from multiple ADCs in the device to the FPGA．Subclasses 0,1 ，and 2 of the JESD204B interface are supported．The block diagram in 图 72 illustrates the connections of the JESD interface to the rest of the device．After the test pattern insertion block，the parallel data streams SERIAL IN1 to SERIAL＿IN16 can be routed to either the LVDS interface or to the JESD interface（or both）．The ADC data can be sent out using the EN＿JESD and DIS＿LVDS controls．The LVDS＿INx and CML＿INx words are the same as the SERIAL＿INx words．

图 72．JESD Interface Connection to the Digital Processing Output

The JESD interface can be enabled by setting the EN＿JESD bit to 1 ．When in JESD mode，the LVDS interface can be disabled by setting the DIS＿LVDS bit to 1．Both the LVDS and JESD interfaces can be simultaneously kept active by setting the DIS＿LVDS bit to 0 and the EN＿JESD bit to 1 ．
表 13 shows the clock rates corresponding to the various clocks mentioned in the JESD204B document．This mapping is independent of whether the device operates in 8 －， 16 －，or 32 －input mode．

表 13．Mapping of JESD204B Clock Notation to the Clock Rates

CLOCK NOTATION IN JESD204B DOCUMENT	CORRESPONDING CLOCK RATE
Device clock	f_{S}
Frame clock	f_{C}
Conversion clock	f_{C}
Sample clock	f_{C}

All mandatory features of the JESD204B interface are supported by the device，and are：
－Breaking up of data from the ADCs into octets．
－Optional scrambling of octets to avoid spectral tones．
－Conversion of（scrambled）octets to 10 －bit words using 8b，10b encoding．
－Parallel－to－serial conversion of octets．
－A code group synchronization（CGS）phase to enable the receiver to synchronize to the frame boundaries．
－An initial lane alignment（ILA）sequence phase to help the receiver align the data from all lanes and also for the receiver to read and verify the link configuration parameters．
－Character replacement at frame and multi－frame boundaries during normal data transmission to enable the receiver to monitor frame alignment．
－Mechanism to achieve deterministic latency across the link using the SYSREF signal in subclass 1 and the SYNC～signal in subclass 2.
The Link Configuration section details only the device－specific implementation aspects of the JESD204B interface．For additional details related to the standard，see the JEDEC standard 204B（July 2011）．

8．3．9．2 Link Configuration

The JESD204B link in the device can be configured to operate in different modes using the register controls in 表 14.

表 14．Register Controls Determining Link Configuration Parameters

REGISTER CONTROL	DESCRIPTION	ALLOWED SETTINGS
NUM＿ADC＿PER＿LANE	Number of ADC words packed into one lane	$2,4,8$
ADC＿RES	Number of bits resolution in the ADC word input to the JESD transmitter block	$10,12,14,16$
SER＿DATA＿RATE	Serialization factor control	$10,12,14,16$

In addition to the register controls mentioned in 表 14，the SING＿CONV＿PER＿OCT register bit controls the packaging efficiency of the ADC data into octets．
The link configuration parameters are determined by 表 15 ．

表 15．Link Configuration Parameters

LINK CONFIGURATION PARAMETER					LINK CONFIGURATION FIELD	
LINK CONFIGURATION PARAMETER	DESCRIPTION	aLLowed values （Decimal）	DEFAULT VALUE （In Decimal，Unless Otherwise Specified）${ }^{(1)}$	METHOD OF SETTING	CORRESPONDING FIELD IN ILAS	RELATION OF FIELD TO PARAMETER
ADJCNT	Not relevant	0	0	Forced to 0；not used	ADJCNT［3：0］	Binary value
ADJDIR	Not relevant	0	0	Forced to 0；not used	ADJDIR［0］	Binary value
BID	Bank ID	0．．． 15	0	BANK＿ID register control	BID［3：0］	Binary value
CF	Number of control words per frame	0	0	Forced to 0	CF［4：0］	Binary value
CS	Number of control bits per sample	0	0	Forced to 0	CS［1：0］	Binary value
DID	Device ID	0．．． 255	0	DEVICE＿ID register control	DID［7：0］	Binary value
F	Number of octets per frame	See 表 18	6	Determined by 表 18	F［7：0］	Binary value minus 1
HD	High density format	0	0	Forced to 0；not used	HD［0］	Binary value
JESDV	JESD204 version	$\begin{aligned} & 0=\text { JESD204A } \\ & 1=\text { JESD204B } \end{aligned}$	1	ENABLE＿JESD＿VER＿CONTROL， JESD＿VERSION register control；see表 16	JESDV［2：0］	Binary value
K	Number of frames per multiframe	See 表16	3	Determined by 表 29；can be changed using FORCE＿K and K＿VALUE＿TO＿FORCE register controls	K［4：0］	Binary value minus 1
L	Number of lanes	2，4， 8	4	Determined by 表18	L［4：0］	Binary value minus 1
LID	Lane ID	1 to 8	As given in 表5	Default（value given in 表 17）can be changed using EN＿LANE＿ID\＃and LANE＿ID\＃register controls for each lane number	LID［4：0］	Binary value
M	Number of ADCs	16	16	Forced to 16	M［7：0］	Binary value minus 1
N	ADC resolution	10，12，14， 16	12	Determined by ADC＿RES register control	N［4：0］	Binary value minus 1
N＇	Total number of bits per sample	See 表 18	12	Determined by 表 18	N＇［4：0］	Binary value minus 1
PHADJ	Not relevant	0	0	Forced to 0；not used	PHADJ［0］	Binary value
S	Number of samples per ADC per frame	1	1	Forced to 1	S［4：0］	Binary value minus 1
SCR	Scrambler enable or disable	0，1	0	SCR＿EN register control	SCR［0］	Binary value
SUBCLASSV	Device subclass version	$\begin{aligned} & 0=\text { Subclass } 0 \\ & 1=\text { Subclass } 1 \\ & 2=\text { Subclass } 2 \end{aligned}$	1	ENABLE＿JESD＿VER＿CONTROL， JESD＿SUBCLASS register control； see 表 16	SUBCLASSV［2：0］	Binary value
RES1	Reserved field 1	0	0	Forced to 0	RES1［7：0］	Binary value
RES2	Reserved field 2	0	0	Forced to 0	RES2［7：0］	Binary value
CHKSUM	Checksum	－	Lane 1－32h Lane 3－34h Lane 5－36h Lane 7－38h	Default value as calculated by device can be changed using EN＿CHECKSUM＿LANE\＃and CHECK＿SUM\＃for each lane number	FCHK［7：0］	Binary value

（1）Corresponding to ADC＿RES set to 12 bits，SER＿DATA＿RATE set to 12 bits，NUM＿ADC＿PER＿LANE set to four ADCs per lane，SING＿CONV＿PER＿OCT mode disabled，and ENABLE JESD VER CONTROL set to 0 （to operate in JESD204B－subclass1）

8．3．9．3 JESD Version and Subclass

The interface can be configured to operate either as a JESD204A version or as a JESD204B version． Furthermore，when operating as a JESD204B version，the subclass can be configured as subclass 0,1 ，or 2. The register controls for programming the version and subclass are shown in 表 16.

表 16．JESD Version and Subclass Control

			FIELD VALUE		
ENABLE＿JESD VER＿CONTROL	JESD＿VERSION	JESD		SUBCLASS SUBCLASS	
0	$\mathrm{X}^{(1)}$	X	JESD VERSION	JESD VERSION	VERSION
1	000	000	JESD204B－subclass1	001	001
1	001	000	JESD204A	000	000
1	001	001	JESD204B－subclass 0	001	000
1	001	010	JESD204B－subclass 1	001	001

（1）$X=$ don＇t care．

8．3．9．4 Transport Layer

In the JESD204B transport layer，the incoming stream of ADC samples are mapped to one or more parallel lanes and grouped into a frame of F octets for transmission on each lane．Additional tail bits can be appended to the ADC samples．

8．3．9．4．1 User Data Format

The interface can be configured to operate in 2,4 ，or 8 lane modes（ $L=2,4$ ，or 8 ）．Depending on the number of lanes used，the data from the 16 ADCs comes out in the different lanes as shown in 表 17.

表 17．Lane Mapping to CML Pins ${ }^{(1)}$

DEFAULT LANE ID	MAPPING TO THE PINS	2 ADCS PER LANE （8－Lane Mode）$^{(\mathbf{2})}$	4 ADCS PER LANE （4－Lane Mode）$^{(2)}$	8 ADCS PER LANE （2－Lane Mode）$^{(2)}$
1	CML1＿OUTP－CML1＿OUTM	ADC1，ADC2	ADC1．．．ADC4	ADC1．．．ADC8
2	CML2＿OUTP－CML2＿OUTM	ADC3，ADC4	-	-
3	CML3＿OUTP－CML3＿OUTM	ADC5，ADC6	ADC5．．．ADC8	-
4	CML4＿OUTP－CML4＿OUTM	ADC7，ADC8	-	-
5	CML5＿OUTP－CML5＿OUTM	ADC9，ADC10	ADC9．．．ADC12	ADC9．．．ADC16
6	CML6＿OUTP－CML6＿OUTM	ADC11，ADC12	-	-
7	CML7＿OUTP－CML7＿OUTM	ADC13，ADC14	ADC13．．．ADC16	-
8	CML8＿OUTP－CML8＿OUTM	ADC15，ADC16	-	-

（1）More accurately，ADC1．．．ADC16 corresponds to CML＿IN1．．．CML＿IN16 as illustrated in 图 72.
（2）Determined by the NUM＿ADC＿PER＿LANE register control．
The unused lanes are automatically powered down．
The device supports several combinations of ADC resolutions and number of lanes．There are no control bits or control words（ $\mathrm{CF}=0$ ）．The device has two modes of data packing：normal packing mode and single converter per octet mode．The packing mode can be chosen using the SING＿CONV＿PER＿OCT register control．The number of ADCs per lane can be programmed to 8，4，or 2 using the NUM＿ADC＿PER＿LANE register control． The number of ADCs per lane automatically determines the value of L （the number of lanes）．The values of N ＇ and F for the different modes are described in 表 18.

表 18．Different JESD204B Interface Modes of Operation

NUMBER OF ADCS PER LANE， $\mathrm{N}_{\mathrm{AL}}{ }^{(1)}$	$\begin{gathered} \text { SER_DATA_ } \\ \text { RATE, } \\ \mathbf{N}_{\text {SER }}{ }^{(1)(2)} \text { (Bits) } \end{gathered}$	$\begin{gathered} \text { ADC_RES, } \\ \mathbf{N}_{\text {RES }}{ }^{(1)} \\ \text { (Bits) } \end{gathered}$	$\begin{gathered} \mathrm{L}^{(3)} \\ \text { (Lanes) } \end{gathered}$	（Resolution of ADC Word Input to the JESD204B Transmitter）	NORMAL PACKING MODE ${ }^{(1)}$		SINGLE CONVERTER PER OCTET MODE ${ }^{(1)}$	
					$\mathrm{N}^{(3)}$（Total Number of Bits）	$F^{(3)}$ （Octets per Frame）	$\mathrm{N}^{(3)}$（Total Number of Bits）	$F^{(3)}$ （Octets per Frame）
8	10，12，14， 16	10，12，14， 16	2	ADC＿RES	SER_DATA RATE (4)	SER＿DATA RATE	16	$16^{(5)}$
4	10，12，14， 16	10，12，14， 16	4	ADC＿RES	SER＿DATA RĀTE ${ }^{(4)}$	SER＿DATA RATE／2	16	$8^{(5)}$
2	10	10	8	ADC＿RES	12	$3^{(6)}$	16	$4^{(5)}$
	12	10， 12		ADC＿RES	12	3	16	$4^{(5)}$
	14	10，12， 14		ADC＿RES	16	$4^{(6)}$	16	$4^{(5)}$
	16	10，12，14， 16		ADC＿RES	16	4	16	$4^{(5)}$

（1）Value or mode is set by programming the appropriate registers．
（2）SER＿DATA＿RATE must be greater than or equal to ADC＿RES．
（3）Automatically calculated and set by the device．
（4）When SER＿DATA＿RATE＞ADC＿RES，then each ADC word is additionally padded with the（SER＿DATA＿RATE－ADC＿RES）number of zeros on the LSB side to create the＇JESD ADC word．Each JESD ADC word is broken up into nibbles．Incomplete nibbles（if any）are stuffed with the starting bits of the subsequent JESD ADC word for maximum data packing．
（5）Each ADC sample is broken into two octets；the incomplete octet is completed using zeros as tail bits．
（6）Each ADC sample is broken into nibbles；incomplete nibbles are completed using zeros as tail bits．
The data packing modes are described in 表 19 to 表 24 for different modes of operation．Lane 1 is used for illustration purposes in these tables．

表 19．Data Packing in Normal Packing Mode for $\mathrm{N}_{\mathrm{AL}}=8$ and $\mathrm{N}_{\text {RES }}=\mathrm{N}_{\mathrm{SER}}{ }^{(1)}$

OCTET	$\mathrm{N}_{\text {RES }}=10, \mathrm{~N}_{\text {SER }}=10$		$\mathrm{N}_{\text {RES }}=12, \mathrm{~N}_{\text {SER }}=12$		$\mathrm{N}_{\text {RES }}=14, \mathrm{~N}_{\text {SER }}=14$		$\mathrm{N}_{\text {RES }}=16, \mathrm{~N}_{\text {SER }}=16$	
	NIBBLE 1	NIBBLE 2						
1	ADC1［9：6］	ADC1［5：2］	ADC1［11：8］	ADC1［7：4］	ADC1［13：10］	ADC1［9：6］	ADC1［15：12］	ADC1［11：8］
2	$\begin{aligned} & \operatorname{ADC1[1:0],} \\ & \text { ADC2[9:8] } \end{aligned}$	ADC2［7：4］	ADC1［3：0］	ADC2［11：8］	ADC1［5：2］	ADC1［1：0］， ADC2［13：12］	ADC1［7：4］	ADC1［3：0］
3	ADC2［3：0］	ADC3［9：6］	ADC2［7：4］	ADC2［3：0］	ADC2［11：8］	ADC2［7：4］	ADC2［15：12］	ADC2［11：8］
4	ADC3［5：2］	$\begin{aligned} & \operatorname{ADC3}[1: 0], \\ & \operatorname{ADC4}[9: 8] \end{aligned}$	ADC3［11：8］	ADC3［7：4］	ADC2［3：0］	ADC3［13：10］	ADC2［7：4］	ADC2［3：0］
5	ADC4［7：4］	ADC4［3：0］	ADC3［3：0］	ADC4［11：8］	ADC3［9：6］	ADC3［5：2］	ADC3［15：12］	ADC3［11：8］
6	ADC5［9：6］	ADC5［5：2］	ADC4［7：4］	ADC4［3：0］	$\begin{gathered} \operatorname{ADC}[1: 0], \\ \operatorname{ADC} 4[13: 12] \end{gathered}$	ADC4［11：8］	ADC3［7：4］	ADC3［3：0］
7	$\begin{aligned} & \text { ADC5[1:0], } \\ & \text { ADC6[9:8] } \end{aligned}$	ADC6［7：4］	ADC5［11：8］	ADC5［7：4］	ADC4［7：4］	ADC4［3：0］	ADC4［15：12］	ADC4［11：8］
8	ADC6［3：0］	ADC7［9：6］	ADC5［3：0］	ADC6［11：8］	ADC5［13：10］	ADC5［9：6］	ADC4［7：4］	ADC4［3：0］
9	ADC7［5：2］	ADC7［1：0］， ADC8［9：8］	ADC6［7：4］	ADC6［3：0］	ADC5［5：2］	$\begin{gathered} \text { ADC5[1:0], } \\ \text { ADC6[13:12] } \end{gathered}$	ADC5［15：12］	ADC5［11：8］
10	ADC7［7：4］	ADC8［3：0］	ADC7［11：8］	ADC7［7：4］	ADC6［11：8］	ADC6［7：4］	ADC5［7：4］	ADC5［3：0］
11	－	－	ADC7［3：0］	ADC8［11：8］	ADC6［3：0］	ADC7［13：10］	ADC6［15：12］	ADC6［11：8］
12	－	－	ADC8［7：4］	ADC8［3：0］	ADC7［9：6］	ADC7［5：2］	ADC6［7：4］	ADC6［3：0］
13	－	－	－	－	ADC7［1：0］， ADC8［13：12］	ADC8［11：8］	ADC7［15：12］	ADC7［11：8］
14	－	－	－	－	ADC8［7：4］	ADC8［3：0］	ADC7［7：4］	ADC7［3：0］
15	－	－	－	－	－	－	ADC8［15：12］	ADC8［11：8］
16	－	－	－	－	－	－	ADC8［7：4］	ADC8［3：0］

（1）A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 表 17 ．

ADS52J90
www．ti．com．cn
ZHCSDS3C－MAY 2015－REVISED APRIL 2018
表 20．Data Packing in Normal Packing Mode for $\mathrm{N}_{\mathrm{AL}}=8$ and $\mathrm{N}_{\text {SER }}>\mathrm{N}_{\mathrm{RES}}{ }^{(1)}$

OCTET	$\mathrm{N}_{\text {RES }}=10, \mathrm{~N}_{\text {SER }}=12$		$\mathrm{N}_{\text {RES }}=12, \mathrm{~N}_{\text {SER }}=14$		$\mathrm{N}_{\text {RES }}=14, \mathrm{~N}_{\text {SER }}=16$	
	NIBBLE 1	NIBBLE 2	NIBBLE 1	NIBBLE 2	NIBBLE 1	NIBBLE 2
1	ADC1［9：6］	ADC1［5：2］	ADC1［11：8］	ADC1［7：4］	ADC1［13：10］	ADC1［9：6］
2	ADC1［1：0］， 00	ADC2［9：6］	ADC1［3：0］	00，ADC2［11：10］	ADC1［5：2］	ADC1［1：0］， 00
3	ADC2［5：2］	ADC2［1：0］， 00	ADC2［9：6］	ADC2［5：2］	ADC2［13：10］	ADC2［9：6］
4	ADC3［9：6］	ADC3［5：2］	ADC2［1：0］，00	ADC3［11：8］	ADC2［5：2］	ADC2［1：0］， 00
5	ADC3［1：0］， 00	ADC4［9：6］	ADC3［7：4］	ADC3［3：0］	ADC3［13：10］	ADC3［9：6］
6	ADC4［5：2］	ADC4［1：0］， 00	00，ADC4［11：10］	ADC4［9：6］	ADC3［5：2］	ADC3［1：0］， 00
7	ADC5［9：6］	ADC5［5：2］	ADC4［5：2］	ADC4［1：0］，00	ADC4［13：10］	ADC4［9：6］
8	ADC5［1：0］， 00	ADC6［9：6］	ADC5［11：8］	ADC5［7：4］	ADC4［5：2］	ADC4［1：0］， 00
9	ADC6［5：2］	ADC6［1：0］， 00	ADC5［3：0］	00，ADC6［11：10］	ADC5［13：10］	ADC5［9：6］
10	ADC7［9：6］	ADC7［5：2］	ADC6［9：6］	ADC6［5：2］	ADC5［5：2］	ADC5［1：0］， 00
11	ADC7［1：0］， 00	ADC8［9：6］	ADC6［1：0］，00	ADC7［11：8］	ADC6［13：10］	ADC6［9：6］
12	ADC8［5：2］	ADC8［1：0］， 00	ADC7［7：4］	ADC7［3：0］	ADC6［5：2］	ADC6［1：0］， 00
13	－	－	00，ADC8［11：10］	ADC8［9：6］	ADC7［13：10］	ADC7［9：6］
14	－	－	ADC8［5：2］	ADC8［1：0］，00	ADC7［5：2］	ADC7［1：0］， 00
15	－	－	－	－	ADC8［13：10］	ADC8［9：6］
16	－	－	－	－	ADC8［5：2］	ADC8［1：0］， 00

（1）A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 表 17.
表 21．Data Packing in Normal Packing Mode for $\mathrm{N}_{\mathrm{AL}}=4$ and $\mathrm{N}_{\mathrm{RES}}=\mathrm{N}_{\mathrm{SER}}{ }^{(1)}$

OCTET	$\mathrm{N}_{\text {RES }}=10, \mathrm{NSER}=10$		$\mathrm{N}_{\text {RES }}=12, \mathrm{~N}_{\text {SER }}=12$		$\mathrm{N}_{\text {RES }}=14, \mathrm{~N}_{\text {SER }}=14$		$\mathrm{N}_{\text {RES }}=16, \mathrm{~N}_{\text {SER }}=16$	
	NIBBLE 1	NIBBLE 2						
1	ADC1［9：6］	ADC1［5：2］	ADC1［11：8］	ADC1［7：4］	ADC1［13：10］	ADC1［9：6］	ADC1［15：12］	ADC1［11：8］
2	ADC1［1：0］， ADC2［9：8］	ADC2［7：4］	ADC1［3：0］	ADC2［11：8］	ADC1［5：2］	ADC1［1：0］， ADC2［13：12］	ADC1［7：4］	ADC1［3：0］
3	ADC2［3：0］	ADC3［9：6］	ADC2［7：4］	ADC2［3：0］	ADC2［11：8］	ADC2［7：4］	ADC2［15：12］	ADC2［11：8］
4	ADC3［5：2］	$\begin{gathered} \operatorname{ADC3}[1: 0], \\ \text { AD4[9:8] } \end{gathered}$	ADC3［11：8］	ADC3［7：4］	ADC2［3：0］	ADC3［13：10］	ADC2［7：4］	ADC2［3：0］
5	ADC4［7：4］	ADC4［3：0］	ADC3［3：0］	ADC4［11：8］	ADC3［9：6］	ADC3［5：2］	ADC3［15：12］	ADC3［11：8］
6	－	－	ADC4［7：4］	ADC4［3：0］	ADC3［1：0］， ADC4［13：12］	ADC4［11：8］	ADC3［7：4］	ADC3［3：0］
7	－	－	－	－	ADC4［7：4］	ADC4［3：0］	ADC4［15：12］	ADC4［11：8］
8	－	－	－	－	－	－	ADC4［7：4］	ADC4［3：0］

（1）A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 表 17.
表 22．Data Packing in Normal Packing Mode for $\mathrm{N}_{\text {AL }}=4$ and $\mathrm{N}_{\text {SER }}>\mathrm{N}_{\text {RES }}{ }^{(1)}$

OCTET	N ${ }_{\text {RES }}=10$, NSER $=12$		$\mathrm{N}_{\text {RES }}=12, \mathrm{~N}_{\text {SER }}=14$		$\mathrm{N}_{\text {RES }}=14, \mathrm{~N}_{\text {SER }}=16$	
	NIBBLE 1	NIBBLE 2	NIBBLE 1	NIBBLE 2	NIBBLE 1	NIBBLE 2
1	ADC1［9：6］	ADC1［5：2］	ADC1［11：8］	ADC1［7：4］	ADC1［13：10］	ADC1［9：6］
2	ADC1［1：0］， 00	ADC2［9：6］	ADC1［3：0］	00，ADC2［11：10］	ADC1［5：2］	ADC1［1：0］， 00
3	ADC2［5：2］	ADC2［1：0］， 00	ADC2［9：6］	ADC2［5：2］	ADC2［13：10］	ADC2［9：6］
4	ADC3［9：6］	ADC3［5：2］	ADC2［1：0］，00	ADC3［11：8］	ADC2［5：2］	ADC2［1：0］， 00
5	ADC3［1：0］， 00	ADC4［9：6］	ADC3［7：4］	ADC3［3：0］	ADC3［13：10］	ADC3［9：6］
6	ADC4［5：2］	ADC4［1：0］， 00	00，ADC4［11：10］	ADC4［9：6］	ADC3［5：2］	ADC3［1：0］， 00
7	－	－	ADC4［5：2］	ADC4［1：0］，00	ADC4［13：10］	ADC4［9：6］
8	－	－	－	－	ADC4［5：2］	ADC4［1：0］， 00

（1）A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 表 17.

表 23．Data Packing in Normal Packing Mode for $\mathrm{N}_{\mathrm{AL}}=2^{(1)}$

OCTET	$\mathrm{N}_{\text {RES }}=10$ ， NSER＝ 10 or 12		$\mathrm{N}_{\text {RES }}=12, \mathrm{~N}_{\text {SER }}=12$		$\mathrm{N}_{\text {RES }}=14, \mathrm{~N}_{\text {SER }}=14$ or 16		$\mathrm{N}_{\text {RES }}=16, \mathrm{~N}_{\text {SER }}=16$	
	NIBBLE 1	NIBBLE 2						
1	ADC1［9：6］	ADC1［5：2］	ADC1［11：8］	ADC1［7：4］	ADC1［13：10］	ADC1［9：6］	ADC1［15：12］	ADC1［11：8］
2	ADC1［1：0］， 00	ADC2［9：6］	ADC1［3：0］	ADC2［11：8］	ADC1［5：2］	ADC1［1：0］， 00	ADC1［7：4］	ADC1［3：0］
3	ADC2［5：2］	ADC3［1：0］， 00	ADC2［7：4］	ADC2［3：0］	ADC2［13：10］	ADC2［9：6］	ADC2［15：12］	ADC2［11：8］
4	－	－	－	－	ADC2［5：2］	ADC2［1：0］， 00	ADC2［7：4］	ADC2［3：0］

（1）A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 表 17.
表 24．Data Packing in Single Converter per Octet Packing Mode for $\mathrm{N}_{\mathrm{AL}}=8$（Independent of $\left.\mathrm{N}_{\text {SER }}\right)^{(1)(2)}$

OCTET	$\mathrm{N}_{\text {RES }}=10$		$\mathrm{N}_{\text {RES }}=12$		$\mathrm{N}_{\text {RES }}=14$		$\mathrm{N}_{\text {RES }}=16, \mathrm{~N}_{\text {SER }}=16$	
	NIBBLE 1	NIBBLE 2						
1	ADC1［9：6］	ADC1［5：2］	ADC1［11：8］	ADC1［7：4］	ADC1［13：10］	ADC1［9：6］	ADC1［15：12］	ADC1［11：8］
2	ADC1［1：0］， 00	0000	ADC1［3：0］	0000	ADC1［5：2］	ADC1［1：0］， 00	ADC1［7：4］	ADC1［3：0］
3	ADC2［9：6］	ADC2［5：2］	ADC2［11：8］	ADC2［7：4］	ADC2［13：10］	ADC2［9：6］	ADC2［15：12］	ADC2［11：8］
4	ADC2［1：0］， 00	0000	ADC2［3：0］	0000	ADC2［5：2］	ADC2［1：0］， 00	ADC2［7：4］	ADC2［3：0］
5	ADC3［9：6］	ADC3［5：2］	ADC3［11：8］	ADC3［7：4］	ADC3［13：10］	ADC3［9：6］	ADC3［15：12］	ADC3［11：8］
6	ADC3［1：0］， 00	0000	ADC3［3：0］	0000	ADC3［5：2］	ADC3［1：0］， 00	ADC3［7：4］	ADC3［3：0］
7	ADC4［9：6］	ADC4［5：2］	ADC4［11：8］	ADC4［7：4］	ADC4［13：10］	ADC4［9：6］	ADC4［15：12］	ADC4［11：8］
8	ADC4［1：0］， 00	0000	ADC4［3：0］	0000	ADC4［5：2］	ADC4［1：0］， 00	ADC4［7：4］	ADC4［3：0］
9	ADC5［9：6］	ADC5［5：2］	ADC5［11：8］	ADC5［7：4］	ADC5［13：10］	ADC5［9：6］	ADC5［15：12］	ADC5［11：8］
10	ADC5［1：0］， 00	0000	ADC5［3：0］	0000	ADC5［5：2］	ADC5［1：0］， 00	ADC5［7：4］	ADC5［3：0］
11	ADC6［9：6］	ADC6［5：2］	ADC6［11：8］	ADC6［7：4］	ADC6［13：10］	ADC6［9：6］	ADC6［15：12］	ADC6［11：8］
12	ADC6［1：0］， 00	0000	ADC6［3：0］	0000	ADC6［5：2］	ADC6［1：0］， 00	ADC6［7：4］	ADC6［3：0］
13	ADC7［9：6］	ADC7［5：2］	ADC7［11：8］	ADC7［7：4］	ADC7［13：10］	ADC7［9：6］	ADC7［15：12］	ADC7［11：8］
14	ADC7［1：0］， 00	0000	ADC7［3：0］	0000	ADC7［5：2］	ADC7［1：0］， 00	ADC7［7：4］	ADC7［3：0］
15	ADC8［9：6］	ADC8［5：2］	ADC8［11：8］	ADC8［7：4］	ADC8［13：10］	ADC8［9：6］	ADC8［15：12］	ADC8［11：8］
16	ADC8［1：0］， 00	0000	ADC8［3：0］	0000	ADC8［5：2］	ADC8［1：0］， 00	ADC8［7：4］	ADC8［3：0］

（1）For $N_{A L}=4$ ，use the first eight octets．For $N_{A L}=2$ ，use the first four octets．
（2）A similar data packing scheme is used for other lanes with the mapping of ADCs per lane as indicated in 表17．
Tail bits（in modes where applicable）are set to 0 ．There is no option for a pseudo－random generator for generating the tail bits．When a converter is powered down，the corresponding sample is replaced by a dummy sample that corresponds to all zeros．There is no option for a pseudo－random generator for generating the dummy samples．The value S（number of samples per ADC per frame minus 1 ）is always 0 and HD mode is not supported．

8．3．9．4．2 Transport Layer Test Patterns

All test patterns described in the LVDS Test Pattern Mode section can be set，even with the JESD204B interface． These test patterns serve as transport layer test modes for the JESD interface．These test patterns can replace the normal ADC data going into the JESD204B link layer．

8．3．9．5 Scrambler

An optional scrambler is implemented in the device using the polynomial as defined in the JESD204B standard． The scrambler can be enabled using the SCR＿EN register control．The scrambler is bypassed during the code group synchronization and transmission of the initial lane alignment sequence．There is no alternate scrambler to keep processing the user data during these states．

8．3．9．6 Data Link Layer

The data link layer of the JESD204B block handles various functions（such as the 8b，10b encoding of the input octets，code group synchronization（CGS），transmission of an initial lane alignment（ILA）sequence，frame alignment character replacement，and transmission of link layer test patterns）．As specified by the standard，the device uses $8 \mathrm{~b}, 10 \mathrm{~b}$ coding to encode the data before being transmitted．The frame contents are processed from MSB to LSB．

8．3．9．6．1 Code Group Synchronization（CGS）

In the CGS state，the device transmits a set of／K28．5／characters that are used by the receiver to recover the clock and data from the serial stream using a clock and data recovery（CDR）circuit，and also to align to the symbol boundaries．The device enters the CGS state when it receives an active（low going）SYNC pulse that is at least four device clocks wide．In addition，when the device is in the CGS state as defined by the JESD204B standard，the device can also be made to transmit a stream of／K28．5／symbols by programming the TX＿SYNC＿REQ register control．

8．3．9．6．2 Initial Lane Alignment（ILA）

By default，the CGS phase is followed by the transmission of an ILA sequence．The ILA transmission can be disabled using the LINK＿CONFIG＿DIS register control．Transitioning from a CGS state to an ILA sequence state occurs on the local multiframe clock（LMFC）boundary．By default，the transition occurs at the first LMFC boundary after SYNC～is deasserted．However，the transition point can be delayed to the second，third，or fourth LMFC edge by programming the RELEASE＿ILA register control to 1,2 ，or 3 ，respectively．This mode can be used to provide sufficient time to the receiver to achieve synchronization．

8．3．9．6．3 Lane and Frame Alignment Monitoring

The lane and frame alignment monitoring and character replacement are as per the JESD204B standard．The insertion of frame and lane alignment characters can be enabled by setting the LANE＿ALIGN and FRAME＿ALIGN register controls．These controls，in conjunction with the SCR＿EN control，determine the mechanism of the lane and frame alignment character replacement，as shown in 表 $\overline{2} 5$ ．

表 25．Character Replacement for Lane and Frame Alignment

SCR＿EN	FRAME＿ALIGN	LANE＿ALIGN	EFFECT ON LINK DATA
0	0	0	ADC data are sent without any character replacement．
0	0	1	If the last octet of the multiframe is the same as the last octet of the previous multiframe，then the last octet is replaced with／K28．3／．
0	1	0	If the last octet of the frame is the same as the last octet of the previous frame，then the last octet is replaced with／K28．7／．If an alignment character has already been sent in the previous frame，then no characters are replaced．
0	1	1	Frame and lane alignment character replacements are enabled．
1	0	1	ADC data are scrambled and sent without any character replacement．
1	1	0	If the last scrambled octet of the multiframe is D28．3，then that octet is replaced with ／K28．3／．
1	1	1	Frame and lane alignment character replacements are enabled with scrambling．
1			

8．3．9．6．4 Link Layer Test Modes

The JESD link can be tested by transmitting predetermined $8 \mathrm{~b}, 10 \mathrm{~b}$ characters in all frames and on all lanes． Test modes can be enabled with the LINK＿LAYER＿TESTMODES register control．These test patterns are never scrambled．A pseudo－random pattern of 120 bits corresponds to the random pattern（RPAT）．An additional PRBS pattern can be output by setting the transport layer test mode to a constant pattern and enabling the scrambler．A scrambled jitter pattern（JSPAT）is not supported．

8．3．9．7 Deterministic Latency

Deterministic latency is achieved in the subclass 1 and subclass 2 of the JESD204B standard through a local multiframe clock（LMFC）that is synchronized between the transmitter and receiver．The phase of the LMFC is dictated by the sampled SYSREF input in subclass 1 and by the SYNC～rising edge in subclass 2 ．

8．3．9．7．1 Synchronization Using SYNC～and SYSREF

In order to achieve deterministic latency across the entire link，the device supports system－level link synchronization using the SYNC～（in subclass 2）and SYSREF（in subclass 1）signals，as mentioned in the JESD204B standards document．The mapping of these signals to the pin voltages is shown in 表 26.

表 26．Mapping of the JESD204B Signals to Device Pins

SIGNAL NOTATION IN JESD204B DOCUMENT	RELATION TO DEVICE PINS
Device clock	ADC＿CLKP－ADC＿CLKM
SYNC \sim	SYNCP＿SERDES - SYNCM＿SERDES
SYSREF $^{(1)}$	SYSREFP＿SERDES - SYSREFM＿SERDES

（1）Must be inactive（low）except when operating in JESD204B subclass 1.
JESD subclasses 1 and 2 use an internal clock called the local multiframe clock（LMFC）to achieve deterministic latency in the link．The phase of the LMFC clock is set based on the device clock rising edge that the SYSREF （in subclass 1）or SYNC～（in subclass 2）signals are sampled on．The device clock is the highest speed input clock for the device and there is no provision for a higher speed adjustment clock to achieve phase adjustments finer than what is achievable using the device clock．By default，the LMFC count is reset to 0 during a SYNC～or SYSREF event．This reset count can be forced to a different value by using the FORCE＿LMFC＿COUNT and LMFC＿COUNTER＿INIT＿VALUE register controls．The LMFC does not exist in JESD subclass 0.
SYSREF can be a periodic，one－shot，or gapped periodic active－high signal that is sampled on the rising edge of the device clock．There is no option to sample the SYSREF signal on the falling edge of the device clock．If SYSREF is a periodic or gapped periodic signal，then its periodicity must be a multiple of the LMFC period in order to avoid unwanted sudden shifts in the phase of the LMFC．Note that a continuous periodic SYSREF can cause spurious degradation in the ADC performance because of energy coupling into the device at a rate that is a sub－harmonic of the device clock rate．
In addition to resetting the phase of the LMFC，SYSREF（or SYNC～）also resets some of the other internal clock dividers not related to the JESD block and affects the reset of the phase of the test pattern generator（see the LVDS Test Pattern Mode section）．SYSREF（or SYNC～）also affects the reset of the frame clock phases and the odd or even sampling selection in 32－channel mode．
The default mode is to reset all internal dividers as well as the phase of the LMFC during every SYSREF（or SYNC～）event based on the JESD subclass．
The reset operations based on SYNC～and SYSREF for the different subclasses occurs as shown in 表 27 ．
表 27．Reset Operations from SYNC～or SYSREF in the Various JESD204B Subclasses

SUBCLASS	EVENT CONTROLLING THE RESET	What gets reset	
		JESD BLOCK（Phase of the LMFC Clock）	REST OF DEVICE
JESD204B－subclass 0	SYNC～rising edge	Not applicable	Yes
JESD204B－subclass 1	SYSREF ${ }^{(1)}$	Yes	Yes
JESD204B－subclass 2	SYNC～rising edge	Yes	Yes
JESD204A	SYNC～rising edge	Not applicable	Yes

（1）To avoid unexpected reset behavior，SYSREF must be active only when operating in JESD204B subclass 1.

表 28 lists the register controls to selectively mask the reset operations of the various blocks．
表 28．Masking of the Various Reset Operations Resulting from SYNC～or SYSREF

REGISTER BIT	MASKS RESET OPERATION IN		
	JESD BLOCK（Phase of the LMFC Clock）	CLOCK DIVIDERS	OTHER SYNCHRONIZATION ${ }^{(1)}$
JESD＿RESET1	No	Yes	Yes
JESD＿RESET2	Yes	Yes	No

（1）Demodulators and test pattern generation．
The JESD＿RESET1 and JESD＿RESET2 bits mask the reset operations as indicated in 表 28 for all subsequent SYNC～and SYSREF events after the bits are set．The JESD＿RESET3 register bit is functionally similar to JESD＿RESET2（in terms of masking the reset function to the blocks）．However，when JESD＿RESET3 is set，this bit allows the first SYNC～or SYSREF event to reset all clock dividers，takes affect，and masks the reset of the LMFC clock divider only after the first SYNC～or SYSREF event occurs．The JESD＿RESET1，JESD＿RESET2， and JESD＿RESET3 bits can be used appropriately to avoid unwanted reset operations resulting from SYNC～ and SYSR $\bar{E} F$ events．
When SYSREF resets the rest of the device，the ADC data can be corrupted for four to six clocks．If SYSREF is periodic，then periodic corruption of ADC data can result．Thus，when using a periodic or a gapped periodic SYSREF，one JESD＿RESET（JESD＿RESET1，JESD＿RESET2，or JESD＿RESET3）must be set to 1.

8．3．9．7．2 Latency

图 73 to 图 76 illustrate the relevant latencies for the JESD interface with the default mode of operation（four ADCs per lane mode，$N_{\text {ADC }}=12, N_{\text {SER }}=12$ ，and $K=3$ ）used for illustration purposes．

（1）CML＿OUT is shown broken in terms of octets．
（2）The ADC word corresponding to ADC1 is contained in the first two octets of output N ．
（3）t_{D} JESD is a small additional variable delay which is a fraction of the device clock period．
图 73．ADC Latency in JESD Mode

（1）CML＿OUT is broken in terms of octets．
图 74．Latency from SYNC～Assertion to Start of CGS Phase

图 75．Latency from SYNC～Deassertion to Start of ILA Phase in Subclass 1

图 76．Latency from SYNC～Deassertion to Start of ILA Phase in Subclass 2

8．3．9．7．3 Multiframe Size

The size of the multiframe（as well as the periodicity of the LMFC clock）is denoted as K．Multiframe size is calculated as shown in 公式 2：
Ceil（ 17 ／Number of Octets per Frame）\leq Multiframe Size（In Terms of Number of Frames）
表 29 lists the multiframe size for different modes of operation．
表 29．Multiframe Size in Different Modes ${ }^{(1)}$

ADC RESOLUTION （Bits）	2 ADCS PER LANE ${ }^{(2)}$			4 ADCS PER LANE ${ }^{(2)}$			8 ADCS PER LANE ${ }^{(2)}$		
	FRAME SIZE（Octets）	MULTIFRAME SIZE		FRAME SIZE （Octets）	MULTIFRAME SIZE		FRAME SIZE （Octets）	MULTIFRAME SIZE	
		FRAMES	OCTETS		FRAMES	OCTETS		FRAMES	OCTETS
12	3	6	18	6	3	18	12	2	24
14	4	5	20	7	3	21	14	2	28
16	4	5	20	8	3	24	16	2	32

（1）The decimal equivalent of $\mathrm{K}[4: 0]$ in the link configuration parameter is equal to the multiframe size（in frames）minus 1.
（2）Determined by the register control NUM＿ADC＿PER＿LANE．

8．3．9．8 JESD Physical Layer

The JESD transmitter uses a PLL that runs off an internal low－dropout（LDO）regulator that provides noise rejection on the external 1．2－V supply．At higher speeds（beyond 4 Gbps ），the LDO voltage drops because of increased switching currents．To improve the jitter at higher speeds，restore the LDO voltage with the INC＿JESD＿VDD register control．

ADS52J90

8．3．9．8．1 CML Buffer

The device JESD204B transmitter uses differential CML output drivers with a typical current drive of 16 mA ．The output driver includes an internal $50-\Omega$ termination to the DVDD＿1P2 supply．Additionally，external $50-\Omega$ termination resistors connected to DVDD＿1P2 must be placed close to the receiver pins．DC compliance to the standard is not ensured and ac coupling can be used to avoid the common－mode mismatch between the transmitter and receiver，as shown in 图 77.

图 77．CML Output Connections
The CML buffer also has a pre－emphasis control for improving the timing margins．Pre－emphasis is achieved by increasing the CML buffer current if the current transmitter bit is different from the previous one．The current of the CML buffer for a transitioning bit can be increased from the CML buffer current setting to one of 16 settings in steps of 0.25 mA using the PRE＿EMP register control．Pre－emphasis is recommended to be used at higher speeds in order to improve the timing margins．

8．3．9．8．2 Jitter Considerations

图 78 shows the data eye measurement of the device JESD204B transmitter against the JESD204B transmitter eye mask at 3．125 Gbps．

图 78．Eye Diagram at the CML Output at a Data Rate of 3．125 Gbps

图 79 shows the data eye measurement of the device JESD204B transmitter against the JESD204B transmitter eye mask at 5 Gbps．This measurement is taken with PRE＿EMP set to 7 ．

RJ Method	Spectral	DI $\delta 8$	132.0 mUI	DCD	3.7 mUI
Data Rate	$4.999833 \mathrm{~Gb} / \mathrm{s}$	Transitions	691.082 k	ISIpp	91.2 mUI
Pattern Length	120 bits	PJrms	21.0 mUI	DDPWS	47.8 mUI
TJ（1E－15）	267.5 mUI	PJ 88	54.9 mUI	Clock Recovery	First Order

图 79．Eye Diagram at the CML Output at a Data Rate of 5 Gbps
The total jitter as a fraction of the UI changes with interface speed，pre－emphasis setting，and the length of the trace from the transmitter pins to the external termination resistor．The total jitter at the transmitter pins can exceed the transmitter eye mask specification for speeds beyond 5 Gbps ．However，the interface can be made to work（and meet the eye mask specification at the receiver inputs）at speeds higher than 5 Gbps for short trace lengths．图 40 illustrates the total jitter as a function of the trace length（between the transmitter pins and the termination resistor）for 5 －Gbps， 6 －Gbps，and 6.4 －Gbps speeds．图 41 to 图 43 illustrate the total jitter as a function of the trace length for different pre－emphasis settings at $5 \mathrm{Gbps}, 6 \mathrm{Gbps}$ ，and 6.4 Gbps ，respectively．

8．3．10 Interfacing SYNC～and SYSREF Between the FPGA and ADCs

The SYNC～and SYSREF signals must be connected to the FPGA and the multiple ADCs in the system．When driving SYNC～and SYSREF using differential signals，additional interface circuits may be required to decouple the common－mode levels between the FPGA and the ADC．图 80 shows an overview of such a scheme for driving the SYNC～signal from the FPGA to multiple ADCs．

图 80．Connection of SYNC～From the FPGA to the ADCs

The ADC has internal $5-\mathrm{k} \Omega$ resistors from the SYNCP and SYNCM pins to an internal reference voltage of 0.7 V ． When driven by a differential driver，an interface circuit may be required to match the common－mode voltages between the driver and the ADC．An example circuit is shown in 图 81 to level－shift from a 1．2－V common－mode voltage at the driver output to the 0.7 V at the ADC input．The 100Ω at the driver output depicts the differential termination and could be realized inside the FPGA．

图 81．Circuit to Level－Shift the Common－Mode Voltage From 1．2 V at the Driver Output to 0.7 V at the ADC Input

For a different driver output common－mode than the one shown in 图 81，the interface circuit must be modified．
A similar circuit as shown in 图 81 can also be used to interface the SYSREF signals to the ADC．As shown in 图 82，the SYSREF signal can also be driven using an ac－coupling scheme．The external components are chosen for a case where the SYSREF source drives only one ADC．The values of these components must be changed if the signal is interfaced to multiple ADCs（contact the factory for details）．

图 82．AC－Coupling Scheme for SYSREF（do not use for SYNC～）

SYSREF high pulse should be less wide than this point

图 83．Transient of SYSREF With AC－Coupling

The $50-\mathrm{k} \Omega$ and $30-\mathrm{k} \Omega$ external resistors along with the two $5-\mathrm{k} \Omega$ resistors internal to the ADC form a voltage divider circuit to generate a negative differential offset at the ADC SYSREF input when SYSREF is low．A high－ going pulse on the SYSREF＿SRC signal passes through the ac－coupling capacitor．The ac－coupling capacitor and the resistors form a high－pass filter and cause the SYSREF＿ADC signal to droop towards their quiescent values over time（denoted by the dotted lines in 图 83）．However，if the high width of SYSREF is much lower than the time constant of the filter，the circuit is able to pass the pulse properly．
The SYNC～and SYSREF signals also can be driven using single－ended LVCMOS levels，which can be done by driving the P side with the LVCMOS level and connecting the M side to ground as shown in 图 84 ．When driven in this manner，the internal $5-\mathrm{k} \Omega$ resistor（connecting the P and M pins to the $0.7-\mathrm{V}$ node）is disconnected from the pins．

图 84．Single－Ended Driving Circuit for SYNC～and SYSREF

8．3．11 Clock Input

The input clock to the device（referred to as the system clock）goes to an input buffer that automatically configures itself either to accept a single－ended clock or a differential clock．The equivalent load on the clock pins in the case of a differential clock input is shown in 图 85 ．For the case of a single－ended clock input，the $5-\mathrm{k} \Omega$ resistor is disconnected from the input．

图 85．Internal Clock Buffer for Differential Clock Mode

If the preferred clocking scheme for the device is single－ended，connect the CLKM pin to ground（in other words， short CLKM directly to AVSS，as shown in 图 86）．In this case，the auto－detect feature shuts down the internal differential clock buffer and the device automatically goes into a single－ended clock input．Connect the single－ ended clock source directly（without decoupling）to the CLKP pin．When using a single－ended clock input，TI recommends using low－jitter，square signals（LVCMOS levels， $1.8-\mathrm{V}$ amplitude）to drive the ADC（refer to technical brief，Clocking High－Speed Data Converters，SLYT075 for further details）．

图 86．Single－Ended Clock Driving Circuit
For differential clocks（such as differential sine－wave，LVPECL，LVDS，and so forth），enable the clock amplifier with the connection scheme shown in 图 87．This same scheme applies when the clock is single－ended but the clock amplitude is either small or its edges are not sharp．In this case，connect the input clock signal with a capacitor to CLKP（as in 图 87）and connect CLKM to ground through a capacitor（that is，ac－coupled to AVSS）．
If a transformer is used with the secondary coil floating（for instance，to convert from single－ended to differential）， the outputs of the transformer can be connected directly to the clock inputs without requiring the $10-\mathrm{nF}$ series capacitors．

图 87．Differential Clock Driving Circuit
To ensure that the aperture delay and jitter are the same for all channels，the device uses a clock tree network to generate individual sampling clocks for each channel．For all channels，the clock is closley matched from the source point to the sampling circuit of each of the eight internal devices．

The jitter cleaners CDCM7005，CDCE72010，or LMK048X series are suitable to generate the system clock and enable high performance．图 88 shows a clock distribution network．

图 88．System Clock Distribution Network

8．3．12 Analog Input and Driving Circuit

8．3．12．1 Signal Input

The analog input to the device can be either ac－or dc－coupled．In ac－coupling，the input common－mode required for device functionality can be forced with the common－mode voltage，generated internally by the device（that comes at the VCM pin）through a resistor，as shown in 图 89．The resistor and capacitor values used for coupling determines the high－pass filter corner of the input circuit；thus，these values are chosen with the frequency of interest in mind．

图 89．AC Coupling

When dc－coupling the analog input，the output common－mode voltage of the driver can be set using the VCM output pin as a reference，as shown in 图 90.

图 90．DC Coupling
Each input interfaces to two sets of identical sampling circuits．The electrical model of the load that each of the sampling networks present is illustrated in 图 91．For the sake of simplification，the MOS switches can be considered as ideal switches．
As illustrated in 图57，图58，and 图59，the scheme of connecting each input sampling circuit to the input pins differs across the three input modes．The time－dependent loading of the input pins therefore is different across the three input modes，and can be determined by referring to 图57，图58，图59，and 图 91.

图 91．Analog Input Sampling Network

8．4 Device Functional Modes

8．4．1 Input Modes

The device supports three input modes：a 16 －input，a 32 －input，and an 8 －input mode using the SEL＿CH［2：0］ register controls．See 表 49 for a listing of register bits that select the 8 －， 16 －，and 32 －input modes．Using the same set of 16 ADCs，the three modes can be used to convert 16,32 ，or 8 input channels，respectively．The performance of the ADC itself depends on the conversion clock frequency，which has a different relationship to the system clock and sampling rates in each of the three modes．Although the ADCs are common to all three modes，the manner in which the ADCs are used determines unique performance characteristics in each mode． For example，the 8 －input mode can have significant interleaving spurs．Additionally，in the 8 －input mode，the conversion phases of two adjacent ADCs are offset by one system clock period．The switching operation in one ADC can affect the performance of the adjacent ADC especially at higher input frequencies．For this reason，only 10 －bit ADC resolution is supported in the 8 －input mode．The restrictions when operating in the different input modes are listed in 表 30.

表 30．Modes Supported in 8－，16－，and 32－Input Modes

ANALOG INPUT MODE	ADC RESOLUTIONS SUPPORTED（Bits）	LVDS DATA RATE MODES SUPPORTED
16	$10,12,14$	$1 \mathrm{X}, 2 \mathrm{X}$
32	$10,12,14$	1 X
8	10	$1 \mathrm{X}, 2 \mathrm{X}$

8．4．2 ADC Resolution Modes

The ADC resolution can be programmed between 10，12，and 14 with the ADC＿RES register control．The maximum conversion rate of each ADC is determined by the programmed ADC resolution．The restrictions when operating with the different ADC resolutions are listed in 表 31.

表 31．Modes Supported in the 10－，12－，and 14－Bit ADC Resolution Modes

ADC RESOLUTION（Bits）	ANALOG INPUT MODES SUPPORTED	MAXIMUM CONVERSION CLOCK（f \mathbf{f}, MHz）
10	$16,8,32$	100
12	16,32	80
14	16,32	65

8．4．3 LVDS and JESD Interface Modes

By default，the LVDS interface is enabled．To disable the LVDS interface，set DIS＿LVDS to 1.
To enable the JESD204B interface，set EN＿JESD to 1．The JESD204B interface is supported only in 16－input and 32 －input modes．

8．4．4 LVDS Serialization and Output Data Rate Modes

The serialization factor of the LVDS interface can be set to 10,12 ， 14 ，or 16 using the SER＿DATA＿RATE register．Additionally，the density of output data payload can be set to 1 X or 2 X mode by using the LVDS＿RATE＿2X register bits．The maximum data rate（in bits per sec）of the LVDS interface is limited． Depending on the input mode，serialization factor，and output data rate mode，the LVDS interface speed restriction may impose additional constraints on the maximum sampling rate achievable．

8．4．5 Power Modes

The ADS52J90 can be configured via SPI or pin settings to a global power－down mode and via pin settings to a fast power－down（standby mode）．During these two modes（global and standby power－down），different internal functions stay powered up，resulting in different power consumption and wake－up times．
In standby mode，all LVDS data lanes are powered down．The bit clock and frame clock lanes remain enabled to save time to sync again on the receiver side．However，in global power－down mode all lanes are powered down and thus this mode requires more time to wake－up because the bit clock and frame clock lanes must sync again with the receiver device．

The device consists of the following key blocks：
－Band－gap circuit，
－Serial interface，
－Reference voltage and current generator，
－ADC analog block that performs a sampling and conversion，
－ADC digital block that includes all the digital post processing blocks（such as the offset，gain，digital HPF，and so forth），
－LVDS data serializer and buffer that converts the ADC parallel data to a serial stream，
－LVDS frame and clock serializer and buffer，and
－PLL（phase－locked loop）that generates a high－frequency clock for both the ADC and serializer．
Of all these blocks，only the band－gap and serial interface block are not powered down using the power－down pins or bits．表 32 lists which blocks in the ADC are powered down using different pins and bits．

表 32．Power－Down Modes Description for the ADC

NAME	TYPE（Pin or Register）	ADC ANALOG	ADC DIGITAL	LVDS DATA SERIALIZER， BUFFER	LVDS FRAME AND CLOCK SERIALIZER， BUFFER	REFERENCE ＋ADC CLOCK BUFFER	PLL	CHANNEL
PDN＿GBL	Pin	Yes $^{(1)}$	Yes	Yes	Yes	Yes	Yes	All ${ }^{(2)}$
GLOBAL＿PDN	Register	Yes	Yes	Yes	Yes	Yes	Yes	All
PDN＿FAST	Pin	Yes	Yes	Yes	No	No	No	All
DIS＿LVDS	Register	No	No	Yes	Yes	No	No	All
PDN＿ANA＿ADCx	Register	Yes	No	No	No	No	No	Individual
PDN＿DIG＿ADCx	Register	No	Yes	No	No	No	No	Individual
PDN＿LVDSx	Register	No	No	Yes	No	No	No	Individual

（1）Yes＝powered down．No＝active．
（2）All＝all channels are powered down．Individual＝only a single channel is powered down，depending upon the corresponding bit．

8．4．6 LVDS Test Pattern Mode

The ADC data coming out of the LVDS outputs can be replaced by different kinds of test patterns．Note that the test patterns replace the data streaming out of the ADCs（more specifically，the DIGRES1 signal）．Therefore，in 16 －， 8 －，and 32 －channel input modes，the pattern that occurs on a per－channel basis can be different for some test patterns．The different test patterns are described in 表 33.

表 33．Description of LVDS Test Patterns

TEST PATTERN MODE	PROGRAMMING THE MODE		TEST PATTERNS REPLACE ${ }^{(1)}$
	THE SAME PATTERN MUST BE COMMON TO ALL DATA LINES	THE PATTERN IS SELECTIVELY REQUIRED ON ONE OR MORE DATA LINE	
All 0s	Set the mode using PAT＿MODES［2：0］	Set PAT＿SELECT＿IND＝1．To output the pattern on the DOUTx line，select PAT＿LVDSx［2：0］	Zeros in all bits （00000000000000）of DIGRESx
All 1 s	Set the mode using PAT＿MODES［2：0］	Set PAT＿SELECT＿IND＝1．To output the pattern on the DOŪTx line，select PAT＿LVDSx［2：0］	Ones in all bits （11111111111111）of DIGRESx
Deskew	Set the mode using PAT＿MODES［2：0］	Set PAT＿SELECT＿IND＝1．To output the pattern on the DOŪTx line，select PAT＿LVDSx［2：0］	DIGRESx word is replaced by alternate 0 s and 1 s （01010101010101）
Sync	Set the mode using PAT＿MODES［2：0］	Set PAT＿SELECT＿IND＝1．To output the pattern on the DOUTx line，select PAT＿LVDSx［2：0］	DIGRESx word is replaced by half 1 s and half 0 s （11111110000000）
Custom	Set the mode using PAT＿MODES［2：0］．Set the desired custom pattern using the CUSTOM＿PATTERN register control．	Set PAT＿SELECT＿IND＝1．To output the pattern on the DOUTx line，select PAT＿LVDSx［2：0］	The word written in the CUSTOM PATTERN control （taken from the MSB side） replaces DIGRESx． （For instance， CUSTOM＿PATTERN＝ 1100101101011100 and DIGRESx＝ 11001011010111 when the serialization factor is 14. ）
Ramp	Set the mode using PAT＿MODES［2：0］	Set PAT＿SELECT＿IND＝1．To output the pattern on the DOUTx line，select PAT＿LVDSx［2：0］	The ADCOUTx word（not the DIGRESx word）is replaced by a word that increments by 1 LSB every conversion clock starting at negative full－scale， increments until positive full－ scale，and wraps back to negative full－scale．
Toggle	Set the mode using PAT＿MODES［2：0］	Set PAT＿SELECT＿IND＝ 1 ．To output the pattern on the DOUTx line，select PAT＿LVDSx［2：0］	The DIGRESx word alternates between two words that are all 1s and all Os．At each setting of the toggle pattern，the start word can either be all 0 s or all 1s． （Alternate between 11111111111111 and 00000000000000．）
PRBS	Set SEL＿PRBS＿PAT＿GBL $=1$ ．Select either custom or ramp pattern with PAT＿MODES［2：0］．Enable PRBS mode using PRBS＿EN．Select the desired PRBS mode using PRBS＿MODE．Reset the PRBS generator with PRBS＿SYNC．	Set PAT＿SELECT＿IND＝ 1 ．Select either custom or ramp pattern with PAT＿LVDSx［2：0］．Enable PRBS mode on DOUTx with the PAT＿PRBS＿LVDSx control． Select the desired PRBS mode using PRBS＿MODE．Reset the PRBS generator with PRBS＿SYNC．	A 16－bit pattern is generated by a 23 －bit（or 9－bit）PRBS pattern generator（taken from the MSB side）and replaces the DIGRESx word．

（1）Shown for a serialization factor of 14.
All patterns listed in 表 33 （except the PRBS pattern）can also be forced on the frame clock output line by using PAT＿MODES＿FCLK［2：0］．To force a PRBS pattern on the frame clock，use the SEL＿PRBS＿PAT＿FCLK， PRBS＿EEN，and PAT＿MODES＿FCLK register controls．

The ramp，toggle，and pseudo－random sequence（PRBS）test patterns can be reset or synchronized by providing a synchronization pulse on the TX＿TRIG pin or by setting and resetting a specific register bit．
These test patterns also function as transport layer test patterns for the JESD204B interface．

8．5 Programming

8．5．1 Serial Peripheral Interface（SPI）Operation

This section discusses the read and write operations of the SPI interface．

8．5．1．1 Serial Register Write Description

Several different modes can be programmed with the serial peripheral interface（SPI）．This interface is formed by the SEN（serial interface enable），SCLK（serial interface clock），SDIN（serial interface data），and RESET pins． The SCLK，SDIN，and RESET pins have a $20-\mathrm{k} \Omega$ pulldown resistor to ground．SEN has a $20-\mathrm{k} \Omega$ pullup resistor to supply．Serially shifting bits into the device is enabled when SEN is low．SDIN serial data are latched at every SCLK rising edge when SEN is active（low）．SDIN serial data are loaded into the register at every 24th SCLK rising edge when SEN is low．If the word length exceeds a multiple of 24 bits，the excess bits are ignored．Data can be loaded in multiples of 24 －bit words within a single active SEN pulse（an internal counter counts the number of 24 clock groups after the SEN falling edge）．Data is divided into two main portions：the register address（ 8 bits）and data（ 16 bits）．图 92 shows the timing diagram for serial interface write operation．

图 92．Serial Interface Timing

Programming（接下页）

8．5．1．2 Register Readout

The device includes an option where the contents of the internal registers can be read back．This readback can be useful as a diagnostic test to verify the serial interface communication between the external controller and AFE．First，the REG＿READ＿EN bit must be set to 1 ．Then，initiate a serial interface cycle specifying the address of the register（ $\mathrm{A}[7: 0]$ ）whose content must be read．The data bits are don＇t care．The device outputs the contents （ $\mathrm{D}[15: 0]$ ）of the selected register on the SDOUT pin．For lower－speed SCLKs，SDOUT can be latched on the SCLK rising edge．For higher－speed SCLKs，latching SDOUT at the next SCLK falling edge is preferable．The read operation timing diagram is shown in 图 93．In readout mode，the REG＿READ＿EN bit can be accessed with SDIN，SCLK，and SEN．To enable serial register writes，set the REG＿READ＿EN bit back to 0 ．

图 93．Serial Interface Register，Read Operation
The device SDOUT buffer is 3 －stated and is only enabled when the REG＿READ＿EN bit is enabled．SDOUT pins from multiple devices can therefore be tied together without any pullup resistors．The SN74AUP1T04 level shifter can be used to convert $1.8-\mathrm{V}$ logic to $2.5-\mathrm{V}$ or $3.3-\mathrm{V}$ logic，if necessary．

9 Application and Implementation

注

Information in the following applications sections is not part of the Tl component specification，and TI does not warrant its accuracy or completeness．Tl＇s customers are responsible for determining suitability of components for their purposes．Customers should validate and test their design implementation to confirm system functionality．

9．1 Application Information

The ADS52J90 supports multiple levels of channel integration（8，16，and 32）with high sampling rates achievable for each channel．The ADS52J90 also has options to synchronize the clocking and LVDS interface of multiple devices．These features，combined with the excellent ADC performance and low power，make the ADS52J90 an excellent choice for applications involving high channel counts．Such applications include ultrasound imaging systems，sonar imaging equipment，and radar．

9．2 Typical Application

An illustration of a system with a channel count of 64 is shown in 图 94 ．In 图 94，the output interface is selected as the LVDS interface．Four ADS52J90 devices，each operating in 16 －input mode，are connected to a single FPGA that aggregates the data from all ADCs for further data processing and storage．

图 94．Application Schematic：64－Channel Medical Ultrasound Receiver Using the ADS52J90

Typical Application（接下页）

9．2．1 Design Requirements

Typical requirements of a medical ultrasound receiver system are listed in 表 34.
表 34．Requirements of a Typical Medical Ultrasound Receiver

DESIGN PARAMETER	EXAMPLE VALUES
Signal center frequency	$5 \mathrm{MHz}-15 \mathrm{MHz}$
Signal bandwidth	2 MHz
Maximum input signal amplitude	100 mV PP
Transducer noise level	$1 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
Total harmonic distortion	40 dBc

The ultrasound system typically has an LNA and a time－dependent gain block at the front－end before the ADC．In an ultrasound receiver，the signal level keeps reducing as a function of time and the role of the front－end blocks is to gain up the signal level without adding too much additional noise．The gain of the front－end can be adjusted so that the input signal to the ADC always remains within its full－scale range．
A sampling rate of approximately 40 MHz to 50 MHz is usually sufficient for such an application．Thus the ADS52 190 can be operated in 16 －input mode．Furthermore，the resolution can be set to 14 bits to maximize the SNR of the device．A higher sampling rate ADC results in a lower noise density in the signal band of interest．For example，an ADC with a $2-V_{P P}$ input operating at 50 MSPS with an SNR of 73 dBFS has a noise level of approximately $35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ referred to the input of the ADC．If the front－end has a gain of 40 dB ，the ADC noise referred to the input of the front－end is then $0.35 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ ，which in this case is lower than the transducer noise level．

9．2．2 Detailed Design Procedure

The design considerations when designing with the 16－，32－，and 8 －input modes are described in the following sections．

9．2．2．1 Designing with the 16－Input Mode

Mapping of the analog inputs to the LVDS outputs is shown in 表 35 for a case corresponding to a 16 －input mode and a 1 X data rate．

表 35．Mapping of Analog Inputs to LVDS Outputs（16－Input Mode，1X Data Rate）

ANALOG INPUT SIGNAL	CONNECTION TO ANALOG INPUT PINS	SAMPLING INSTANT	ADC WORD	SERIAL OUT （Over Two Frames）	LVDS OUTPUTS ON DOUT PINS
AIN1	IN1	t_{1}	ADCOUT10	Frame 1：ADCOUT1o Frame 2：ADCOUT1e	DOUT1
		t_{2}	ADCOUT1e		
AIN2	IN3	t_{1}	ADCOUT2o	Frame 1：ADCOUT2o Frame 2：ADCOUT2e	DOUT2
		t_{2}	ADCOUT2e		
AIN3	IN5	t_{1}	ADCOUT30	Frame 1：ADCOUT3o Frame 2：ADCOUT3e	DOUT3
		t_{2}	ADCOUT3e		
AIN4	IN7	t_{1}	ADCOUT40	Frame 1：ADCOUT4o Frame 2：ADCOUT4e	DOUT4
		t_{2}	ADCOUT4e		
AIN5	IN9	t_{1}	ADCOUT50	Frame 1：ADCOUT5o Frame 2：ADCOUT5e	DOUT5
		t_{2}	ADCOUT5e		
AIN6	IN11	t_{1}	ADCOUT60	Frame 1：ADCOUT6o Frame 2：ADCOUT6e	DOUT6
		t_{2}	ADCOUT6e		
AIN7	IN13	t_{1}	ADCOUT70	Frame 1：ADCOUT7o Frame 2：ADCOUT7e	DOUT7
		t_{2}	ADCOUT7e		
AIN8	IN15	t_{1}	ADCOUT80	Frame 1：ADCOUT80 Frame 2：ADCOUT8e	DOUT8
		t_{2}	ADCOUT8e		
AIN9	IN17	t_{1}	ADCOUT90	Frame 1：ADCOUT9o Frame 2：ADCOUT9e	DOUT9
		t_{2}	ADCOUT9e		
AIN10	IN19	t_{1}	ADCOUT100	Frame 1：ADCOUT10o Frame 2：ADCOUT10e	DOUT10
		t_{2}	ADCOUT10e		
AIN11	IN21	t_{1}	ADCOUT110	Frame 1：ADCOUT110 Frame 2：ADCOUT11e	DOUT11
		t_{2}	ADCOUT11e		
AIN12	IN23	t_{1}	ADCOUT120	Frame 1：ADCOUT12o Frame 2：ADCOUT12e	DOUT12
		t_{2}	ADCOUT12e		
AIN13	IN25	t_{1}	ADCOUT130	Frame 1：ADCOUT13o Frame 2：ADCOUT13e	DOUT13
		t_{2}	ADCOUT13e		
AIN14	IN27	t_{1}	ADCOUT140	Frame 1：ADCOUT140 Frame 2：ADCOUT14e	DOUT14
		t_{2}	ADCOUT14e		
AIN15	IN29	t_{1}	ADCOUT150	Frame 1：ADCOUT15o Frame 2：ADCOUT15e	DOUT15
		t_{2}	ADCOUT15e		
AIN16	IN31	t_{1}	ADCOUT160	Frame 1：ADCOUT16o Frame 2：ADCOUT16e	DOUT16
		t_{2}	ADCOUT16e		

Mapping of the analog inputs to the LVDS outputs is shown in 表 36 for a case corresponding to a 16 －input mode and a 2 X data rate．

表 36．Mapping of Analog Inputs to LVDS Outputs（16－Input Mode，2X Data Rate）

ANALOG INPUT SIGNAL	CONNECTION TO ANALOG INPUT PINS	SAMPLING INSTANT	ADC WORD	SERIAL OUT （Over Two Frames）	LVDS OUTPUTS ON DOUT PINS
AIN1	IN1	t_{1}	ADCOUT10	Frame 1：ADCOUT1o， ADCOUT2o Frame 2：ADCOUT1e， ADCOUT2e	DOUT1
		t_{2}	ADCOUT1e		
AIN2	IN3	t_{1}	ADCOUT2o		
		t_{2}	ADCOUT2e		
AIN3	IN5	t_{1}	ADCOUT3o	Frame 1：ADCOUT3o， ADCOUT4o Frame 2：ADCOUT3e， ADCOUT4e	DOUT2
		t_{2}	ADCOUT3e		
AIN4	IN7	t_{1}	ADCOUT4o		
		t_{2}	ADCOUT4e		
AIN5	IN9	t_{1}	ADCOUT50	Frame 1：ADCOUT50， ADCOUT6o Frame 2：ADCOUT5e， ADCOUT6e	DOUT3
		t_{2}	ADCOUT5e		
AIN6	IN11	t_{1}	ADCOUT60		
		t_{2}	ADCOUT6e		
AIN7	IN13	t_{1}	ADCOUT70	Frame 1：ADCOUT70， ADCOUT80 Frame 2：ADCOUT7e， ADCOUT8e	DOUT4
		t_{2}	ADCOUT7e		
AIN8	IN15	t_{1}	ADCOUT80		
		t_{2}	ADCOUT8e		
AIN9	IN17	t_{1}	ADCOUT90	Frame 1：ADCOUT9o， ADCOUT10o Frame 2：ADCOUT9e， ADCOUT10e	DOUT9
		t_{2}	ADCOUT9e		
AIN10	IN19	t_{1}	ADCOUT100		
		t_{2}	ADCOUT10e		
AIN11	IN21	t_{1}	ADCOUT110	Frame 1：ADCOUT11o， ADCOUT12o Frame 2：ADCOUT11e， ADCOUT12e	DOUT10
		t_{2}	ADCOUT11e		
AIN12	IN23	t_{1}	ADCOUT120		
		t_{2}	ADCOUT12e		
AIN13	IN25	t_{1}	ADCOUT130	Frame 1：ADCOUT130， ADCOUT14 Frame 2：ADCOUT13e， ADCOUT14e	DOUT11
		t_{2}	ADCOUT13e		
AIN14	IN27	t_{1}	ADCOUT140		
		t_{2}	ADCOUT14e		
AIN15	IN29	t_{1}	ADCOUT150	Frame 1：ADCOUT150， ADCOUT16o Frame 2：ADCOUT15e， ADCOUT16e	DOUT12
		t_{2}	ADCOUT15e		
AIN16	IN31	t_{1}	ADCOUT160		
		t_{2}	ADCOUT16e		

表 35 and 表 36 illustrate that the ADCs convert the odd numbered input when operating in the 16 －input mode． Each ADC can be set to convert the following even numbered input using the register control IN＿CH＿ADCx．The performance of the ADC may slightly degrade when IN＿CH＿ADCx is set to 1 ．

In 16 －input mode，there is a one－to－one mapping between the inputs and the ADCs．The register map relative to the ADCs can therefore be mapped to the 16 channels，as shown in 表 37.

表 37．Reinterpretation of the Register Map in 16－Input Mode

REGISTER MAP NOTATION	MAPPING TO CHANNELS IN 16－INPUT MODE	EXAMPLE
GAIN＿ADCxo， GAIN＿ADCxe	GAIN＿CHANNELx	GAIN＿CHANNEL1＝GAIN＿ADC1o（same for GAIN＿ADC1e） （Set odd and even gains of the same ADC to the same setting）
OFFSET＿ADCxo， OFFSET＿ADCxe	OFFSET＿CHANNELx	OFFSET＿CHANNEL1＝OFFSET＿ADC1o（same for OFFSET＿ADC1e （Set odd and even offsets of the same ADC to the same setting）
PDN＿DIG＿ADCx	PDN＿DIG＿CHANNELx	PDN＿DIG＿CHANNEL1＝PDN＿DIG＿ADC1
PDN＿ANA＿ADCx	PDN＿ANA＿CHANNELx	PDN＿ANA＿CHANNEL1＝PDN＿ANA＿ADC1
DIG＿HPF＿EN＿ADCx	Mapped to 4 channels	DIG＿HPF＿EN＿CHANNEL1－4＝DIG＿HPF＿EN＿ADC1－4 Common setting for 4 ADCs maps to common setting for 4 channels
HPF＿CORNER＿ADCx	Mapped to 4 channels	HPF＿CORNER＿CHANNEL1－4 $=$ HPF＿CORNER＿ADC1－4 Common setting for 4 ADCs maps to common setting for 4 channels

9．2．2．2 Designing with the 32－Input Mode

Mapping of the analog inputs to the LVDS outputs is shown in 表 38 for a case corresponding to a 32 －input mode and a 1 X data rate．

表 38．Mapping of Analog Inputs to LVDS Outputs（32－Input Mode，1X Data Rate）

ANALOG INPUT SIGNAL	CONNECTION TO ANALOG INPUT PINS	SAMPLING INSTANT	ADC WORD	SERIAL＿OUT （Over One Frame）	LVDS OUTPUTS ON DOUT PINS
AIN1	IN1	t_{1}	ADCOUT10		
AIN2	IN2	t_{2}	ADCOUT1e	ADCOUT1e	

表 38．Mapping of Analog Inputs to LVDS Outputs（32－Input Mode，1X Data Rate）（接下页）

ANALOG INPUT SIGNAL	CONNECTION TO ANALOG INPUT PINS	SAMPLING INSTANT	ADC WORD	SERIAL OUT （Over One Frame）	LVDS OUTPUTS ON DOUT PINS
AIN27	IN27	t_{1}	ADCOUT140	ADCOUT140， ADCOUT14e	DOUT14
AIN28	IN28	t_{2}	ADCOUT14e		
AIN29	IN29	t_{1}	ADCOUT150	ADCOUT150， ADCOUT15e	DOUT15
AIN30	IN30	t_{2}	ADCOUT15e		
AIN31	IN31	t_{1}	ADCOUT160	ADCOUT160， ADCOUT16e	DOUT16
AIN32	IN32	t_{2}	ADCOUT16e		

Note that 2 X data rate mode is not supported in 32 －input mode．In 32 －input mode，only one ADC is used to convert two inputs．

The odd numbered inputs correspond to the odd sample from the ADC，and the even numbered inputs correspond to the even sample from the ADC．The register map relative to the ADCs can therefore be mapped to the 32 channels，as shown in 表 39.

表 39．Reinterpretation of Register Map in 32－Input Mode

REGISTER MAP NOTATION	MAPPING TO CHANNELS IN 16－INPUT MODE	EXAMPLE
GAIN＿ADCxo	GAIN＿CHANNEL（odd）	GAIN＿CHANNEL1＝GAIN＿ADC10
GAIN＿ADCxe	GAIN＿CHANNEL（even）	GAIN＿CHANNEL2＝GAIN＿ADC1e
OFFSET＿ADCXo	OFFSET＿CHANNEL（odd）	OFFSET＿CHANNEL1＝OFFSET＿ADC10
OFFSET＿ADCxe	OFFSET＿CHANNEL（even）	OFFSET＿CHANNEL2＝OFFSET＿ADC1e
PDN＿DIG＿ADCx	PDN＿DIG＿CHANNEL（odd and even）	PDN DIG CHANNEL1＝ PDN＿DIG＿CHANNEL2 $=$ PDN＿DIG＿ADC1
PDN＿ANA＿ADCx	PDN＿ANA＿CHANNEL（odd and even）	PDN ANA CHANNEL1＝ PDN＿ANA＿CHANNEL2 $=$ PDN＿ANA＿ADC1
DIG＿HPF＿EN＿ADCx	Mapped to 8 channels	DIG＿HPF＿EN＿CHANNEL1－8＝ DIG＿HPF＿EN＿ADC1－4 Common setting for 4 ADCs mapped to common setting for 8 channels
HPF＿CORNER＿ADCx	Mapped to 8 channels	HPF＿CORNER＿CHANNEL1－8＝ HPF＿CORNER＿ADC1－4 Common setting for 4 ADCs mapped to common setting for 8 channels

9．2．2．3 Designing with the 8－Input Mode

Mapping of the analog inputs to the LVDS outputs is shown in 表 40 for a case corresponding to an 8 －input mode and a 1 X data rate．

表 40．Mapping of Analog Inputs to LVDS Outputs（8－Input Mode，1X Data Rate）

ANALOG INPUT SIGNAL	CONNECTION TO ANALOG INPUT PINS	SAMPLING INSTANT	ADC WORD	SERIAL OUT （Over Two Frames）	LVDS OUTPUTS ON DOUT PINS
AIN1	IN1，IN3 （shorted externally）	t_{1}	ADCOUT10	Frame 1：ADCOUT1o Frame 2：ADCOUT1e	DOUT1
		t_{2}	ADCOUT2o		
		t_{3}	ADCOUT1e	Frame 1：ADCOUT2o Frame 2：ADCOUT2e	DOUT2
		t_{4}	ADCOUT2e		
AIN2	IN5，IN7 （shorted externally）	t_{1}	ADCOUT3o	Frame 1：ADCOUT3o Frame 2：ADCOUT3e	DOUT3
		t_{2}	ADCOUT4o		
		t_{3}	ADCOUT3e	Frame 1：ADCOUT4o Frame 2：ADCOUT4e	DOUT4
		t_{4}	ADCOUT4e		
AIN3	IN9，IN11 （shorted externally）	t_{1}	ADCOUT5o	Frame 1：ADCOUT5o Frame 2：ADCOUT5e	DOUT5
		t_{2}	ADCOUT60		
		t_{3}	ADCOUT5e	Frame 1：ADCOUT6o Frame 2：ADCOUT6e	DOUT6
		t_{4}	ADCOUT6e		
AIN4	IN13，IN15 （shorted externally）	t_{1}	ADCOUT7o	Frame 1：ADCOUT7o Frame 2：ADCOUT7e	DOUT7
		t_{2}	ADCOUT80		
		t_{3}	ADCOUT7e	Frame 1：ADCOUT80 Frame 2：ADCOUT8e	DOUT8
		t_{4}	ADCOUT8e		
AIN5	IN17，IN19 （shorted externally）	t_{1}	ADCOUT9o	Frame 1：ADCOUT9o Frame 2：ADCOUT9e	DOUT9
		t_{2}	ADCOUT100		
		t_{3}	ADCOUT9e	Frame 1：ADCOUT10o Frame 2：ADCOUT10e	DOUT10
		t_{4}	ADCOUT10e		
AIN6	IN21，IN23 （shorted externally）	t_{1}	ADCOUT110	Frame 1：ADCOUT110 Frame 2：ADCOUT11e	DOUT11
		t_{2}	ADCOUT120		
		t_{3}	ADCOUT11e	Frame 1：ADCOUT12o Frame 2：ADCOUT12e	DOUT12
		t_{4}	ADCOUT12e		
AIN7	IN25，IN27 （shorted externally）	t_{1}	ADCOUT130	Frame 1：ADCOUT13o Frame 2：ADCOUT13e	DOUT13
		t_{2}	ADCOUT140		
		t_{3}	ADCOUT13e	Frame 1：ADCOUT140 Frame 2：ADCOUT14e	DOUT14
		t_{4}	ADCOUT14e		
AIN8	IN29，IN31 （shorted externally）	t_{1}	ADCOUT150	Frame 1：ADCOUT15o Frame 2：ADCOUT15e	DOUT15
		t_{2}	ADCOUT160		
		t_{3}	ADCOUT15e	Frame 1：ADCOUT16o Frame 2：ADCOUT16e	DOUT16
		t_{4}	ADCOUT16e		

ADS52J90
www．ti．com．cn
Mapping of the analog inputs to the LVDS outputs is shown in 表 41 for a case corresponding to an 8 －input mode and a 2 X data rate．

表 41．Mapping of Analog Inputs to LVDS Outputs（8－Input Mode，2X Data Rate）

ANALOG INPUT SIGNAL	CONNECTION TO ANALOG INPUT PINS	SAMPLING INSTANT	ADC WORD	SERIAL OUT （Over Two Frames）	LVDS OUTPUTS ON DOUT PINS
AIN1	IN1，IN3 （shorted externally）	t_{1}	ADCOUT10	Frame 1：ADCOUT1o， ADCOUT2o	DOUT1
		t_{2}	ADCOUT2o		
		t_{3}	ADCOUT1e	Frame 2：ADCOUT1e， ADCOUT2e	
		t_{4}	ADCOUT2e		
AIN2	IN5，IN7 （shorted externally）	t_{1}	ADCOUT3o	Frame 1：ADCOUT3o， ADCOUT4o	DOUT2
		t_{2}	ADCOUT4o		
		t_{3}	ADCOUT3e	Frame 2：ADCOUT3e， ADCOUT4e	
		t_{4}	ADCOUT4e		
AIN3	IN9，IN11 （shorted externally）	t_{1}	ADCOUT50	Frame 1：ADCOUT5o， ADCOUT60	DOUT3
		t_{2}	ADCOUT60		
		t_{3}	ADCOUT5e	Frame 2：ADCOUT5e， ADCOUT6e	
		t_{4}	ADCOUT6e		
AIN4	IN13，IN15 （shorted externally）	t_{1}	ADCOUT70	Frame 1：ADCOUT70， ADCOUT80	DOUT4
		t_{2}	ADCOUT80		
		t_{3}	ADCOUT7e	Frame 2：ADCOUT7e， ADCOUT8e	
		t_{4}	ADCOUT8e		
AIN5	IN17，IN19 （shorted externally）	t_{1}	ADCOUT90	Frame 1：ADCOUT9o， ADCOUT10o	DOUT9
		t_{2}	ADCOUT100		
		t_{3}	ADCOUT9e	Frame 2：ADCOUT9e， ADCOUT10e	
		t_{4}	ADCOUT10e		
AIN6	IN21，IN23 （shorted externally）	t_{1}	ADCOUT110	Frame 1：ADCOUT11o， ADCOUT12o	DOUT10
		t_{2}	ADCOUT120		
		t_{3}	ADCOUT11e	Frame 2：ADCOUT11e， ADCOUT12e	
		t_{4}	ADCOUT12e		
AIN7	IN25，IN27 （shorted externally）	t_{1}	ADCOUT130	Frame 1：ADCOUT13o， ADCOUT14	DOUT11
		t_{2}	ADCOUT140		
		t_{3}	ADCOUT13e	Frame 2：ADCOUT13e， ADCOUT14e	
		t_{4}	ADCOUT14e		
AIN8	IN29，IN31 （shorted externally）	t_{1}	ADCOUT150	Frame 1：ADCOUT150， ADCOUT16o	DOUT12
		t_{2}	ADCOUT160		
		t_{3}	ADCOUT15e	Frame 2：ADCOUT15e， ADCOUT16e	
		t_{4}	ADCOUT16e		

In 8－input mode，two neighboring ADCs are used to convert a single input．The register map relative to the ADCs can be mapped to the eight channels，as shown in 表 42.

表 42．Reinterpretation of Register Map in 8－input Mode

REGISTER MAP NOTATION	MAPPING TO CHANNELS IN 16－INPUT MODE	EXAMPLE
GAIN＿ADCxo， GAIN＿ADCxe of two adjacent channels	GAIN＿CHANNELx	GAIN＿CHANNEL1＝GAIN＿ADC1o（same for GAIN＿ADC1e，GAIN＿ADC2o，and GAIN＿ADC2e） Set odd and even gains of two adjacent ADCs to the same setting．
OFFSET＿ADCxo， OFFSET＿ADCxe	OFFSET＿CHANNELx	OFFSET＿CHANNEL1＝OFFSET＿ADC1o（same for OFFSET＿ADC1e， OFFSET＿ADC2o，and OFFSET＿ADC2e） Set odd and even offsets of two adjacent ADCs to the same setting．
PDN＿DIG＿ADCx of two adjacent channels	PDN＿DIG＿CHANNELx	PDN＿DIG＿CHANNEL1＝PDN＿DIG＿ADC1（same for PDN＿DIG＿ADC2） Set the power－down for two adjacent ADCs to the same setting．
PDN＿ANA＿ADCx of two adjacent channels	PDN＿ANA＿CHANNELx	PDN＿ANA＿CHANNEL1＝PDN＿ANA＿ADC1（same for PDN＿ANA＿ADC2） Set the power－down for two adjacent ADCs to the same setting．
DIG＿HPF＿EN＿ADCx	Mapped to 2 channels	DIG＿HPF＿EN＿CHANNEL1－2 $=$ DIG＿HPF＿EN＿ADC1－4 Common setting for 4 ADCs mapped to the common setting for 2 channels．
HPF＿CORNER＿ADCx	Mapped to 2 channels	HPF＿CORNER＿CHANNEL1－2 $=$ HPF＿CORNER＿ADC1－4 Common setting for 4 ADCs mapped to the common setting for 2 channels．

9．2．3 Application Curves

This section outlines the trends described in the Typical Characteristics section from an application perspective．
图 2 illustrates the FFT with a $5-\mathrm{MHz}$ input signal for 32 －input mode with the ADC resolution set to 10 bits．The system clock provided is 100 MSPS and the input is sampled at an effective rate of 50 MSPS，which is the maximum sampling rate for this mode of operation．
图 3 illustrates the FFT with a $5-\mathrm{MHz}$ input signal for 16 －input mode with the ADC resolution set to 10 bits．The system clock provided is 100 MSPS and the input is sampled at an effective rate of 100 MSPS，which is the maximum sampling rate for this mode of operation．

图 4 illustrates the FFT with a $5-\mathrm{MHz}$ input signal for 8 －input mode with the ADC resolution set to 10 bits．The system clock provided is 200 MSPS and the input is sampled at an effective rate of 200 MSPS，which is the maximum sampling rate for this mode of operation．The increase in sampling rate is achieved through two ADCs converting the same input in an interleaved manner．The interleaving spurs are visible in the FFT．The predominant spur is at the frequencies of（ $\mathrm{f}_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{IN}}$ ），which appear at 95 MHz ．Additional spurs are at the frequencies of（ $f_{S} / 4 \pm f_{I N}$ ），which appear at 45 MHz and 55 MHz ．The magnitude of the spurs is expected to rise when the input frequency is increased．Also，the spur level is sensitive to the matching of the manner in which the two sets of input pins are driven．A spur at $f_{\mathrm{s}} / 4$ is also seen．This arises from the offset mismatch between the four sets of sampling circuits used to sample the same input．
图 5 illustrates the FFT with a $5-\mathrm{MHz}$ input signal for 32 －input mode with the ADC resolution set to 12 bits．The system clock provided is 80 MSPS and the input is sampled at an effective rate of 40 MSPS，which is the maximum sampling rate for this mode of operation．
图 6 illustrates the FFT with a $5-\mathrm{MHz}$ input signal for 16 －input mode with the ADC resolution set to 12 bits．The system clock provided is 80 MSPS and the input is sampled at an effective rate of 80 MSPS，which is the maximum sampling rate for this mode of operation．
图 7 illustrates the FFT with a $5-\mathrm{MHz}$ input signal for 32 －input mode with the ADC resolution set to 14 bits．The system clock provided is 65 MSPS and the input is sampled at an effective rate of 32.5 MSPS，which is the maximum sampling rate for this mode of operation．
图 8 illustrates the FFT with a $5-\mathrm{MHz}$ input signal for 16 －input mode with the ADC resolution set to 14 bits．The system clock provided is 65 MSPS and the input is sampled at an effective rate of 65 MSPS，which is the maximum sampling rate for this mode of operation．In addition to the harmonics，the spur at the frequency（ $\mathrm{f}_{\mathrm{S}} / 2$ $\pm \mathrm{f}_{\mathrm{IN}}$ ）also occurs at 27.5 MHz ．This spur is caused by the interleaved sampling of the input signal by two physically different sampling circuits of the same ADC．

图 9 illustrates the signal－to－noise ratio（SNR）versus the frequency of the input signal for 32 －input mode with the ADC resolution set to 10 bits．SNR is expressed in the dBFS scale where the RMS noise at the ADC output is referred to the full－scale differential voltage of 2 V ．The system clock provided is 100 MSPS and the input is sampled at an effective rate of 50 MSPS．SNR is computed by integrating the noise in all FFT bins after excluding the first nine harmonics．SNR is dominated by the quantization noise of the 10－bit conversion．
图 10 illustrates SNR versus the frequency of the input signal for 16 －input mode with the ADC resolution set to 10 bits．The system clock provided is 100 MSPS and the input is sampled at an effective rate of 100 MSPS．SNR is computed by integrating the noise in all FFT bins after excluding the first nine harmonics and any interleaving spurs．SNR is dominated by the quantization noise of the 10 －bit conversion．
图 11 illustrates SNR versus the frequency of the input signal for 8 －input mode with the ADC resolution set to 10 bits．The system clock provided is 200 MSPS and the input is sampled at an effective rate of 200 MSPS．SNR is computed by integrating the noise in all FFT bins after excluding the first nine harmonics and any interleaving spurs at（ $f_{S} / 2 \pm f_{\mathrm{f}_{\mathrm{N}}}$ ）and（ $\mathrm{f}_{\mathrm{S}} / 4 \pm \mathrm{f}_{\mathrm{IN}}$ ）as well as additional spurs at $\mathrm{f}_{\mathrm{S}} / 2$ and $\mathrm{f}_{\mathrm{S}} / 4$ ．SNR is dominated by the quantization noise of the 10－bit conversion．
图 12 illustrates SNR versus the frequency of the input signal for 32－input mode with the ADC resolution set to 12 bits．The system clock provided is 80 MSPS and the input is sampled at an effective rate of 40 MSPS．
图 13 illustrates SNR versus the frequency of the input signal for 16 －input mode with the ADC resolution set to 12 bits．The system clock provided is 80 MSPS and the input is sampled at an effective rate of 80 MSPS．
图 14 illustrates SNR versus the frequency of the input signal for 32－input mode with the ADC resolution set to 14 bits．The system clock provided is 65 MSPS and the input is sampled at an effective rate of 32.5 MSPS．SNR at high input frequencies degrades because of clock jitter．
图 15 illustrates SNR versus the frequency of the input signal for 16 －input mode with the ADC resolution set to 14 bits．The system clock provided is 65 MSPS and the input is sampled at an effective rate of 65 MSPS．

图 16 illustrates the amplitude of the third－order harmonic distortion（HD3）of the input signal versus the frequency of the input signal．The unit of dBc indicates that the HD3 amplitude is referred to the amplitude of the input signal，which is set to -1 dBFS．图 16 is taken for 32 －input mode with the ADC resolution set to 10 bits．The system clock provided is 100 MSPS and the input is sampled at an effective rate of 50 MSPS．The device follows a similar trend across the other input modes and resolutions．

图 17 illustrates the amplitude of the second－order harmonic distortion（HD2）of the input signal versus the frequency of the input signal．The unit of dBc indicates that the HD2 amplitude is referred to the amplitude of the input signal，which is set to -1 dBFS．图 17 is taken for 32 －input mode with the ADC resolution set to 10 bits．The system clock provided is 100 MSPS and the input is sampled at an effective rate of 50 MSPS．The device follows a similar trend across the other input modes and resolutions．
图 18 illustrates the total harmonic distortion（THD）versus the frequency of the input signal．The THD parameter includes the RMS amplitude of the first nine harmonics of the fundamental signal．The unit of dBc indicates that THD is referred to the amplitude of the input signal，which is set to -1 dBFS ．图 18 is taken for 32 －input mode with the ADC resolution set to 10 bits．The system clock provided is 100 MSPS and the input is sampled at an effective rate of 50 MSPS．The device follows a similar trend across the other input modes and resolutions．
图 19 illustrates the interleaving spur at（ $\mathrm{f}_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{IN}}$ ）versus the frequency of the input signal．图 19 is taken for 8 － input mode with the ADC resolution set to 10 bits．The system clock is set to 200 MSPS and the input is sampled at an effective rate of 200 MSPS．The interleaving spur at（ $\mathrm{f}_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{IN}}$ ）is referred to the fundamental amplitude， which is at a level of -1 dBFS ．The（ $\mathrm{f}_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{N}}$ ）spur comes about because of the interleaved conversion of the same input by two ADCs．As illustrated in 图 19，the interleaving spur gets much worse at higher input frequencies．This degradation results from the fact that when the input frequency is increased，any mismatch in the sampling bandwidths and sampling instants of the two interleaved ADCs leads to a larger phase error between the interleaved conversions．
图 20 illustrates the interleaving spur at（ $\mathrm{f}_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{IN}}$ ）versus the frequency of the input signal．图 20 is taken for 16 －input mode with the ADC resolution set to 10 bits．The system clock is set to 100 MSPS and the input is sampled at an effective rate of 100 MSPS ．The（ $\mathrm{f}_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{IN}}$ ）spur comes about because of the interleaved sampling of the input by the two sampling circuits of one ADC．Although not as bad as the（ $\mathrm{f}_{\mathrm{S}} / 2 \pm \mathrm{f}_{\mathrm{IN}}$ ）spur for 8 － input mode，the interleaving spur could still be the dominant factor governing the SFDR at high input frequencies．

图 21 illustrates the interleaving spur at（ $\mathrm{f}_{\mathrm{S}} / 4 \pm \mathrm{f}_{\mathrm{IN}}$ ）versus the frequency of the input signal．图 21 is taken for 8 － input mode with the ADC resolution set to 10 bits．The system clock is set to 200 MSPS and the input is sampled at an effective rate of 200 MSPS．In 8 －input mode，there are a total of four sampling circuits（two in each ADC） that sample the same input in sequence．The（ $f_{\mathrm{S}} / 4 \pm \mathrm{f}_{\mathrm{IN}}$ ）spur comes about from mismatches between these four sampling circuits．
图 22 illustrates SNR in dBFS as a function of the input amplitude，also expressed in dBFS．SNR excludes the first nine harmonics and the interleaving spurs．图 22 is taken for the 16 －input mode with the ADC resolution set to 14 bits．The system clock is set to 65 MSPS and the input is sampled at an effective rate of 65 MSPS．The points in the left extreme of the curve provide an estimate of the idle channel SNR（SNR in the absence of an input signal）．
图 23 illustrates the spurious－free dynamic range（SFDR）as a function of the input amplitude．图 23 is taken for 32 －input mode with the ADC resolution set to 14 bits．In 32 －input mode，there is no interleaved operation of any sort and SFDR is a true measure of ADC conversion performance．As mentioned previously，SFDR may be dominated by interleaving spurs（and significantly lower than 32 －input mode）when operated in 16 －input or 8 － input modes．SFDR is plotted in both dBc and dBFS：the former referring the amplitude of the worst－spur to the fundamental amplitude and the latter to the full－scale voltage．
图 24 illustrates SNR as a function of the input common－mode voltage（average of INP and INM）．图 24 is taken for 16 －input mode with the ADC resolution set to 14 bits．The device is meant to be operated at an input common－mode that is tightly controlled around the ideal value of 0.8 V ．The driving circuit can generate its output common－mode using the $0.8-\mathrm{V}$ reference voltage provided at the VCM pin．
图 25 illustrates SNR as a function of the input clock amplitude（expressed in differential V_{PP} ）when driven with a differential sine－wave clock input．At small input amplitudes，the sine－wave clock has a low $\mathrm{dV} / \mathrm{dt}$ slope at the zero crossings．This low slope can cause increased jitter in the clocking and can lead to a reduction in the SNR within the device．The effect is more pronounced when the input frequency is set to a higher value（as is evidenced by the difference in behavior between the $5-\mathrm{MHz}$ and $50-\mathrm{MHz}$ inputs）．The recommended manner to drive the device is with an LVPECL clock．
图 26 illustrates SNR as a function of the duty cycle of a differential clock input．Ideally，the device is driven with a 50% clock；see the Electrical Characteristics table for the acceptable variation around 50% duty cycle．
图 27 illustrates the channel－to－channel crosstalk as a function of the analog input frequency．An analog input of a -1 －dBFS amplitude is applied on one channel and the crosstalk spur（at the input frequency）is measured on all channels．The worst of the crosstalk numbers（usually on the physically closest channel）is plotted．
图 28 illustrates the integral nonlinearity（INL）versus ADC code．The device is operated in 32 －input mode at 14－ bit resolution with an effective sampling rate of 32.5 MSPS ．图 28 provides an accurate INL estimate of the ADC inside the device because there is no interleaving of any kind in the 32－input mode operation．
图 29 illustrates the differential nonlinearity（DNL）versus ADC code．The device is operated in 32 －input mode at 14 －bit resolution with an effective sampling rate of 32.5 MSPS．The saturation of the DNL on the lower side to -1 indicates missing codes at the 14－bit level．
图 30 illustrates the power－supply rejection ratio（PSRR）as a function of the tone frequency applied on the supply．A tone is applied on the supplies and the tone at the same frequency is measured at the device output． The unit of dBc refers to the relation of the amplitude of the output tone to the amplitude of the supply tone that is set to $100 \mathrm{mV} \mathrm{V}_{\mathrm{PP}}$ for this measurement．
图 31 illustrates the power－supply modulation ratio（PSMR）as a function of the tone frequency applied on the supply．A $-1-\mathrm{dBFS}$ input at 5 MHz is applied on the analog input．Simultaneously，a $100-\mathrm{mV}$ PP tone is applied on the supply．The tone caused by the intermodulation between the supply tone and the input tone is measured at the device output．PSMR refers to the intermodulation tone referred to in terms of dBc to the amplitude of the input tone．
图 32 illustrates the common－mode rejection ratio（CMRR）as a function of the tone frequency applied as a common－mode signal on the input pins．A $50-\mathrm{mV}$ Pp common－mode signal is applied to INP and INM around the ideal common－mode voltage of 0.8 V ．The amplitude of the tone at the same frequency is measured at the device output．CMRR refers to the amplitude of this output tone referred to in terms of dBc to the amplitude of the common－mode input tone．

图 33 illustrates the current of the AVDD＿1P8 supply as a function of f_{c} ，the conversion clock frequency．The relation of the sampling rate to the conversion clock frequency is different between the $16-32$－，and 8 －input modes and therefore the curve can be appropriately interpreted for each mode．The curve extends to a conversion clock frequency of up to 100 MSPS，which is the maximum value for the 10 －bit ADC resolution．For the 12－and 14－bit ADC resolutions，sections of the same curve up to 80 MSPS and 65 MSPS（respectively）are applicable．
图 34 illustrates the current of the DVDD＿1P8 supply as a function of the conversion clock frequency．All 16 LVDS buffers are on during this measurement．

图 35 illustrates the current of the DVDD＿1P2 supply as a function of the conversion clock frequency．
图 36 illustrates the total power consumption as a function of the conversion clock frequency．The power per input channel can be calculated by dividing this total power by 8,16 ，or 32 for the 8 －， 16 －，or 32 －input modes．
图 37 illustrates the digital high－pass filter response for different settings of the HPF corner frequency．
图 38 illustrates the typical minimum and maximum SNR values taken across 100 devices operating in the 14－bit， 32 －input mode at $f_{C}=65$ MSPS（corresponding to $f_{\text {SAMP }}=32.5$ MSPS）．A trend can be observed across channels and originates from the physical placement and routing of common signals（such as reference voltage and power）to the channels．Depending on the way the channel data are combined，an averaging effect can result when the system－level SNR is computed．
图 39 illustrates a plot of the low－frequency noise from the device with and without the chopper enabled．When the chopper is enabled（using the CHOPPER＿EN register control），the low－frequency noise generated inside the device is shifted to approximately $\mathrm{f}_{\mathrm{S}} / 2$ ．Chopper mode is useful when the signal frequency of interest is close to dc．
图 48 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 32－ input mode operating with a 10 －bit ADC resolution．

图 49 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 16－ input mode operating with a 10 －bit ADC resolution．
图 50 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 8－ input mode operating with a 10 －bit ADC resolution．

图 51 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 32－ input mode operating with a 12 －bit ADC resolution．
图52 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 16－ input mode operating with a 12 －bit ADC resolution．
图 53 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 32－ input mode operating with a 14－bit ADC resolution．
图 54 illustrates a contour plot of SNR as a function of both the input frequency and sampling frequency for 16－ input mode operating with a 14 －bit ADC resolution．

9．3 Do＇s and Don＇ts

Driving the inputs（analog or digital）beyond the power－supply rails．For device reliability，an input must not go more than 300 mV below the ground pins or 300 mV above the supply pins．Exceeding these limits，even on a transient basis，can cause faulty or erratic operation and can impair device reliability．
Driving the device signal input with an excessively high level signal．The device offers consistent and fast overload recovery for an overload of upto 6 dBFS ．For very large overload signals（ $>6 \mathrm{~dB}$ of the linear input signal range），TI recommends back－to－back Schottky clamping diodes at the input to limit the amplitude of the input signal．
Using a clock source with excessive jitter，an excessively long input clock signal trace，or having other signals coupled to the ADC clock signal trace．These situations cause the sampling instant vary，causing an excessive output noise and a reduction in SNR performance．For a system with multiple devices，the clock tree scheme must be used to apply an ADC clock．Excessive clock delay mismatch between devices can also lead to latency mismatch and functional failure at the system level．
LVDS routing length mismatch．The routing length of all LVDS lines routing to the FPGA must be matched to avoid any timing－related issues．For systems with multiple devices，the LVDS serialized data clock（DCLKP， DCLKM）and the frame clock（FCLKP，FCLKM）of each individual device must be used to deserialize the corresponding LDVS serialized data（DOUTP，DOUTM）．
Failure to provide adequate heat removal．Use the appropriate thermal parameter listed in the Thermal Information table and an ambient，board，or case temperature in order to calculate device junction temperature．A suitable heat removal technique must be used to keep the device junction temperature below the maximum limit of $105^{\circ} \mathrm{C}$ ．

10 Power Supply Recommendations

The device requires three supplies in order to operate properly．These supplies are AVDD＿1P8，DVDD＿1P8，and DVDD＿1P2．All supplies must be driven with low－noise sources to be able to achieve the best performance from the device．When determining the drive current needed to drive each of the supplies of the device，a margin of $50-100 \%$ over the typical current might be needed to account for the current consumption across different modes of operation．

10．1 Power Sequencing and Initialization

图 95 shows the suggested power－up sequencing and reset timing for the device．Note that the DVDD＿1P2 supply must rise before the AVDD＿1P8 supply．If the AVDD＿1P8 supply rises before the DVDD＿1P2 supply，the AVDD＿1P8 supply current is several times higher than the normal operating current until the time the DVDD＿1P2 supply reaches the 1．2－V level．
The device requires register described in 表 43 to be written as part of the initialization．
表 43．Initialization Register Details

INITIALIZATION REGISTER ADDRESS	16－BIT DATA WORD TO BE WRITTEN
OAh	3000 h

The initialization sequence is described below：
1．Power－up the supplies as indicated，
2．Apply a hardware reset pulse，
3．Write the initialization register listed in 表 43 through the SPI interface，
4．Write other device settings through the SPI interface，and
5．After a wait time，the device is ready for high accuracy operation．

The power sequence and initialization is shown in 图 95.

图 95．Power Sequencing and Initialization
The timing parameters corresponding to 图 95 are shown in 表 44.
表 44．Timing for Power Sequencing and Initialization

		MIN	MAX
t_{1}	Ramp－up time of DVDD＿1P2	10μ	50 m
t_{2}	Ramp up time of AVDD＿1P8 and DVDD＿1P8	10μ	50 m
t_{3}	Time between DVDD＿1P2 and AVDD＿1P8 start of ramp up	s	
t_{4}	Time between supplies stabilizing and application of a hardware reset	t_{1}	10
t_{5}	Width of hardware reset	100	ms
t_{6}	Time between hardware reset and SPI write for device initialization and programming of device settings	100	ns
t_{7}	Time between programming of device settings and synchronization using TX＿TRIG	100	ns
t_{8}	Time between TX＿TRIG pulse and device ready for high－ accuracy operation	10	ns

11 Layout

11．1 Power Supply，Grounding，and Bypassing

In a mixed－signal system design，the power－supply and grounding design plays a significant role．The device distinguishes between two different grounds：AVSS（analog ground）and DVSS（digital ground）．In most cases， laying out the PCB to use a single ground plane is adequate．However，in high－frequency or high－performance systems，care must be taken so that this ground plane is properly partitioned between various sections within the system to minimize interactions between analog and digital circuitry．Alternatively，the digital supply set consisting of the DVDD＿1P8，DVDD＿1P2，and DVSS pins can be placed on separate power and ground planes． For this configuration，tie the AVSS and DVSS grounds together at the power connector in a star layout．In addition，optical or digital isolators（such as the ISO7240）can completely separate the analog portion from the digital portion．Consequently，such isolators prevent digital noise from contaminating the analog portion．表 45 lists the related circuit blocks for each power supply．

表 45．Supply versus Circuit Blocks

POWER SUPPLY	GROUND	CIRCUIT BLOCKS
AVDD＿1P8	AVSS	ADC analog，reference voltage and current generator，band－gap circuit， and ADC clock buffer
DVDD＿1P8	DVSS	LVDS serializer and buffer，and PLL
DVDD＿1P2	DVSS	ADC digital and serial interface

Reference all bypassing and power supplies for the device to their corresponding ground planes．Bypass all supply pins with $0.1-\mu \mathrm{F}$ ceramic chip capacitors（size 0603 or smaller）．In order to minimize the lead and trace inductance，the capacitors must be located as close to the supply pins as possible．Where double－sided component mounting is allowed，these capacitors are best placed directly under the package．In addition，larger bipolar decoupling capacitors（ $2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ ，effective at lower frequencies）can also be used on the main supply pins．These components can be placed on the PCB in close proximity（ <0.5 inch or 12.7 mm ）to the device itself．
Bypass the VCM pin with at least a $1-\mu \mathrm{F}$ capacitor；higher value capacitors can be used for better low－frequency noise suppression．For best results，choose low－inductance ceramic chip capacitors（size 0402，＞1 $\mu \mathrm{F}$ ）placed as close as possible to the device pin．

11．2 Layout Guidelines

High－speed，mixed－signal devices are sensitive to various types of noise coupling．One primary source of noise is the switching noise from the serializer and the output buffer and drivers．For the device，care must be taken to ensure that the interaction between the analog and digital supplies within the device is kept to a minimal amount． The extent of noise coupled and transmitted from the digital and analog sections depends on the effective inductances of each of the supply and ground connections．Smaller effective inductances of the supply and ground pins result in better noise suppression．For this reason，multiple pins are used to connect each supply and ground sets．Low inductance properties must be maintained throughout the design of the PCB layout by use of proper planes and layer thickness．
To avoid noise coupling through supply pins，TI recommends keeping sensitive input pins（such as the INM and INP pins）away from the supply planes．For example，do not route the traces or vias connected to these pins across the supply planes．That is，avoid the power planes under the INM and INP pins．
Some layout guidelines associated with the layout of the high speed interfaces are listed below：
－The length of the positive and negative traces of a differential pair must be matched to within 2 mils of each other．
－Each differential pair length must be matched within 10 mils of other differential pairs．
－When the ADC is used on the same printed circuit board（PCB）with a digital intensive component（such as an FPGA or ASIC），separate digital and analog ground planes must be used．Do not overlap these separate ground planes to minimize undesired coupling．
－Connect decoupling capacitors directly to ground and place these capacitors close to the ADC power pins and the power－supply pins to filter high－frequency current transients directly to the ground plane．
－Ground and power planes must be wide enough to keep the impedance very low．In a multilayer PCB，one layer must be dedicated to each ground and power plane．

Layout Guidelines（接下页）

－All high－speed traces must be routed straight with minimum bends．Where a bend is necessary，avoid making very sharp right－angle bends in the trace．
－In order to maintain proper LVDS timing，all LVDS traces must follow a controlled impedance design．In addition，all LVDS trace lengths must be equal and symmetrical；TI recommends keeping trace length variations less than 150 mil（ 0.150 inch or 3.81 mm ）．
－When routing CML lines，the traces must be designed for a controlled impedance of 50Ω ．The routing of different lines must be matched as much as possible to minimize the inter－lane skew．However，trace length matching is less critical for the JESD interface as compared to the LVDS interface．
Additional details on the NFBGA PCB layout techniques can be found in the Texas Instruments application report，MicroStar BGA Packaging Reference Guide（SSYZ015），available from www．ti．com．

11．3 Layout Example

图 96．Example Layout

12 Register Map

12．1 ADC Registers

The register map of the device is shown in 表 46.

表 46．ADC Register Map

REGISTER ADDRESS （Hex）	REGISTER DATA ${ }^{(1)}$															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\underset{\text { READ_EN }}{\text { REG }}$	RESET
1	0	LVDS RATE＿2X	0	0	0	0	0	0	SEL＿CH［2］	EN＿JESD	DIS＿LVDS	SEL＿CH［1］	0	SEL＿CH［0］	0	$\begin{aligned} & \hline \text { GLOBAL } \\ & \text { PDN } \end{aligned}$
2	PAT＿MODES＿FCLK			$\begin{aligned} & \text { LOW } \\ & \text { LATENC̄Y_ } \\ & \text { EN } \end{aligned}$	AVG＿EN	$\begin{gathered} \text { SEL_} \\ \text { PRBS } \\ \text { PAT_FCLK } \end{gathered}$	PAT＿MODES			$\begin{gathered} \text { SEL_} \\ \text { PRBS } \overline{-} \bar{B} \bar{B} \end{gathered}$	OFFSET＿CORR＿DELAY＿FROM＿TX＿TRIG［5：0］					
3	SER＿DATA＿RATE			$\begin{gathered} \text { DIG_ } \\ \text { GAIN_EN } \end{gathered}$	0	OFFSET＿CO FROM＿TX	RR＿DELAY＿ TRIG［7：6］	$\begin{aligned} & \text { DIG } \\ & \text { OFFSET_- } \\ & \text { EN } \end{aligned}$	0	0	JESD WR＿SEL	0	0	0	0	0
4	OFFSET REMOVAL SELF	OFFSET REMOVAL START＿ SEL	OFFSET REMOVAL START MANUAL	AUTO＿OFFSET＿REMOVAL＿ACC＿CYCLES				$\begin{gathered} \text { PAT_SEL } \\ \text { _IND } \end{gathered}$	PRBS SYNC	PRBS MODE	$\begin{gathered} \text { PRBS_- } \\ \text { EN } \end{gathered}$	$\underset{\mathrm{FIRST}_{\bar{T}}}{\mathrm{MSB}_{-1}}$	0	0		RES
5	CUSTOM＿PATTERN															
7	AUTO＿OFFSET＿REMOVAL＿VAL＿RD＿CH＿SEL					0	0	0	0	0	0	0	0	0	0	CHOPPER _EN
8	0	0	AUTO＿OFFSET＿REMOVAL＿VAL＿RD													
A	0	0	INIT2	INIT1	0	0	0	0	0	0	0	0	0	0	0	0
B	0	0	0	0	$\begin{aligned} & \hline \mathrm{EN} \\ & \text { DITHEER } \end{aligned}$	0	0	0	0	0	0	0	0	0	0	0
D	GAIN＿ADC1o					0	OFFSET＿ADC10									
E	GAIN＿ADC1e					0	OFFSET＿ADC1e									
F	GAIN＿ADC2o					0	OFFSET＿ADC2o									
10	GAIN＿ADC2e					0	OFFSET＿ADC2e									
11	GAIN＿ADC3o					0	OFFSET＿ADC3o									
12	GAIN＿ADC3e					0	OFFSET＿ADC3e									
13	GAIN＿ADC4o					0	OFFSET＿ADC4o									
14	GAIN＿ADC4e					0	OFFSET＿ADC4e									
15	PAT PRBS LVDS1	PAT PRBS LVDS2	PAT PRBS LVDS3	${ }^{\text {PAT }}$ PRB LVDS 4	PAT＿LVDS1			PAT＿LVDS2			$\begin{aligned} & \text { HPF } \\ & \text { ROUND } \\ & \text { EN_CH1-8 } \end{aligned}$	HPF＿CORNER＿ADC1－4				DIG＿HPF EN＿ADC1－4
17	0	0	0	0	$\frac{\mathrm{IN}_{\overline{\mathrm{A}}}^{\mathrm{ADCC}} 16 \mathrm{CH}}{-}$	$\begin{aligned} & \text { IN_16CH_ } \\ & \mathbf{A}_{\mathrm{ADCC}} \end{aligned}$	$\begin{gathered} \mathrm{IN}, 16 \mathrm{CH} \\ \underset{\text { ADC3 }}{ } \end{gathered}$	$\underset{\text { ADC4 }}{\substack{\text { IN } \\ \hline}}$	PAT＿LVDS3			PAT＿LVDS4			0	0
18	PDN DIG＿ADCC4	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC3 } \end{gathered}$	$\begin{gathered} \text { PDN- } \\ \text { DIG_ADC2 } \end{gathered}$	$\begin{gathered} \text { PDN_ } \\ \text { DIG_ADC1 } \end{gathered}$	$\begin{aligned} & \text { PDN } \\ & \text { LVDS4 } \end{aligned}$	$\begin{aligned} & \text { PDN } \\ & \text { LVDSS } \end{aligned}$	$\begin{aligned} & \text { PDN } \\ & \text { LVDSS } \end{aligned}$	PDN LVDS	PDN ANA AD̄C4	PDN ANA AD $C 3$	PDN ANA AD $\bar{C} 2$	PDN ANA AD $C 1$	INVERT LVDS4	INVERT LVDS3	NVERT LVDS2	INVERT LVDS1

（1）Default value of all registers is 0 ．

ADC Registers（接下页）

表 46．ADC Register Map（接下页）

REGISTER ADDRESS	REGISTER DATA ${ }^{(1)}$															
（Hex）	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
19	GAIN＿ADC50					0	OFFSET＿ADC50									
1A	GAIN＿ADC5e					0	OFFSET＿ADC5e									
1B	GAIN＿ADC60					0	OFFSET＿ADC6o									
1 C	GAIN＿ADC6e					0	OFFSET＿ADC6e									
1D	GAIN＿ADC70					0	OFFSET＿ADC7o									
1 E	GAIN＿ADC7e					0	OFFSET＿ADC7e									
1F	GAIN＿ADC80					0	OFFSET＿ADC8o									
20	GAIN＿ADC8e					0	OFFSET＿ADC8e									
21	PAT PRBS LVDS5	PAT PRBS LVDS 6	PAT PRBS LVDS7	PAT PRBS LVDS8	PAT＿LVDS5			PAT＿LVDS6			0	HPF＿CORNER＿ADC5－8				DIG $_{-}$ HPF $_{-E N}^{-}$ ADC5－8
23	0	0	0	0	$\underset{\text { ADC5 }}{\substack{\text { AD } \\ \hline}}$	$\begin{gathered} \hline \mathrm{IN}-16 \mathrm{CH} \\ \mathrm{~A}^{2} \mathrm{CC} 6 \end{gathered}$	$\underset{\substack{\text { ADC7 }}}{\mathrm{IN} 16 \mathrm{CH}}$		PAT＿LVDS7			PAT＿LVDS8			0	0
24	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC8 } \end{gathered}$	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC7 } \end{gathered}$	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC6 } \end{gathered}$	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC5 } \end{gathered}$	$\begin{aligned} & \text { PDN } \\ & \text { LVDS8 } \end{aligned}$	PDN LVDS7	$\begin{aligned} & \text { PDN } \\ & \text { LVDS6 } \end{aligned}$	PDN LVDS5	$\begin{gathered} \text { PDN } \\ \text { ANA_AD} C 8 \end{gathered}$	PDN ANA＿ADC7	PDN ANA＿ADC6	PDN ANA＿ADC5	INVERT LVDS8	INVERT LVDS7	INVERT LVDS6	NVERT LVDS5
25	GAIN＿ADC9o					0	OFFSET＿ADC9o									
26	GAIN＿ADC9e					0	OFFSET＿ADC9e									
27	GAIN＿ADC10o					0	OFFSET＿ADC100									
28	GAIN＿ADC10e					0	OFFSET＿ADC10e									
29	GAIN＿ADC110					0	OFFSET＿ADC110									
2A	GAIN＿ADC11e					0	OFFSET＿ADC11e									
2B	GAIN＿ADC120					0	OFFSET＿ADC120									
2 C	GAIN＿ADC12e					0	OFFSET＿ADC12e									
2D	PAT PRBS LVDS9	$\begin{aligned} & \text { PAT }_{-}^{\text {PRBS }} \\ & \text { LVDS10 } \end{aligned}$	PAT PRBS LVDS11	$\begin{aligned} & \text { PAT }_{-}^{\text {PRBS }} \\ & \text { LVDS12 } \end{aligned}$	PAT＿LVDS9			PAT＿LVDS10			$\begin{aligned} & \text { HPF_ROUN } \\ & \text { D_EN_CH9- } \\ & 16 \end{aligned}$	HPF＿CORNER＿ADC9－12				$\stackrel{\text { DIG }}{\mathrm{DPN}_{-}}$ ADC9－12
2F	0	0	0	0	$\begin{gathered} \text { IN } 16 \mathrm{CH}-1 \\ \text { ADC9 } \end{gathered}$	IN＿16CH＿ ADC10	$\frac{\mathrm{IN}=16 \mathrm{CH}}{\mathrm{ADC} 11-}$	IN 16 CH ADC12	PAT＿LVDS11			PAT＿LVDS12			0	0
30	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC12 } \end{gathered}$	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC11 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PDN } \\ \text { DIG_ADC10 } \\ \hline \end{array}$	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC9 } \end{gathered}$	PDN LVDS12	$\begin{aligned} & \text { PDN } \\ & \text { LVDS11 } \end{aligned}$	PDN LVDS10	$\begin{aligned} & \text { PDN_- } \\ & \text { LVDS9 } \end{aligned}$	$\begin{gathered} \text { PDN_ANA - } \\ \text { ADC12 } \end{gathered}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC11 } \end{gathered}$	$\begin{aligned} & \text { PDN_ANA } \\ & \text { ADC10 } \end{aligned}$	$\begin{gathered} \text { PDN_ANA_ } \\ \text { ADC9 } \end{gathered}$	INVERT LVDS12	INVERT LVDS11	INVERT LVDS10	INVERT LVDS9

ADC Registers（接下页）

表 46．ADC Register Map（接下页）

REGISTER ADDRESS	REGISTER DATA ${ }^{(1)}$															
（Hex）	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
31	GAIN＿ADC130					0	OFFSET＿ADC130									
32	GAIN＿ADC13e					0	OFFSET＿ADC13e									
33	GAIN＿ADC140					0	OFFSET＿ADC140									
34	GAIN＿ADC14e					0	OFFSET＿ADC14e									
35	GAIN＿ADC150					0	OFFSET＿ADC150									
36	GAIN＿ADC15e					0	OFFSET＿ADC15e									
37	GAIN＿ADC160					0	OFFSET＿ADC16o									
38	GAIN＿ADC16e					0	OFFSET＿ADC16e									
39	PAT PRBS LVDS13	PAT PRBS LVDS14	PAT－ LVDS15	PAT PRBS LVDS16	PAT＿LVDS13			PAT＿LVDS14			0	HPF＿CORNER＿ADC13－16				DIG HPF EN ADC $13-1 \overline{6}$
3B	0	0	0	0	$\underset{\text { IN }}{\text { INC } 16 \mathrm{CH}}$	$\frac{\mathrm{IN}_{\text {ADC }}^{\mathrm{AD}} 14-}{}$	$\underset{\text { ADCC15 }}{\text { IN_16CH_ }}$	$\underset{\text { ADCC16 }}{\text { IN_ }}$	PAT＿LVDS15			PAT＿LVDS16			0	0
3 C	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC16 } \end{gathered}$	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC15 } \end{gathered}$	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC14 } \end{gathered}$	$\begin{gathered} \text { PDN } \\ \text { DIG_ADC13 } \end{gathered}$	$\begin{aligned} & \text { PDN } \\ & \text { LVDŚ6 } \end{aligned}$	$\begin{aligned} & \text { PDN } \\ & \text { LVDS15 } \end{aligned}$	$\begin{aligned} & \text { PDN } \\ & \text { LVDS14 } \end{aligned}$	$\begin{aligned} & \text { PDN } \\ & \text { LVDS13 } \end{aligned}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC16 } \end{gathered}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC15 } \end{gathered}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC14 } \end{gathered}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC13 } \end{gathered}$	INVERT LVDS16	INVERT LVDS15	INVERT LVDS14	INVERT LVDS13
43	0	0	0	0	0	0	0	0	0	0	0		LVDS	CLK＿DELAY	ROG	

12．1．1 Description of Registers

12．1．1．1 Register Oh（address＝Oh）

图 97．Register Oh

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
W－Oh	W－0h	W－Oh	W－Oh	W－0h	W－0h	W－Oh	W－Oh
7	6	5	4	3	2	1	0
0	0	0	0	0	0	$\underset{\text { RN }}{\text { REG_READ_ }}$	RESET
W－0h	W－Oh	W－Oh	W－0h	W－0h	W－0h	W－Oh	W－0h

LEGEND：R／W＝Read／Write；$W=$ Write only；$-n=$ value after reset
表 47．Register Oh Field Descriptions

Bit	Field	Type	Reset	Description
$15-2$	0	W	Oh	Must write 0
1	REG＿READ＿EN	W	Oh	Register readout enabled． $0=$ Disabled $1=$ Enabled；see the Serial Peripheral Interface（SPI）Operation section for further details．
0	RESET	W	Oh	$0=$ Disabled $1=$ Enabled（this setting returns the device to a reset state；this bit is self－clearing bit）

12．1．1．2 Register 1h（address＝1h）

图 98．Register 1h

15	14	13	12	11	10	9	8
0	$\operatorname{LVDS}_{\underset{2}{2} \mathrm{XATE}}^{-}$	0	0	0	0	0	0
R／W－Oh	R／W－Oh R／W－Oh		R／W－0h	R／W－Oh	R／W－0h	R／W－Oh	R／W－0h
7	6	5	4	3	2	1	0
SEL＿CH［2］	EN＿JESD	DIS＿LVDS	SEL＿CH［1］	0	SEL＿CH［0］	0	GLOBAL＿PDN
R／W－0h	R／W－Oh	R／W－Oh	R／W－Oh	R／W－0h	R／W－0h	R／W－0h	R／W－Oh

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 48．Register 1h Field Descriptions

Bit	Field	Type	Reset	Description
15	0	R／W	Oh	Must write 0
14	LVDS＿RATE＿2X	R／W	Oh	$0=1 \mathrm{X}$ rate；normal operation（default） $1=2 X$ rate．This setting combines the data of two LVDS pairs into a single LVDS pair．This feature can be used when the ADC clock rate is low．
13－8	0	R／W	Oh	Must write 0
7	SEL＿CH［2］	R／W	Oh	Input mode selection bit 3 ．表 49 lists bit settings for the three input modes．
6	EN＿JESD	R／W	Oh	0 ＝JESD interface disabled 1 ＝JESD interface enabled；see 表 49
5	DIS＿LVDS	R／W	Oh	$0=$ LVDS interface is enabled（default） 1 ＝LVDS interface is disabled
4	SEL＿CH［1］	R／W	Oh	Input mode selection bit 2．表 49 lists bit settings for the three input modes．
3	0	R／W	Oh	Must write 0
2	SEL＿CH［0］	R／W	Oh	Input mode selection bit 1．表 49 lists bit settings for the three input modes．
1	0	R／W	Oh	Must write 0
0	GLOBAL＿PDN	R／W	Oh	$0=$ The device operates in normal mode（default） 1 ＝ADC enters complete power－down mode

表 49．8－，16－，and 32－Input Mode Selection

INPUT MODE	SEL＿CH［2］	SEL＿CH［1］	SEL＿CH［0］
8－channel input	1	1	1
16－channel input	0	1	1
32－channel input	0	0	0

表 50．Output Interface Supported in 8－，16－，and 32－Input Mode

INPUT MODE	OUTPUT INTERFACE SUPPORTED？	
	LVDS	JESD204B
8－channel input	Yes	No
16－channel input	Yes	Yes
32－channel input	Yes	Yes

12．1．1．3 Register $2 h(a d d r e s s=2 h)$

图 99．Register 2h

15	14	13	12	11	10	9	8
	MODES＿FCL		$\begin{aligned} & \text { LOW } \\ & \text { LATENCY_EN } \end{aligned}$	AVG＿EN	SEL PRBS PAT＿FCLK		
R／W－Oh			R／W－Oh	R／W－Oh	R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
$\begin{gathered} \text { PAT } \\ \text { MODES[2:0] } \end{gathered}$	SEL PRBS PAT＿GBL	OFFSET＿CORR＿DELAY＿FROM＿TX＿TRIG［5：0］					
R／W－Oh R／W－Oh R／W－Oh		R／W－Oh					

LEGEND：R／W＝Read／Write；－n＝value after reset

表 51．Register 2h Field Descriptions

Bit	Field	Type	Reset	Description
$15-13$	PAT＿MODES＿FCLK［2：0］	R／W	Oh	These bits enable different test patterns on the frame clock line； see 表 52 for bit descriptions and the LVDS Test Pattern Mode section for further details．
12	LOW＿LATENCY＿EN	R／W	Oh	0＝Default latency with digital features supported $1=$ Low－latency with digital features bypassed
11	AVG＿EN	R／W	Oh	0＝No digital averaging ＝Enables digital averaging of two channels to improve signal－ to－noise ratio（SNR）
10	SEL＿PRBS＿PAT＿FCLK	R／W	Oh	0＝Normal operation 1＝Enables the PRBS pattern to be generated on FCLK；see the LVDS Test Pattern Mode section for further details．
$9-7$	PAT＿MODES［2：0］	R／W	Oh	These bits enable different test patterns on the LVDS data lines； see 表 52 for bit descriptions and the LVDS Test Pattern Mode section for further details．
6	SEL＿PRBS＿PAT＿GBL	R／W	Oh	0＝Normal operation $1=$ Enables the PRBS pattern to be generated on all the LVDS data lines；see the LVDS Test Pattern Mode section for further details．
$5-0$	OFFSET＿CORR＿DELAY＿FROM＿ TX＿TRIG［5：0］	R／W	Oh	This is a part of an 8－bit control that initiates offset correction after the TX＿TRIG input pulse（each step is equivalent to one sample delay）；the remaining two MSB bits are the
OFFSET＿CORR＿DELAY＿FROM＿TX＿TRIG［7：6］bits（bits 10－9）				
in register 3．				

表 52．Pattern Mode Bit Description ${ }^{(1)}$

PAT＿MODES［2：0］or PAT＿MODES＿FCLK［2：0］or PAT＿LVDSx［2：0］	DESCRIPTION
000	Normal operation
001	Sync（half frame 1，half frame 0）
010	Deskew
011	Custom ${ }^{(2)}$
100	All 1s
101	Toggle mode
110	All 0s
111	Ramp ${ }^{(2)}$

[^0]
12．1．1．4 Register 3h（address＝3h）

图 100．Register 3h

15	14	13	12	11	10	9	8
SER＿DATA＿RATE			DIG＿GAIN＿EN	0	OFFSET＿C	$\begin{aligned} & \text { ELAY_FROM } \\ & 7: 6] \end{aligned}$	$\begin{gathered} \text { DIG_ } \\ \text { OFFSET_EN } \end{gathered}$
R／W－Oh			R／W－Oh	R／W－Oh	R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
0	0	JESD＿WR SEL	0	0	0	0	0
R／W－Oh							

LEGEND：R／W＝Read／Write；－n＝value after reset
表 53．Register 3h Field Descriptions

Bit	Field	Type	Reset	Description
15－13	SER＿DATA＿RATE	R／W	Oh	These bits control the LVDS serialization rate． $000=12 X$ $001=14 \mathrm{X}$ $100=16 \mathrm{X}$ $011=10 \mathrm{X}$ 101，110，111， $010=$ Unused
12	DIG＿GAIN＿EN	R／W	Oh	$0=$ Digital gain disabled 1 ＝Digital gain enabled
11	0	R／W	Oh	Must write 0
10－9	OFFSET CORR DELAY FROM TX＿TRIG［7：6］	R／W	Oh	This is a part of an 8－bit control that initiates offset correction after the TX＿TRIG input pulse（each step is equivalent to one sample delay）；the remaining six LSB bits are the OFFSET＿CORR＿DELAY＿FROM＿TX＿TRIG［5：0］bits（bits 5－0）in register 2.
8	DIG＿OFFSET＿EN	R／W	Oh	$0=$ Digital offset subtraction disabled 1 ＝Digital offset subtraction enabled
7－6	0	R／W	Oh	Must write 0
5	JESD＿WR＿SEL	R／W	Oh	$0=$ Setting when writing to all registers except for registers with addresses in the decimal range of 115－119 and 134－138 $1=$ Setting when writing to registers with addresses in the decimal range of 115－119 and 134－138
4－0	0	R／W	Oh	Must write 0

12．1．1．5 Register 4h（address＝4h）

图 101．Register 4h

15	14	13	12	11	10	9	8
$\begin{gathered} \text { OFFSET- } \\ \text { REMOVAL } \\ \text { SELF } \end{gathered}$	OFFSET REMOVAL START＿SEL	OFFEST REMOVAL START MANUAL	AUTO＿OFFSET＿REMOVAL＿ACC＿CYCLES［3：0］				$\begin{gathered} \text { PAT_- } \\ \text { SELECT_ IND } \end{gathered}$
R／W－Oh	R／W－Oh	R／W－Oh		R／W－Oh			R／W－Oh
7	6	5	4	3	2	1	0
PRBS SYNC	PRBS MODE	PRBS＿EN	MSB＿FIRST	0	0		ADC＿RES
R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh		R／W－Oh

LEGEND：R／W＝Read／Write；－n＝value after reset
表 54．Register 4h Field Descriptions

Bit	Field	Type	Reset	Description
15	OFFSET＿REMOVAL＿SELF	R／W	Oh	Auto offset removal mode is enabled when this bit is set to 1
14	OFFSET＿REMOVAL＿START＿SEL	R／W	Oh	$0=$ Auto offset correction initiated when the OFFSET＿REMOVAL＿START＿MANUAL bit is set to 1 ． 1 ＝Auto offset correction initiated with a pulse on TX＿TRIG pin．
13	OFFSET＿REMOVAL＿START＿ MANUAL	R／W	Oh	This bit initiates offset correction when OFFSET＿REMOVAL＿START＿SEL is set to 0 ．
12－9	AUTO＿OFFSET＿REMOVAL＿ACC＿ CYCLĒS	R／W	Oh	These bits define the number of samples required to generate an offset in auto offset correction mode
8	PAT＿SELECT＿IND	R／W	Oh	$0=$ All LVDS output data lines have the same pattern，as determined by the PAT＿MODES［2：0］bits $1=$ Different test patterns can be sent on different LVDS data lines；see the LVDS Test Pattern Mode section for further details
7	PRBS＿SYNC	R／W	Oh	$0=$ Normal operation $1=$ PRBS generator is in a reset state
6	PRBS＿MODE	R／W	Oh	$0=23$－bit PRBS generator 1 ＝9－bit PRBS generator
5	PRBS＿EN	R／W	Oh	$0=$ PRBS sequence generation block disabled 1 ＝PRBS sequence generation block enabled；see the LVDS Test Pattern Mode section for further details
4	MSB＿FIRST	R／W	Oh	$0=$ The LSB is transmitted first on serialized output data $1=$ The MSB is transmitted first on serialized output data
3－2	0	R／W	Oh	Must write 0
1－0	ADC＿RES	R／W	Oh	These bits control the ADC resolution． $00=12$－bit resolution $01=14$－bit resolution $11=10$－bit resolution 10 ＝Unused

12．1．1．6 Register $5 h(a d d r e s s=5 h)$

图 102．Register 5h

15	14	13	12	11	10	9	8
CUSTOM＿PATTERN							
R／W－Oh							
7	6	5	4	3	2	1	0
CUSTOM＿PATTERN							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 55．Register 5h Field Descriptions

Bit	Field	Type	Reset	Description
$15-0$	CUSTOM＿PATTERN	R／W	Oh	If the pattern mode is programmed to a custom pattern mode， then the custom pattern value can be provided by programming these bits；see the LVDS Test Pattern Mode section for further details．

12．1．1．7 Register 7h（address＝7h）

图 103．Register 7h

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset

表 56．Register 7h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	AUTO＿OFFSET＿REMOVAL＿VAL＿ RD＿CH＿SEL	R／W	Oh	Write the channel number to read the offset value in auto offset correction mode for a corresponding channel number（read the offset value in AUTO＿OFFSET＿REMOVAL＿VAL＿RD． 1 （1）
$10-1$	0	R／W	Oh	Must write 0
0	CHOPPER＿EN	R／W	Oh	The chopper can be used to move low－frequency， $1 / \mathrm{f}$ noise to fs $/ 2$ frequency． $0=$ Chopper disabled $1=$ Chopper enabled

（1）In 32－channel input mode，the value written in this register corresponds to the channel number（minus 1 ）．When operating in 8 －and 16－ input modes，the value can be mapped to the odd or even data streams of the 16 ADCs．For example，a value of 0 corresponds to the odd data stream of ADC1．Likewise，a value of 1 corresponds to the even data stream of ADC1，and so on respectively．

12．1．1．8 Register 8 h （address $=8 \mathrm{~h}$ ）

图 104．Register 8h

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 57．Register 8h Field Descriptions

Bit	Field	Type	Reset	Description
$15-14$	0	R／W	Oh	Must write 0
$13-0$	AUTO＿OFFSET＿REMOVAL＿VAL＿ RD	R／W	Oh	Read the offset value applied in auto offset correction mode for a specific channel number as defined in AUTO＿OFFSET＿REMOVAL＿VAL＿RD＿CH＿SEL

12．1．1．9 Register Ah（address＝A ）

图 105．Register Ah

15	14	13	12	11	10	9	8
0	0	INIT2	INIT1	0	0	0	0
R／W－Oh							
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset

表 58．Register Ah Field Descriptions

Bit	Field	Type	Reset	Description
$15-14$	0	R／W	Oh	Must write 0
13	INIT2	R／W	Oh	Write 1 as part of the initialization after power－up ${ }^{(1)}$
12	INIT1	R／W	Oh	Write 1 as part of the initialization after power－up ${ }^{(1)}$
$11-0$	0	R／W	Oh	Must write 0

（1）See 表 43 ．

12．1．1．10 Register Bh（address＝Bh）

图 106．Register Bh

15	14	13	12	11	10	9	8
0	0	0	0	EN＿DITHER	0	0	0
R／W－Oh	R／W－0h						
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
R／W－Oh	R／W－Oh	R／W－Oh	R／W－0h	R／W－Oh	R／W－0h	R／W－Oh	R／W－Oh

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 59．Register Bh Field Descriptions

Bit	Field	Type	Reset	Description
$15-12$	0	R／W	Oh	Must write 0
11	EN＿DITHER	R／W	Oh	Dither can be used to reduce the power in higher－order harmonics． $0=$ Dither disabled $1=$ Dither enabled Note：Enabling the dither converts higher－order harmonics power into noise．Thus，enabling this mode reduce the power in higher－ order harmonics but degrades SNR．
$10-0$	0	R／W	Oh	Must write 0

12．1．1．11 Register Dh（address＝Dh）

图 107．Register Dh

15	14	13	12	11	10	9	8
GAIN＿ADC10					0	OFFSET＿ADC10	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC10							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 60．Register Dh Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC1o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC1 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC1o	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC1 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．12 Register Eh（address＝Eh）

图 108．Register Eh

15	14	13	12	11	10	9	8
GAIN＿ADC1e					0	OFFSET＿ADC1e	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET ADC1e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset

表 61．Register Eh Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC1e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC1 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC1e	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC1 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．13 Register Fh（address＝Fh）

图 109．Register Fh

15	14	13	12	11	10	9	8
GAIN＿ADC2o					0	OFFSET＿ADC2o	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC2o							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 62．Register Fh Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC2o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC2 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC2o	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC2 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．14 Register 10h（address＝10h）

图 110．Register 10h

15	14	13	12	11	10	9	8
GAIN＿ADC2e					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC2e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset
表 63．Register 10h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC2e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC2 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC2e	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC2 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．15 Register 11h（address＝11h）

图 111．Register 11h

15	14	13	12	11	10	9	8
GAIN＿ADC3o					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC3o							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 64．Register 11h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC3o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC3 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC3o	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC3 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．16 Register 12h（address＝12h）

图 112．Register 12h

15	14	13	12	11	10	9	8
GAIN＿ADC3e					0	OFFSET＿ADC3e	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC3e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset
表65．Register 12h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC3e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC3 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC3e	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC3 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．17 Register 13h（address $=13 \mathrm{~h}$ ）
图 113．Register 13h

15	14	13	12	11	10	9	8
GAIN＿ADC4o					0	OFFSET＿ADC40	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC4o							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 66．Register 13h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC4o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC4 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC4o	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC4 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．18 Register 14h（address＝14h）

图 114．Register 14h

15	14	13	12	11	10	9	8
GAIN＿ADC4e					0	OFFSET＿ADC4e	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset
表 67．Register 14h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC4e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC4 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC4e	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC4 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

ADS52J90
www．ti．com．cn

12．1．1．19 Register 15h（address＝15h）

图 115．Register 15h

15	14	13	12	11	10	9	8
PAT PRBS LVDS1	PAT PRBS LVDS2	PAT PRBS LVDS3	PAT PRBS LVDS4		PAT＿LVDS1		$\begin{aligned} & \text { PAT- } \\ & \text { LVDS2 } \end{aligned}$
R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh			R／W－Oh
7	6	5	4	3	2	1	0
PAT＿LVDS2		HPF ROUND EN CH1－8		HPF＿CORNER＿ADC1－4			DIG＿HPF＿EN ADC1－4
R／W－Oh		R／W－Oh	R／W－Oh				R／W－Oh

LEGEND：R／W＝Read／Write；－n＝value after reset
表 68．Register 15h Field Descriptions

Bit	Field	Type	Reset	Description
15	PAT＿PRBS＿LVDS1	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1 ， the PRBS pattern on LVD̄S output 1 can be enabled with this bit； see the LVDS Test Pattern Mode section for further details．
14	PAT＿PRBS＿LVDS2	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVDS output 2 can be enabled with this bit； see the LVDS Test Pattern Mode section for further details．
13	PAT＿PRBS＿LVDS3	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVDS output 3 can be enabled with this bit； see the LVDS Test Pattern Mode section for further details．
12	PAT＿PRBS＿LVDS4	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVDS output 4 can be enabled with this bit； see the LVDS Test Pattern Mode section for further details．
11－9	PAT＿LVDS1	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1 ， the pattern on LVDS output 1 can be programmed with these bits；see 表 33 for bit descriptions．
8－6	PAT＿LVDS2	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1 ， the pattern on LVDS output 2 can be programmed with these bits；see 表 33 for bit descriptions．
5	HPF＿ROUND＿EN＿CH1－8	R／W	Oh	$0=$ Rounding in the ADC HPF is disabled for channel 1 to 8 ． HPF output is truncated to be mapped to the ADC resolution bits． $1=$ HPF output of channel 1 to 8 is mapped to the ADC resolution bits by the round－off operation．
4－1	HPF＿CORNER＿ADC1－4	R／W	Oh	When the DIG＿HPF＿EN＿ADC1－4 bit is set to 1，the digital HPF characteristic for the corresponding ADCs can be programmed by setting the value of k with these bits． The value of k can be from 2 to 10 （ 0010 b to 1010b）；see the Digital HPF section for further details．
0	DIG＿HPF＿EN＿ADC1－4	R／W	Oh	$0=$ Digital HPF disabled for ADCs 1 to 4 （default） 1 ＝Enables digital HPF for ADCs 1 to 4

12．1．1．20 Register 17 h （address $=17 \mathrm{~h}$ ）
图 116．Register 17h

15	14	13	12	11	10	9	8
0	0	0	0	$\begin{gathered} \text { IN_16CH_ } \\ \mathrm{A}^{2} D C 1 \end{gathered}$	$\begin{gathered} \text { IN_16CH } \\ \text { ADC2 } \end{gathered}$	$\begin{gathered} \text { IN_16CH } \\ \text { ADC3 } \end{gathered}$	$\begin{gathered} \text { IN_16CH_ } \\ \text { ADC4 } \end{gathered}$
R／W－Oh							
7	6	5	4	3	2	1	0
	AT＿LVDS			PAT＿LVDS4		0	0
R／W－Oh			R／W－0h			R／W－Oh	R／W－Oh

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 69．Register 17h Field Descriptions

Bit	Field	Type	Reset	Description
$15-12$	0	R／W	Oh	Must write 0
11	IN＿16CH＿ADC1	R／W	Oh	Selects the input pair sampled by ADC1 in 16－input mode． $0=$ ADC1 samples the signal on INP1，INM1 1＝ADC1 samples the signal on INP2，INM2
10	IN＿16CH＿ADC2	R／W	Oh	Selects the input pair sampled by ADC2 in 16－input mode． $0=$ ADC2 samples the signal on INP3，INM3 $1=$ ADC2 samples the signal on INP4，INM4
9	IN＿16CH＿ADC3	R／W	Oh	Selects the input pair sampled by ADC3 in 16－input mode． $0=$ ADC3 samples the signal on INP5，INM5 $1=$ ADC3 samples the signal on INP6，INM6
8	IN＿16CH＿ADC4	R／W	Oh	Selects the input pair sampled by ADC4 in 16－input mode． 0＝ADC4 samples the signal on INP7，INM7 1 ADC4 samples the signal on INP8，INM8
$7-5$	PAT＿LVDS3	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1， the pattern on LVDS output 3 can be programmed with these bits；see 表 33 for bit descriptions．
$4-2$	PAT＿LVDS4	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1， the pattern on LVDS output 4 can be programmed with these bits；see 表 33 for bit descriptions．
$1-0$	0	R／W	Oh	Must write 0

ADS52J90
www．ti．com．cn
ZHCSDS3C－MAY 2015－REVISED APRIL 2018

12．1．1．21 Register 18h（address＝18h）

图 117．Register 18h

15	14	13	12	11	10	9	8
$\begin{gathered} \text { PDN_DIG_ } \\ \text { ADC4 } \end{gathered}$	$\begin{gathered} \text { PDN_DIG_ } \\ \text { ADC3 } \end{gathered}$	$\begin{gathered} \text { PDN_DIG_ } \\ \text { ADC2 } \end{gathered}$	$\begin{gathered} \text { PDN_DIG_ } \\ \text { ADC1 } \end{gathered}$	PDN＿LVDS4	PDN＿LVDS3	PDN＿LVDS2	PDN＿LVDS1
R／W－Oh							
7	6	5	4	3	2	1	0
$\begin{gathered} \text { PDN_ANA } \\ \text { ADC } 4 \end{gathered}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC3 } \end{gathered}$	PDN ANA ADC2	$\begin{gathered} \text { PDN ANA } \\ \text { ADC1 } \end{gathered}$	INVERT LVDS4	INVERT LVDS3	INVERT LVDS2	INVERT LVDS1
R／W－Oh							

LEGEND：R／W＝Read／Write；－n＝value after reset
表 70．Register 18h Field Descriptions

Bit	Field	Type	Reset	Description
15	PDN＿DIG＿ADC4	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC4
14	PDN＿DIG＿ADC3	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC3
13	PDN＿DIG＿ADC2	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC2
12	PDN＿DIG＿ADC1	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC1
11	PDN＿LVDS4	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 4
10	PDN＿LVDS3	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 3
9	PDN＿LVDS2	R／W	Oh	$\begin{aligned} & 0=\text { Normal operation (default) } \\ & 1=\text { Powers down LVDS output line } 2 \end{aligned}$
8	PDN＿LVDS1	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 1
7	PDN＿ANA＿ADC4	R／W	Oh	$\begin{aligned} & 0=\text { Normal operation (default) } \\ & 1=\text { Powers down the analog block for ADC4 } \end{aligned}$
6	PDN＿ANA＿ADC3	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC3
5	PDN＿ANA＿ADC2	R／W	Oh	$\begin{aligned} & 0=\text { Normal operation (default) } \\ & 1=\text { Powers down the analog block for ADC2 } \end{aligned}$
4	PDN＿ANA＿ADC1	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC1
3	INVERT＿LVDS4	R／W	Oh	$0=$ Normal operation（default） 1 ＝Inverts ADC data sent on LVDS output line 4．Has no effect on Test patterns．
2	INVERT＿LVDS3	R／W	Oh	$0=$ Normal operation（default） $1=$ Inverts ADC data sent on LVDS output line 3．Has no effect on Test patterns．
1	INVERT＿LVDS2	R／W	Oh	$0=$ Normal operation（default） $1=$ Inverts ADC data sent on LVDS output line 2．Has no effect on Test patterns．
0	INVERT＿LVDS1	R／W	Oh	$0=$ Normal operation（default） $1=$ Inverts ADC data sent on LVDS output line 1．Has no effect on Test patterns．

12．1．1．22 Register 19h（address＝19h）
图 118．Register 19h

15	14	13	12	11	10	9	8
GAIN＿ADC50					0	OFFSET＿ADC50	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC50							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 71．Register 19h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC50	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC5 can be obbained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC50	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC5 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．23 Register 1Ah（address＝1Ah）

图 119．Register 1Ah

15	14	13	12	11	10	9	8
GAIN＿ADC5e					0	OFFSET＿ADC5e	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC5e							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 72．Register 1Ah Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC5e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC5 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC5e	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC5 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．24 Register 1Bh（address＝1Bh）

图 120．Register 1Bh

15	14	13	12	11	10	9	8
GAIN＿ADC60					0	OFFSET＿ADC60	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC6o							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 73．Register 1Bh Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC6o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC6 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC60	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC6 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．25 Register 1 Ch（address $=1 \mathrm{Ch}$ ）
图 121．Register 1Ch

15	14	13	12	11	10	9	8
GAIN＿ADC6e					0		
R／W－Oh					R／W－		
7	6	5	4	3	2	1	0
OFFSET＿ADC6e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset
表 74．Register 1Ch Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC6e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC6 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC6e	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC6 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．26 Register 1Dh（address＝1Dh）

图 122．Register 1Dh

15	14	13	12	11	10	9	8
GAIN＿ADC70					0		
R／W－Oh					R／W－Oh		
7	6	5	4	3	2	1	0
OFFSET＿ADC7o							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 75．Register 1Dh Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC7o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC7 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC7o	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC7 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．27 Register 1Eh（address＝1Eh）

图 123．Register 1Eh

15	14	13	12	11	10	9	8
GAIN＿ADC7e					0	OFFSET＿ADC7e	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC7e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset
表 76．Register 1Eh Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC7e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC7 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC7e	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC7 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．28 Register 1Fh（address＝1Fh）

图 124．Register 1Fh

15	14	13	12	11	10	9	8
GAIN＿ADC80					0	OFFSET＿ADC80	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC8o							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 77．Register 1Fh Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC8o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC8 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC80	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC8 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．29 Register 20h（address＝20h）

图 125．Register 20h

15	14	13	12	11	10	9	8
GAIN＿ADC8e					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET ADC8e							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 78．Register 20h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC8e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC8 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC8e	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC8 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．30 Register 21h（offset＝21h）

图 126．Register 21h

15	14	13	12	11	10	9	8
PAT PRBS LVDS5	PAT PRBS LVDS6	PAT PRBS LVDS7	PAT PRBS LVDS8		PAT＿LVDS5		$\begin{aligned} & \text { PAT } \\ & \text { LVDS6 } \end{aligned}$
R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh		R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
PAT＿LVDS6		0		HPF＿CORNER＿ADC5－8			DIG HPF EN ADC5－8
R／W－Oh		R／W－Oh		R／W－Oh			R／W－Oh

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 79．Register 21h Field Descriptions

Bit	Field	Type	Reset	Description
15	PAT＿PRBS＿LVDS5	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVDS output 5 can be enabled with this bit； see the LVDS Test Pattern Mode section for further details．
14	PAT＿PRBS＿LVDS6	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1 ， the PRBS pattern on LVDS output 6 can be enabled with this bit； see the LVDS Test Pattern Mode section for further details．
13	PAT＿PRBS＿LVDS7	R／W	Oh	When the PAT SELECT IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVDS output 7 can be enabled with this bit； see the LVDS Test Pattern Mode section for further details．
12	PAT＿PRBS＿LVDS8	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1 ， the PRBS pattern on LVDS output 8 can be enabled with this bit； see the LVDS Test Pattern Mode section for further details．
11－9	PAT＿LVDS5	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the pattern on LVDS output 5 can be programmed with these bits；see 表 33 for bit descriptions．
8－6	PAT＿LVDS6	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the pattern on LVDS output 6 can be programmed with these bits；see 表 33 for bit descriptions．
5	0	R／W	Oh	Must write 0
4－1	HPF＿CORNER＿ADC5－8	R／W	Oh	When the DIG＿HPF＿EN＿ADC5－8 bit is set to 1 ，the digital HPF characteristic for the corresponding ADCs can be programmed by setting the value of k with these bits． The value of k can be from 2 to 10 （ 0010 b to 1010b）；see the Digital HPF section for further details．
0	DIG＿HPF＿EN＿ADC5－8	R／W	Oh	$0=$ Digital HPF disabled for ADCs 5 to 8 （default） 1 ＝Enables digital HPF for ADCs 5 to 8

12．1．1．31 Register 23h（register＝23h）
图 127．Register 23h

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 80．Register 23h Field Descriptions

Bit	Field	Type	Reset	Description
$15-12$	0	R／W	Oh	Must write 0
11	IN＿16CH＿ADC5	R／W	Oh	Selects the input pair sampled by ADC5 in 16－input mode． $0=$ ADC5 samples the signal on INP9，INM9 $1=$ ADC5 samples the signal on INP10，INM10
10	IN＿16CH＿ADC6	R／W	Oh	Selects the input pair sampled by ADC6 in 16－input mode． $0=$ ADC6 samples the signal on INP11，INM11 $1=$ ADC6 samples the signal on INP12，INM12
9	IN＿16CH＿ADC7	R／W	Oh	Selects the input pair sampled by ADC7 in 16－input mode． $0=$ ADC7 samples the signal on INP13，INM13 $1=$ ADC7 samples the signal on INP14，INM14
8	IN＿16CH＿ADC8	R／W	Oh	Selects the input pair sampled by ADC8 in 16－input mode． $0=$ ADC8 samples the signal on INP15，INM15 $1=$ ADC8 samples the signal on INP16，INM16
$7-5$	PAT＿LVDS7	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1， the pattern on LVDS output 7 can be programmed with these bits；see 表 33 for bit descriptions．
$4-2$	PAT＿LVDS8	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1， the pattern on LVDS output 8 can be programmed with these bits；see 表 33 for bit descriptions．
$1-0$	0	R／W	Oh	Must write 0

12．1．1．32 Register 24 h （address＝24h）

图 128．Register 24h

15	14	13	12	11	10	9	8
$\begin{gathered} \text { PDN_DIG } \\ \text { ADC8 } \\ \hline \end{gathered}$	$\begin{gathered} \text { PDN_DIG_ } \\ \text { ADC7 } \end{gathered}$	$\begin{gathered} \text { PDN_DIG_ } \\ \text { ADC6 } \\ \hline \end{gathered}$	$\begin{gathered} \text { PDN_DIG_ } \\ \text { ADC5 } \\ \hline \end{gathered}$	PDN＿LVDS8	PDN＿LVDS7	PDN＿LVDS6	PDN＿LVDS5
R／W－Oh							
7	6	5	4	3	2	1	0
$\begin{gathered} \text { PDN_ANA } \\ \text { ADC } 8 \end{gathered}$	$\begin{gathered} \text { PDN_ANA- } \\ \text { ADC7 } \end{gathered}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC6 } \end{gathered}$	$\begin{gathered} \text { PDN ANA } \\ \text { AD } \bar{C} 5 \end{gathered}$	INVERT LVDS8	INVERT LVDS7	INVERT LVDS6	INVERT LVDS5
R／W－Oh							

LEGEND：R／W＝Read／Write；－n＝value after reset
表 81．Register 24h Field Descriptions

Bit	Field	Type	Reset	Description
15	PDN＿DIG＿ADC8	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC8
14	PDN＿DIG＿ADC7	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC7
13	PDN＿DIG＿ADC6	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC6
12	PDN＿DIG＿ADC5	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC5
11	PDN＿LVDS8	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 8
10	PDN＿LVDS7	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 7
9	PDN＿LVDS6	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 6
8	PDN＿LVDS5	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 5
7	PDN＿ANA＿ADC8	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC8
6	PDN＿ANA＿ADC7	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC7
5	PDN＿ANA＿ADC6	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC6
4	PDN＿ANA＿ADC5	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC5
3	INVERT＿LVDS8	R／W	Oh	$0=$ Normal operation（default） 1 ＝Inverts ADC data sent on LVDS output line 8．Has no effect on Test patterns．
2	INVERT＿LVDS7	R／W	Oh	$0=$ Normal operation（default） $1=$ Inverts ADC data sent on LVDS output line 7．Has no effect on Test patterns．
1	INVERT＿LVDS6	R／W	Oh	$0=$ Normal operation（default） $1=$ Inverts ADC data sent on LVDS output line 6．Has no effect on Test patterns．
0	INVERT＿LVDS5	R／W	Oh	$0=$ Normal operation（default） $1=$ Inverts ADC data sent on LVDS output line 5 ．Has no effect on Test patterns．

12．1．1．33 Register 25h（address＝25h）

图 129．Register 25h

15	14	13	12	11	10	9	8
GAIN＿ADC90					0	OFFSET＿ADC90	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC9o							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 82．Register 25h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC9o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC9 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC9o	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC9 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．34 Register 26h（address＝26h）

图 130．Register 26h

15	14	13	12	11	10	9	8
GAIN＿ADC9e					0	OFFSET＿ADC9e	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC9e							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 83．Register 26h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC9e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC9 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC9e	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC9 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．35 Register 27h（address $=27 \mathrm{~h}$ ）
图 131．Register 27h

15	14	13	12	11	10	9	8
GAIN＿ADC10o					0	OFFSET＿ADC100	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC100							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 84．Register 27h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC10o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC10 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC10o	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC10 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．36 Register 28 h （address $=28 \mathrm{~h}$ ）

图 132．Register 28h

15	14	13	12	11	10	9	8
GAIN＿ADC10e					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC10e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－n＝value after reset
表 85．Register 28h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC10e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC10 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC10e	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC10 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．37 Register 29h（address＝29h）
图 133．Register 29h

15	14	13	12	11	10	9	8
GAIN＿ADC110					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC110							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
86．Register 29h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC11o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC11 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC11o	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC11 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．38 Register 2Ah（address＝2Ah）

图 134．Register 2Ah

15	14	13	12	11	10	9	8
GAIN＿ADC11e					0		
R／W－Oh					R／W－Oh		
7	6	5	4	3	2	1	0
OFFSET＿ADC11e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset
表 87．Register 2Ah Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC11e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC11 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC11e	R／W	0h	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC11 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．39 Register 2Bh（address＝2Bh）

图 135．Register 2Bh

15	14	13	12	11	10	9	8
GAIN＿ADC120					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC120							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
88．Register 2Bh Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC12o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC12 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC12o	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC12 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．40 Register 2Ch（address＝2Ch）

图 136．Register 2Ch

15	14	13	12	11	10	9	8
GAIN＿ADC12e					0		
R／W－Oh					R／W－Oh		
7	6	5	4	3	2	1	0
OFFSET＿ADC12e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－n＝value after reset
表 89．Register 2Ch Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC12e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC12 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC12e	R／W	0h	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC12 can be obtained with this 10－bit register．The offset value in in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．41 Register 2Dh（address＝2Dh）

图 137．Register 2Dh

15	14	13	12	11	10	9	8
PAT PRBS LVDS9	PAT PRBS LVDS10	PAT PRBS LVDS11	PAT PRBS LVDS12		PAT＿LVDS9		PAT LVDS10
R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh			R／W－Oh
7	6	5	4	3	2	1	0
PAT＿LVDS10		HPF ROUND EN＿CH9－16		HPF＿CORNER＿ADC9－12			$\begin{gathered} \text { DIG_HPF_EN_- } \\ \text { ADC9-12 } \end{gathered}$
R／W－Oh		R／W－Oh	R／W－Oh				R／W－Oh

LEGEND：R／W＝Read／Write；－n＝value after reset
表 90．Register 2Dh Field Descriptions

Bit	Field	Type	Reset	Description
15	PAT＿PRBS＿LVDS9	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1 ， the PRBS pattern on LVD̄S output 9 can be enabled with this bit； see the LVDS Test Pattern Mode section for further details．
14	PAT＿PRBS＿LVDS10	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVD̄S output 10 can be enabled with this bit；see the LVDS Test Pattern Mode section for further details．
13	PAT＿PRBS＿LVDS11	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVD̄S output 11 can be enabled with this bit；see the LVDS Test Pattern Mode section for further details．
12	PAT＿PRBS＿LVDS12	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVDS output 12 can be enabled with this bit；see the LVDS Test Pattern Mode section for further details．
11－9	PAT＿LVDS9	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1 ， the pattern on LVDS output 9 can be programmed with these bits；see表 33 for bit descriptions．
8－6	PAT＿LVDS10	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the pattern on LVDS output 10 can be programmed with these bits；see表 33 for bit descriptions．
5	HPF＿ROUND＿EN＿CH9－16	R／W	Oh	$0=$ Rounding in the ADC HPF is disabled for channels 9－16． The HPF output is truncated to be mapped to the ADC resolution bits． $1=$ HPF output of channels $9-16$ is mapped to the ADC resolution bits by the round－off operation．
4－1	HPF＿CORNER＿ADC9－12	R／W	Oh	When the DIG＿HPF＿EN＿CH9－12 bit is set to 1 ，the digital HPF characteristic for the corresponding ADCs can be programmed by setting the value of k with these bits． The value of k can be from 2 to 10 （ 0010 b to 1010b）；see the Digital HPF section for further details．
0	DIG＿HPF＿EN＿ADC9－12	R／W	Oh	0 ＝Digital HPF disabled for ADCs 9 to 12 （default） 1 ＝Enables digital HPF for ADCs 9 to 12

12．1．1．42 Register 2Fh（address＝2Fh）

图 138．Register 2Fh

15	14	13	12	11	10	9	8
0	0	0	0	$\begin{gathered} \text { IN_16CH } \\ \text { ADC9 } \end{gathered}$	$\begin{gathered} \text { IN_16CH } \\ \text { ADC10 } \end{gathered}$	$\frac{\mathrm{IN} 16 \mathrm{CH}}{\mathrm{ADC} 11}$	$\begin{gathered} \text { IN_16CH } \\ \text { ADC12 } \end{gathered}$
R／W－Oh	R／W－Oh	R／W－Oh	R／W－0h	R／W－Oh	R／W－0h	R／W－Oh	R／W－0h
7	6	5	4	3	2	1	0
PAT＿LVDS11			PAT＿LVDS12			0	0
R／W－Oh			R／W－0h			R／W－0h	R／W－Oh

LEGEND：R／W＝Read／Write；－n＝value after reset
表 91．Register 2Fh Field Descriptions

Bit	Field	Type	Reset	Description
15－12	0	R／W	Oh	Must write 0
11	IN＿16CH＿ADC9	R／W	Oh	Selects the input pair sampled by ADC9 in 16 －input mode． $0=$ ADC9 samples the signal on INP17，INM17 1 ＝ADC9 samples the signal on INP18，INM18
10	IN＿16CH＿ADC10	R／W	Oh	Selects the input pair sampled by ADC10 in 16－input mode． $0=$ ADC10 samples the signal on INP19，INM19 1 ＝ADC10 samples the signal on INP20，INM20
9	IN＿16CH＿ADC11	R／W	Oh	Selects the input pair sampled by ADC11 in 16－input mode． $0=$ ADC11 samples the signal on INP21，INM21 1 ＝ADC11 samples the signal on INP22，INM22
8	IN＿16CH＿ADC12	R／W	Oh	Selects the input pair sampled by ADC12 in 16－input mode． $0=$ ADC12 samples the signal on INP23，INM23 1 ＝ADC12 samples the signal on INP24，INM24
7－5	PAT＿LVDS11［2：0］	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the pattern on LVDS output 11 can be programmed with these bits；see表 33 for bit descriptions．
4－2	PAT＿LVDS12［2：0］	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the pattern on LVDS output 12 can be programmed with these bits；see表 33 for bit descriptions．
1－0	0	R／W	Oh	Must write 0

ADS52J90
www．ti．com．cn

12．1．1．43 Register 30h（address＝30h）

图 139．Register 30h

15	14	13	12	11	10	9	8
$\begin{gathered} \text { PDN_DIG } \\ \text { ADC12 } \end{gathered}$	$\begin{gathered} \text { PDN_DIG_ } \\ \text { ADC11 } \end{gathered}$	$\begin{gathered} \text { PDN_DIG } \\ \text { ADC10 } \end{gathered}$	$\begin{gathered} \text { PDN_DIG- } \\ \text { ADC9 } \end{gathered}$	PDN LVDS12	PDN LVDS11	$\begin{aligned} & \text { PDN } \\ & \text { LVDS } 10 \end{aligned}$	PDN LVDS9
R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－0h	R／W－Oh	R／W－Oh
7	6	5	4	3	2	1	0
$\begin{gathered} \text { PDN_ANA } \\ \text { ADC12 } \end{gathered}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC11 } \end{gathered}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC10 } \end{gathered}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC9 } \end{gathered}$	INVERT LVDS12	INVERT LVDS11	INVERT LVDS10	INVERT LVDS9
R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－0h	R／W－Oh

LEGEND：R／W＝Read／Write； W ＝Write only；＝value after reset
表 92．Register 30h Field Descriptions

Bit	Field	Type	Reset	Description
15	PDN＿DIG＿ADC12	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC12
14	PDN＿DIG＿ADC11	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC11
13	PDN＿DIG＿ADC10	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC10
12	PDN＿DIG＿ADC9	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC9
11	PDN＿LVDS12	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 12
10	PDN＿LVDS11	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 11
9	PDN＿LVDS10	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 10
8	PDN＿LVDS9	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 9
7	PDN＿ANA＿ADC12	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC12
6	PDN＿ANA＿ADC11	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC11
5	PDN＿ANA＿ADC10	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC10
4	PDN＿ANA＿ADC9	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC9
3	INVERT＿LVDS12	R／W	Oh	$0=$ Normal operation（default） 1 ＝Inverts ADC data sent on LVDS output line 12．Has no effect on Test patterns．
2	INVERT＿LVDS11	R／W	Oh	$0=$ Normal operation（default） 1 ＝Inverts ADC data sent on LVDS output line 11．Has no effect on Test patterns．
1	INVERT＿LVDS10	R／W	Oh	$0=$ Normal operation（default） 1 ＝Inverts ADC data sent on LVDS output line 10．Has no effect on Test patterns．
0	INVERT＿LVDS9	R／W	Oh	$0=$ Normal operation（default） 1 ＝Inverts ADC data sent on LVDS output line 9．Has no effect on Test patterns．

12．1．1．44 Register 31h（address＝31h）

图 140．Register 31h

15	14	13	12	11	10	9	8
GAIN＿ADC130					0	OFFSET＿ADC130	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC130							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 93．Register 31h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC13o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC13 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC130	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC13 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．45 Register 32h（address＝32h）

图 141．Register 32h

15	14	13	12	11	10	9	8
GAIN＿ADC13e					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC13e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset
表 94．Register 32h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC13e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC13 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC13e	R／W	0h	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC13 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．46 Register 33h（address＝33h）

图 142．Register 33h

15	14	13	12	11	10	9	8
GAIN＿ADC140					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC140							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset

95．Register 33h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC14o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC14 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC140	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC14 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．47 Register 34h（address＝34h）

图 143．Register 34h

15	14	13	12	11	10	9	8
GAIN＿ADC14e					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC14e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－n＝value after reset
表 96．Register 34h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC14e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC14 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC14e	R／W	0h	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC14 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．48 Register 35h（address＝35h）

图 144．Register 35h

15	14	13	12	11	10	9	8
GAIN＿ADC150					0	OFFSET＿ADC150	
R／W－Oh					R／W－Oh	R／W－Oh	
7	6	5	4	3	2	1	0
OFFSET＿ADC150							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 97．Register 35h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC150	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC15 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC150	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC15 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．49 Register 36h（address＝36h）

图 145．Register 36h

15	14	13	12	11	10	9	8
GAIN＿ADC15e					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC15e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－n＝value after reset
表 98．Register 36h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC15e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC15 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC15e	R／W	0h	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC15 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．50 Register 37h（address＝37h）

图 146．Register 37h

15	14	13	12	11	10	9	8
GAIN＿ADC160					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC160							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset

99．Register 37h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC16o	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the odd sample of ADC16 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC160	R／W	Oh	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the odd sample of ADC16 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．51 Register 38h（address＝38h）

图 147．Register 38h

15	14	13	12	11	10	9	8
GAIN＿ADC16e					0		
R／W－Oh					R／W－Oh		R／W－Oh
7	6	5	4	3	2	1	0
OFFSET＿ADC16e							
R／W－Oh							

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset
表 100．Register 38h Field Descriptions

Bit	Field	Type	Reset	Description
$15-11$	GAIN＿ADC16e	R／W	Oh	When the DIG＿GAIN＿EN bit（register 3，bit 12）is set to 1，the digital gain value for the even sample of ADC16 can be obtained with this register．For a value of N（decimal equivalent of binary） written to these bits，the digital gain gets set to N $\times 0.2$ dB．
10	0	R／W	Oh	Must write 0
$9-0$	OFFSET＿ADC16e	R／W	0h	When the DIG＿OFFSET＿EN bit（register 3，bit 8）is set to 1，the offset value to be subtracted from the even sample of ADC16 can be obtained with this 10－bit register．The offset value is in twos complement format and its LSB corresponds to a 14－bit LSB．

12．1．1．52 Register 39h（address＝39h）

图 148．Register 39h

15	14	13	12	11	10	9	8
PAT＿PRBS LVDS13	PAT PRBS LVDS14	PAT PRBS LVDS15	PAT＿PRBS LVDS16		PAT＿LVDS13		PAT＿LVDS14
R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh		R／W－Oh	
7	6	5	4	3	2	1	0
PAT＿LVDS14		0	HPF＿CORNER＿ADC13－16				$\begin{gathered} \text { DIG_HPF_EN } \\ \text { ADC13-16 } \end{gathered}$
R／W－Oh		R／W－Oh	R／W－Oh			R／W－Oh	

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 101．Register 39h Field Descriptions

Bit	Field	Type	Reset	Description
15	PAT＿PRBS＿LVDS13	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVD̄S output 13 can be enabled with this bit；see the LVDS Test Pattern Mode section for further details．
14	PAT＿PRBS＿LVDS14	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVD̄S output 14 can be enabled with this bit；see the LVDS Test Pattern Mode section for further details．
13	PAT＿PRBS＿LVDS15	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the PRBS pattern on LVD̄S output 15 can be enabled with this bit；see the LVDS Test Pattern Mode section for further details．
12	PAT＿PRBS＿LVDS16	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4 ，bit 8 ）is set to 1 ， the PRBS pattern on LVD̄S output 16 can be enabled with this bit；see the LVDS Test Pattern Mode section for further details．
11－9	PAT＿LVDS13［2：0］	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the pattern on LVDS output 13 can be programmed with these bits；see 表 33 for bit descriptions．
8－6	PAT＿LVDS14［2：0］	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8 ）is set to 1 ， the pattern on LVDS output 14 can be programmed with these bits；see 表 33 for bit descriptions．
5	0	R／W	Oh	Must write 0
4－1	HPF＿CORNER＿ADC13－16	R／W	Oh	When the DIG＿HPF＿EN＿CH13－16 bit is set to 1 ，the digital HPF characteristic for the corresponding ADCs can be programmed by setting the value of k with these bits． The value of k can be from 2 to 10 （ 0010 b to 1010b）；see the Digital HPF section for further details．
0	DIG＿HPF＿EN＿ADC13－16	R／W	Oh	$0=$ Digital HPF disabled for ADCs 13 to 16 （default） 1 ＝Enables digital HPF for ADCs 13 to 16

12．1．1．53 Register 3Bh（address $=3 B h$ ）
图 149．Register 3Bh

15	14	13	12	11	10	9	8
0	0	0	0	$\begin{gathered} \text { IN_16CH } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{IN} 16 \mathrm{CH} \\ \text { ADC14 } \end{gathered}$	$\begin{gathered} \mathrm{IN} 16 \mathrm{CH} \\ \text { ADC15 } \\ \hline \end{gathered}$	$\frac{\mathrm{IN} 16 \mathrm{CH}}{\mathrm{ADCl}^{-}}$
R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－0h	R／W－Oh	R／W－Oh
7	6	5	4	3	2	1	0
	T＿LVDS			PAT＿LVDS1		0	0
R／W－Oh			R／W－Oh			R／W－Oh	R／W－Oh

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 102．Register 3Bh Field Descriptions

Bit	Field	Type	Reset	Description
$15-12$	0	R／W	Oh	Must write 0
11	IN＿16CH＿ADC13	R／W	Oh	Selects the input pair sampled by ADC13 in 16－input mode． $0=$ ADC13 samples the signal on INP25，INM25 1＝ADC13 samples the signal on INP26，INM26
10	IN＿16CH＿ADC14	R／W	Oh	Selects the input pair sampled by ADC14 in 16－input mode． $0=$ ADC14 samples the signal on INP27，INM27 $1=$ ADC14 samples the signal on INP28，INM28
9	IN＿16CH＿ADC15	R／W	Oh	Selects the input pair sampled by ADC15 in 16－input mode． $0=$ ADC15 samples the signal on INP29，INM29 $1=$ ADC15 samples the signal on INP30，INM30
8	IN＿16CH＿ADC16	R／W	Oh	Selects the input pair sampled by ADC16 in 16－input mode． 0＝ADC16 samples the signal on INP31，INM31 ＝ADC16 samples the signal on INP32，INM32
$7-5$	PAT＿LVDS15［2：0］	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1， the pattern on LVDS output 15 can be programmed with these bits；see 表 33 for bit descriptions．
$4-2$	PAT＿LVDS16［2：0］	R／W	Oh	When the PAT＿SELECT＿IND bit（register 4，bit 8）is set to 1， the pattern on LVDS output 16 can be programmed with these bits；see 表 33 for bit descriptions．
$1-0$	0	R／W	Oh	Must write 0

12．1．1．54 Register 3Ch（address＝3Ch）

图 150．Register 3Ch

15	14	13	12	11	10	9	8
$\begin{gathered} \text { PDN_DIG } \\ \text { ADC16 } \end{gathered}$	$\begin{gathered} \text { PDN_DIG } \\ \text { ADC15 } \end{gathered}$	$\begin{gathered} \text { PDN_DIG- } \\ \text { ADC14 } \end{gathered}$	PDN＿DIG＿	PDN＿LVDS16	PDN＿LVDS15	PDN＿LVDS14	PDN＿LVDS13
R／W－Oh							
7	6	5	4	3	2	1	0
$\begin{gathered} \text { PDN_ANA } \\ \text { ADC16 } \end{gathered}$	PDN＿ANA ADC15	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC14 } \end{gathered}$	$\begin{gathered} \text { PDN_ANA } \\ \text { ADC13 } \end{gathered}$	INVERT LVDS16	INVERT LVDS15	INVERT LVDS14	INVERT LVDS13
R／W－Oh	R／W－0h						

LEGEND：R／W＝Read／Write；－n＝value after reset
表 103．Register 3Ch Field Descriptions

Bit	Field	Type	Reset	Description
15	PDN＿DIG＿ADC16	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC16
14	PDN＿DIG＿ADC15	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC15
13	PDN＿DIG＿ADC14	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC14
12	PDN＿DIG＿ADC13	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the digital block for ADC13
11	PDN＿LVDS16	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 16
10	PDN＿LVDS15	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 15
9	PDN＿LVDS14	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 14
8	PDN＿LVDS13	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down LVDS output line 13
7	PDN＿ANA＿ADC16	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC16
6	PDN＿ANA＿ADC15	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC15
5	PDN＿ANA＿ADC14	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC14
4	PDN＿ANA＿ADC13	R／W	Oh	$0=$ Normal operation（default） 1 ＝Powers down the analog block for ADC13
3	INVERT＿LVDS16	R／W	Oh	$0=$ Normal operation（default） 1 ＝Inverts ADC data sent on LVDS output line 16．Has no effect on Test patterns．
2	INVERT＿LVDS15	R／W	Oh	$0=$ Normal operation（default） 1 ＝Inverts ADC data sent on LVDS output line 15．Has no effect on Test patterns．
1	INVERT＿LVDS14	R／W	Oh	$0=$ Normal operation（default） $1=$ Inverts ADC data sent on LVDS output line 14．Has no effect on Test patterns．
0	INVERT＿LVDS13	R／W	Oh	$0=$ Normal operation（default） 1 ＝Inverts ADC data sent on LVDS output line 13．Has no effect on Test patterns．

12．1．1．55 Register 43h（address＝43h）
图 151．Register 43h

15	14	13	12	10	9	8	
0	0	0	0	0	0	0	0
R／W－Oh	R／W－Oh	R／W－0h	R／W－0h	R／W－0h	R／W－Oh	R／W－Oh	R／W－Oh
7	6	5	4	3	2	1	0
0	0	0		LVDS＿DCLK＿DELAY＿PROG	0		
R／W－Oh	R／W－Oh	R／W－Oh		R／W－Oh		R／W－Oh	

LEGEND：R／W＝Read／Write；－n＝value after reset
表 104．Register 43h Field Descriptions

Bit	Field	Type	Reset	Description
$15-5$	0	R／W	Oh	Must write 0
$4-1$	LVDS＿DCLK＿DELAY＿PROG	R／W	Oh	The LVDS DCLK output delay is programmable with 110－ps steps．Delay values are in twos complement format．Increasing the positive delay increases setup time and reduces hold time， and vice－versa for the negative delay． $0000=$ No delay $0001=110 \mathrm{ps}$ $0010=220 \mathrm{ps}$
				$\dddot{1110}=-220 \mathrm{ps}$ $1111=-110 \mathrm{ps}$ \ldots
0	0			

12．2 JESD Serial Interface Registers

This section discusses the JESD registers．A register map is available in 表 105.
表 105．JESD Register Map

REGIS ADDR		REGISTER DATA ${ }^{(1)}$															
DECIMAL	HEX	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
70	46	0	0	0	0	0	0	0	0	0	0	0	0	0	MASK＿TX TRIG	$\begin{aligned} & \text { JESD } \\ & \text { RESET1 } \end{aligned}$	0
73	49	$\begin{aligned} & { }^{\text {IDLE }} \\ & \text { MODE } \end{aligned}$	0	0	$\begin{aligned} & \text { LANE } \\ & \text { ALIGN } \end{aligned}$	FRAME ALIGN	$\begin{gathered} \mathrm{LINK}^{\text {LINFIG_ }} \\ \mathrm{DIS}_{-} \end{gathered}$	0	0	0	0	0	0	0	FORCE＿K	0	0
74	4A	LINK＿LAYER＿TESTMODES			$\begin{gathered} \text { TX_SYNC_ } \\ \text { REQ } \end{gathered}$	RELEASE＿ILA		0	$\begin{gathered} \hline \text { JESD_RES } \\ E \bar{T} 2 \end{gathered}$	$\begin{gathered} \hline \text { JESD_RES } \\ \text { ET3 } \end{gathered}$	0	0	0	0	0	0	0
75	4B	0	0	0	0	0	0	0	$\begin{aligned} & \text { SING } \\ & \text { CONV } \\ & \text { PER_OC̄T } \end{aligned}$	NUM＿ADC＿PER＿LANE			0	0	0	0	0
77	4D	0	0	0	0	0	0	0	0	PRE＿EMP				0	0	0	0
80	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$\begin{aligned} & \text { INC } \\ & \text { JESD- } \\ & \text { VDD- } \end{aligned}$	0
81	51	DEVICE＿ID								0	0	0	BANK＿ID				
82	52	0	0	0	0	0	0	0	0	SCR＿EN	0	0	0	0	0	0	0
83	53	0	0	0	0	0	0	0	0	0	0	0	K＿VALUE＿TO＿FORCE				
85	55	JESD＿SUBCLASS			0	0	0	0	0	JESD＿VER			0	0	0	0	0
$115^{(2)}$	73	$\underset{\text { ID1 }}{\text { EN＿LANE }}$	$\underset{\text { ID2 }}{\text { EN_LANE_ }^{2}}$	$\underset{\text { ID3 }}{\text { EN_LANE_ }}$	$\underset{\text { ID4 }}{\text { EN_LANE }_{-}}$				EN CHECK SUM LANE4	0	0	0	ENABLE JESD＿VER ＿CONTMOL	0	0	0	0
$116^{(2)}$	74	CHECK＿SUM1								CHECK＿SUM2							
$117^{(2)}$	75	CHECK＿SUM3								CHECK＿SUM4							
$118^{(2)}$	76	0	0	0	LANE＿ID1					0	0	0	LANE＿ID2				
$119^{(2)}$	77	0	0	0	LANE＿ID3					0	0	0	LANE＿ID4				
120	78	FORCE LMFC COUNT	LMFC＿COUNTER＿INIT＿VALUE					0	0	0	0	0	0	0	0	0	0
$134{ }^{(2)}$	86	$\underset{\text { ID5 }}{\text { EN_LANE }_{-}}$	$\underset{\text { EN LANE }}{\text { ID6 }_{-}}$	$\underset{\text { ID7 }}{\text { EN_LANE_ }}$	$\begin{gathered} \text { EN_LANE_ } \\ \text { ID8 } \end{gathered}$					0	0	0	0	0	0	0	0
$135^{(2)}$	87	CHECK＿SUM5								CHECK＿SUM6							
$136{ }^{(2)}$	88	CHECK＿SUM7								CHECK＿SUM8							
$137{ }^{(2)}$	89	0	0	0	LANE＿ID5					0	0	0	LANE＿ID6				
$138{ }^{(2)}$	8A	0	0	0	LANE＿ID7					0	0	0	LANE＿ID8				

（1）Default value of all registers is 0 ．
（2）These registers must only be written to after setting the JESD＿WR＿SEL register bit（register 3，bit 5）to 1 ．To write any other registers，set the JESD＿WR＿SEL bit to 0 ．

12．2．1 Description of JESD Serial Interface Registers

12．2．1．1 Register 70 （address $=46$ h）

图 152．Register 70

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R／W－0h | R／W－Oh |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | MASK＿TX＿ | JESD＿RESET1 | 0 |
| R／W－Oh |

LEGEND：R／W＝Read／Write；－n＝value after reset
表 106．Register 70 Field Descriptions

Bit	Field	Type	Reset	Description
$15-3$	0	R／W	Oh	Must write 0
2	MASK＿TX＿TRIG	R／W	Oh	$0=$ TX＿TRIG affects internal clock－phase resets $1=$ TX＿TRIG does not affect internal clock－phase resets
1	JESD＿RESET1	R／W	Oh	$0=$ SYNC \sim and SYSREF events reset non－JESD blocks（such as the clock dividers，demodulator，and test pattern generator） $1=$ SYNC \sim and SYSREF events do not reset non－JESD blocks such as the clock dividers，demodulator，and test pattern generator）
0	0	R／W	Oh	Must write 0

12．2．1．2 Register 73 （address＝49h）

图 153．Register 73

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IDLE＿MODE | 0 | 0 | LANE＿ALIGN | FRAME＿ALIGN | LINK＿CONFIG | 0 | 0 |
| R／W－Oh | R／W－Oh | R／W－0h | R／W－Oh | R／W－Oh | R／W－Oh | R／W－Oh | R／W－Oh |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | FORCE＿K | 0 | 0 |
| R／W－Oh |

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 107．Register 73 Field Descriptions

Bit	Field	Type	Reset	Description
15	IDLE＿MODE	R／W	Oh	```0 = Idle mode disabled (normal operation) 1 = Device sends a continuous pattern (BC50h) on all lanes```
14－13	0	R／W	Oh	Must write 0
12	LANE＿ALIGN	R／W	Oh	$0=$ Character replacement disabled．Data are sent without inserting a lane alignment control character． $1=$ If the last octet of the multiframe is the same as the last octet of the previous multiframe，then the last octet is replaced with a／K28．3／character that can be used by the receiver for lane alignment monitoring and correction；see the JESD204B document．，section 5．3．3．4 for details．
11	FRAME＿ALIGN	R／W	Oh	$0=$ Character replacement is disabled．Data are sent without inserting a frame alignment control character． $1=$ If the last octet of the frame is the same as the last octet of the previous frame，then the octet is replaced with／K28．7／． Character replacement is not performed if a control character was already sent in the previous frame；see the JESD204B document．，section 5．3．3．4 for details．
10	LINK＿CONFIG＿DIS	R／W	Oh	$0=$ ILA transmission enabled．The initial lane alignment data are sent，as per section 5．3．3．5 and 8.3 of the JESD204B document． $1=$ ILA transmission disabled．The device starts sending payload data immediately after the code group synchronization．
9－3	0	R／W	Oh	Must write 0
2	FORCE＿K	R／W	Oh	$0=$ Value of K （number of frames per multiframe）minus 1 is automatically calculated and set $1=$ Value of K （number of frames per multiframe）minus 1 is set by the K＿VALUE＿TO＿FORCE register setting
1－0	0	R／W	Oh	Must write 0

12．2．1．3 Register 74 （address＝4Ah）

图 154．Register 74

15	14	13	12	11	10	9	8
LINK＿LAYER＿TESTMODES			$\begin{gathered} \text { TX_SYNC } \\ \text { REQ } \end{gathered}$	RELEASE＿ILA		0	JESD＿RESET2
R／W－Oh			R／W－Oh	R／W－Oh		R／W－Oh	R／W－Oh
7	6	5	4	3	2	1	0
JESD＿RESET3	0	0	0	0	0	0	0
R／W－Oh							

LEGEND：R／W＝Read／Write；－n＝value after reset
表 108．Register 74 Field Descriptions

Bit	Field	Type	Reset	Description
15－13	LINK＿LAYER＿TESTMODES	R／W	Oh	$\begin{aligned} & 000=\text { Normal operation } \\ & 001=\mathrm{D} 21.5(1010101010) \text { is transmitted on all lanes } \\ & 010=\text { /K28.5/ is transmitted on all lanes } \\ & 011=\text { ILA sequence is continuously transmitted on all lanes } \\ & 100=\text { Pseudo-random pattern of } 120 \text { bits is transmitted on all } \\ & \text { lanes } \\ & \text { All other combinations are invalid. } \end{aligned}$
12	TX＿SYNC＿REQ	R／W	Oh	$0=$ Sync reinitialization request disabled（normal operation） 1 ＝A stream of／K28．5／symbols are transmitted，requesting link reinitialization．After transmission，the／K28．5／characters enter into a link initialization state；see section 5．3．3．7 of the JESD204B document for further details．
11－10	RELEASE＿ILA	R／W	Oh	000 ＝Default value The value of this register determines the LMFC edge that the transmitter enters in the ILA phase from the code group synchronization．This setting is useful for adjusting the deterministic latency value；see the Data Link Layer section．
9	0	R／W	Oh	Must write 0
8	JESD＿RESET2	R／W	Oh	$0=$ SYNC～and SYSREF events reset the phase of JESD and non－JESD blocks（demodulator，test pattern generator，and clock dividers） 1 ＝SYNC～and SYSREF events do not reset the phase of JESD block and clock dividers but do reset the phase of the demodulator and test pattern generator
7	JESD＿RESET3	R／W	Oh	$0=$ SYNC \sim and SYSREF events reset the phase of JESD and non－JESD blocks（demodulator，test pattern generator，and clock dividers） 1 ＝Immediately after setting this bit to 1 ，the first SYNC～and SYSREF event resets the phase of the JESD and non－JESD blocks．Subsequent SYNC～and SYSREF events do not reset the phase of the JESD block and clock dividers but do reset the phase of the demodulator and test pattern generator．
6－0	0	R／W	Oh	Must write 0

12．2．1．4 Register 75 （address $=4 B h$ ）
图 155．Register 75

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	SING CONV PER OCT
R／W－Oh							
7	6	5	4	3	2	1	0
NUM＿ADC＿PER＿LANE			0	0	0	0	0
R／W－Oh			R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 109．Register 75 Field Descriptions

Bit	Field	Type	Reset	Description
$15-9$	0	R／W	Oh	Must write 0
8	SING＿CONV＿PER＿OCT	R／W	Oh	0＝Data are packed efficiently and transmitted over the link 1 ＝Each ADC data are packed in two octets［that is，each ADC data are transmitted as 16 bits（12－，14－，and 16－bit mode）by the appropriate zero padding］；see the User Data Format section for further details．
$7-5$	NUM＿ADC＿PER＿LANE	R／W	Oh	O00＝Four ADCs per lane mode：data from four ADCs are packed into a lane．Four lanes are active and four lanes are powered down． 001＝Eight ADCs per lane mode：data from eight ADCs are packed into a lane．Two lanes are active and six lanes are powered down． 100＝Two ADCs per lane mode：data from two ADCs are packed into a lane．All eight lanes are active． All other settings are invalid．
$4-0$	0		R／W	Oh

12．2．1．5 Register 77 （address＝4Dh）

图 156．Register 77

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
R／W－Oh							
7	6	5	4	3	2	1	0
PRE＿EMP				0	0	0	0
R／W－Oh				R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 110．Register 77 Field Descriptions

Bit	Field	Type	Reset	Description
$15-8$	0	R／W	Oh	Must write 0
$7-4$	PRE＿EMP	R／W	Oh	The extra current during pre－emphasis is equal to the decimal equivalent of the programmed value multiplied by 0．25 mA．A value corresponding to 0 refers to no pre－emphasis．
$3-0$	0	R／W	Oh	Must write 0

12．2．1．6 Register 80 （address＝50h）

图 157．Register 80

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R／W－Oh | R／W－Oh | R／W－0h | R／W－0h | R／W－0h | R／W－0h | R／W－Oh | R／W－Oh |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | INC＿JESD＿ | 0 |
| R／W－Oh |

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset

表 111．Register 80 Field Descriptions

Bit	Field	Type	Reset	Description
$15-2$	0	R／W	Oh	Must write 0
1	INC＿JESD＿VDD	R／W	Oh	$0=$ Default value for the internal LDO driving the JESD PLL $1=$ Increased value for the internal LDO driving the JESD PLL
0	0	R／W	Oh	Must write 0

12．2．1．7 Register 81 （address $=51 \mathrm{~h}$ ）
图 158．Register 81

15	14	13	12	11	10	9	8
DEVICE＿ID							
R／W－Oh							
7	6	5	4	3	2	1	0
0	0	0			BANK＿ID		
R／W－Oh	R／W－Oh	R／W－Oh			R／W－Oh		

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 112．Register 81 Field Descriptions

Bit	Field	Type	Reset	Description
$15-8$	DEVICE＿ID	R／W	Oh	These bits force the device ID value．
$7-5$	0	R／W	Oh	Must write 0
$4-0$	BANK＿ID	R／W	Oh	These bits force the bank ID value．

12．2．1．8 Register 82 （address $=52 h$ ）

图 159．Register 82

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
R／W－Oh							
7	6	5	4	3	2	1	0
SCR＿EN	0	0	0	0	0	0	0
R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－0h	R／W－Oh	R／W－Oh	R／W－0h

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 113．Register 82 Field Descriptions

Bit	Field	Type	Reset	Description
$15-8$	0	R／W	Oh	Must write 0
7	SCR＿EN	R／W	Oh	0＝Scrambler disabled $1=$ Scrambler enabled；see the Scrambler section for further details
$6-0$	0	R／W	Oh	Must write 0

ADS52J90
www．ti．com．cn

12．2．1．9 Register 83 （address＝53h）

图 160．Register 83

15	14	13	12	11	9	8				
0	0	0	0	0	0	0	0			
R／W－Oh	R／W－Oh	R／W－0h	R／W－0h	R／W－0h	R／W－Oh	R／W－Oh	R／W－Oh			
7	6	5	4	3	2	1	0			
0	0	0		K＿VALUE＿TO＿FORCE						
R／W－Oh	R／W－Oh	R／W－Oh		R／W－Oh						

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 114．Register 83 Field Descriptions

Bit	Field	Type	Reset	Description
$15-5$	0	R／W	Oh	Must write 0
$4-0$	K＿VALUE＿TO＿FORCE	R／W	Oh	Specifies the value of K（number of frames per multiframe） minus 1 to be forced when the FORCE＿K bit is set to 1.

12．2．1．10 Register 85 （address $=55 h$ ）

图 161．Register 85

15	14	13	12	10	9	8	
	JESD＿SUBCLASS	0	0	0	0	0	
	R／W－Oh		R／W－0h	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh
7	6	4	3	2	1	0	
6	0	0	0	0	0		
	JESD＿VER		R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh	R／W－Oh

LEGEND：R／W＝Read／Write；－n＝value after reset

表 115．Register 85 Field Descriptions

Bit	Field	Type	Reset	Description
$15-13$	JESD＿SUBCLASS	R／W	Oh	$000=$ Subclass 0 $001=$ Subclass 1 $010=$ subclass 2 See the JESD Version and Subclass section for further details．
$12-8$	0	R／W	Oh	Must write 0
$7-5$	JESD＿VER	R／W	Oh	$000=$ JESD204A $001=$ JESD204B See the JESD Version and Subclass section for further details．
$4-0$	0	R／W	Oh	Must write 0

12．2．1．11 Register 115 （address＝73h）

图 162．Register 115

15	14	13 12		11	10	9	8
EN＿LANE＿ID1	EN＿LANE＿ID2	EN＿LANE＿ID3	EN＿LANE＿ID4	$\begin{gathered} \text { EN } \\ \text { CHECKSUM_ } \\ \text { LANE1 } \end{gathered}$	$\begin{gathered} \text { EN } \\ \text { CHECKSUM_ } \\ \text { LANE2 } \end{gathered}$	$\begin{aligned} & \text { EN } \\ & \text { CHECKSUM_ } \\ & \text { LANE3 } \end{aligned}$	$\begin{aligned} & \text { EN } \\ & \text { CHECKSUM_ } \\ & \text { LANE4 } \end{aligned}$
R／W－Oh							
7	6	5	4	3	2	1	0
0	0	0	$\begin{aligned} & \text { ENABLE JESD } \\ & \text { CŌNTROL } \end{aligned}$	0	0	0	0
R／W－Oh							

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset
表 116．Register 115 Field Descriptions

Bit	Field	Type	Reset	Description
15	EN＿LANE＿ID1	R／W	Oh	$\begin{aligned} & 0=\text { Lane } 1 \text { default ID (00001) is set } \\ & 1 \text { = Lane } 1 \text { default ID (00001) can be forced with register 118, } \\ & \text { bits 12-8 } \end{aligned}$
14	EN＿LANE＿ID2	R／W	Oh	$0=$ Lane 2 default ID（00010）is set 1 ＝Lane 2 default ID（00010）can be forced with register 118， bits 4－0
13	EN＿LANE＿ID3	R／W	Oh	$\begin{aligned} & 0=\text { Lane } 3 \text { default ID }(00011) \text { is set } \\ & 1=\text { Lane } 3 \text { default ID }(00011) \text { can be forced with register 119, } \end{aligned}$ bits 12-8
12	EN＿LANE＿ID4	R／W	Oh	$\begin{aligned} & 0=\text { Lane } 4 \text { default ID }(00100) \text { is set } \\ & 1=\text { Lane } 4 \text { default ID }(00100) \text { can be forced with register 119, } \\ & \text { bits } 4-0 \end{aligned}$
11	EN＿CHECKSUM＿LANE1	R／W	Oh	$0=$ The default checksum value is calculated by the device $1=$ Checksum value（FCHK field in 表15）is forced from register 116，bits 15－8
10	EN＿CHECKSUM＿LANE2	R／W	Oh	$0=$ The default checksum value is calculated by the device $1=$ Checksum value（FCHK field in 表 15 ）is forced from register 116，bits 7－0
9	EN＿CHECKSUM＿LANE3	R／W	Oh	$0=$ The default checksum value is calculated by the device 1 ＝Checksum value（FCHK field in 表 15）is forced from register 117，bits 15－8
8	EN＿CHECKSUM＿LANE4	R／W	Oh	$0=$ The default checksum value is calculated by the device $1=$ Checksum value（FCHK field in 表15）is forced from register 117，bits 7－0
7－5	0	R／W	Oh	Must write 0
4	ENABLE＿JESD＿VER＿CONTROL	R／W	Oh	$0=$ The device is in JESD204B，subclass 1 mode $1=$ JESD version and subclass can be changed；see the 表 15 section for further details．
3－0	0	R／W	Oh	Must write 0

12．2．1．12 Register 116 （address＝74h）

图 163．Register 116

15	14	13	12	11	10	9	8
CHECK＿SUM1							
R／W－Oh							
7	6	5	4	3	2	1	0
CHECK＿SUM2							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset

表 117．Register 116 Field Descriptions

Bit	Field	Type	Reset	Description
$15-8$	CHECK＿SUM1	R／W	Oh	These bits determine the lane 1 checksum value；see register 135.
$7-0$	CHECK＿SUM2	R／W	Oh	These bits determine the lane 2 checksum value；see register 135.

12．2．1．13 Register 117 （address $=75 h$ ）

图 164．Register 117

15	14	13	12	11	10	9	8
CHECK＿SUM3							
R／W－Oh							
7	6	5	4	3	2	1	0
CHECK＿SUM4							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 118．Register 117 Field Descriptions

Bit	Field	Type	Reset	Description
$15-8$	CHECK＿SUM3	R／W	Oh	These bits determine the lane 3 checksum value；see register 136.
$7-0$	CHECK＿SUM4	R／W	Oh	These bits determine the lane 4 checksum value；see register 136.

12．2．1．14 Register 118 （address＝76h）

图 165．Register 118

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | | | LANE＿ID1 | | |
| R／W－Oh | R／W－Oh | R／W－0h | | R／W－Oh | | | |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
| 0 | 0 | 0 | | LANE＿ID2 | | | |
| R／W－Oh | R／W－Oh | R／W－Oh | | R／W－Oh | | | |

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 119．Register 118 Field Descriptions

Bit	Field	Type	Reset	Description
$15-13$	0	R／W	Oh	Must write 0
$12-8$	LANE＿ID1	R／W	Oh	These bits determine the lane 1 ID value；see register 137．
$7-5$	0	R／W	Oh	Must write 0
$4-0$	LANE＿ID2	R／W	Oh	These bits determine the lane 2 ID value；see register 137．

12．2．1．15 Register 119 （address＝77h）

图 166．Register 119

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | | LANE＿ID3 | | | |
| R／W－Oh | R／W－0h | R／W－0h | | R／W－Oh | | | |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
| 0 | 0 | 0 | | | LANE＿ID4 | | |
| R／W－Oh | R／W－Oh | R／W－Oh | | R／W－Oh | | | |

LEGEND：R／W＝Read／Write；－n＝value after reset
表 120．Register 119 Field Descriptions

Bit	Field	Type	Reset	Description
$15-13$	0	R／W	Oh	Must write 0
$12-8$	LANE＿ID3	R／W	Oh	These bits determine the lane 3 ID value；see register 138．
$7-5$	0	R／W	Oh	Must write 0
$4-0$	LANE＿ID4	R／W	Oh	These bits determine the lane 4 ID value；see register 138．

12．2．1．16 Register 120 （address $=78 \mathrm{~h}$ ）
图 167．Register 120

15	14	13	12	11	10	9	8
FORCE LMFC COUNT	LMFC＿COUNTER＿INIT＿VALUE					0	0
R／W－Oh	R／W－Oh					R／W－Oh	R／W－Oh
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 121．Register 120 Field Descriptions

Bit	Field	Type	Reset	Description
15	FORCE＿LMFC＿COUNT	R／W	Oh	$0=$ Default value $1=$ The LMFC counter value is forced，as per register 120, bits $14-10$.
$14-10$	LMFC＿COUNTER＿INIT＿VALUE	R／W	Oh	These bits specify the initial value of the LMFC counter．This option is useful when the multiframe size must be different than the default value；see the Synchronization Using SYNC～and SYSREF section．
$9-0$	0	R／W	Oh	Must write 0

12．2．1．17 Register 134 （address＝86h）

图 168．Register 134

15	14	13	12	11	10	9	8
EN＿LANE＿ID5	EN＿LANE＿ID6	EN＿LANE＿ID7	EN＿LANE＿ID8	$\begin{gathered} \text { EN_- } \\ \text { CHECKSUM_ } \\ \text { LANE5 } \end{gathered}$	$\begin{gathered} \text { EN_- } \\ \text { CHECKSUM_ } \\ \text { LANE6 } \end{gathered}$	$\begin{aligned} & \text { EN } \\ & \text { CHECKSUM_ } \\ & \text { LANE7 } \end{aligned}$	$\begin{gathered} \text { EN } \\ \text { CHECKSUM_ } \\ \text { LANE8 } \\ \hline \end{gathered}$
R／W－Oh							
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0
R／W－0h	R／W－Oh	R／W－0h	R／W－Oh	R／W－0h	R／W－Oh	R／W－Oh	R／W－0h

LEGEND：R／W＝Read／Write；－n＝value after reset
（1）This register is valid when JESD＿WR＿SEL（register 3，bit 5）is 1.
表 122．Register 134 Field Descriptions

Bit	Field	Type	Reset	Description
15	EN＿LANE＿ID5	R／W	Oh	$0=$ Lane 5 default ID（00101）is set $1=$ Lane 5 default ID（00101）can be forced with register 137，bits 12－8
14	EN＿LANE＿ID6	R／W	Oh	$0=$ Lane 6 default ID（00110）is set $1=$ Lane 6 default ID (00110) can be forced with register 137，bits 4－0
13	EN＿LANE＿ID7	R／W	Oh	$0=$ Lane 7 default ID（00111）is set $1=$ Lane 7 default ID（00111）can be forced with register 138，bits 12－8
12	EN＿LANE＿ID8	R／W	Oh	$0=$ Lane 8 default ID（01000）is set $1=$ Lane 8 default ID（01000）can be forced with register 138，bits 4－0
11	EN＿CHECKSUM＿LANE5	R／W	Oh	$0=$ Default checksum value calculated by device $1=$ Checksum value（FCHK field in 表 15）from register 135，bits 15－8
10	EN＿CHECKSUM＿LANE6	R／W	Oh	$0=$ The default checksum value is calculated by the device $1=$ Checksum value（FCHK field in 表 15）from register 135，bits 7－0
9	EN＿CHECKSUM＿LANE7	R／W	Oh	$0=$ The default checksum value is calculated by the device $1=$ Checksum value（FCHK field in 表 15）from register 135，bits 15－8
8	EN＿CHECKSUM＿LANE8	R／W	Oh	$0=$ The default checksum value is calculated by the device $1=$ Checksum value（FCHK field in 表 15）from register 135，bits 7－0
$7-0$	0	R／W	Oh	Must write 0

12．2．1．18 Register 135 （address $=87 h$ ）

图 169．Register 135

15	14	13	12	11	10	9	8
CHECK＿SUM5							
R／W－Oh							
7	6	5	4	3	2	1	0
CHECK＿SUM6							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 123．Register 135 Field Descriptions

Bit	Field	Type	Reset	Description
$15-8$	CHECK＿SUM5	R／W	Oh	These bits determine the lane 5 checksum value．
$7-0$	CHECK＿SUM6	R／W	Oh	These bits determine the lane 6 checksum value．

12．2．1．19 Register 136 （address＝88h）

图 170．Register 136

15	14	13	12	11	10	9	8
CHECK＿SUM7							
R／W－Oh							
7	6	5	4	3	2	1	0
CHECK＿SUM8							
R／W－Oh							

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset

表 124．Register 136 Field Descriptions

Bit	Field	Type	Reset	Description
$15-8$	CHECK＿SUM7	R／W	Oh	These bits determine the lane 7 checksum value．
$7-0$	CHECK＿SUM8	R／W	Oh	These bits determine the lane 8 checksum value．

12．2．1．20 Register 137 （address＝89h）

图 171．Register 137

LEGEND：R／W＝Read／Write；$-\mathrm{n}=$ value after reset
表 125．Register 137 Field Descriptions

Bit	Field	Type	Reset	Description
$15-13$	0	R／W	Oh	Must write 0
$12-8$	LANE＿ID5	R／W	Oh	These bits determine the lane 5 ID value．
$7-5$	0	R／W	Oh	Must write 0
$4-0$	LANE＿ID6	R／W	Oh	These bits determine the lane 6 ID value．

ADS52J90

12．2．1．21 Register 138 （address＝8Ah）

图 172．Register 138

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | | | LANE＿ID7 | | |
| R／W－Oh | R／W－0h | R／W－0h | | R／W－0h | | | |
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | |
| 0 | 0 | 0 | | LANE＿ID8 | | | |
| R／W－Oh | R／W－Oh | R／W－Oh | | R／W－Oh | | | |

LEGEND：R／W＝Read／Write；－ $\mathrm{n}=$ value after reset
表 126．Register 138 Field Descriptions

Bit	Field	Type	Reset	Description
$15-13$	0	R／W	Oh	Must write 0
$12-8$	LANE＿ID7	R／W	Oh	These bits determine the lane 7 ID value．
$7-5$	0	R／W	Oh	Must write 0
$4-0$	LANE＿ID8	R／W	Oh	These bits determine the lane 8 ID value．

ADS52J90
www．ti．com．cn

13 器件和文档支持

13.1 文档支持

13．1．1 相关文档
《CDCE72010 数据表》，SCAS858
《CDCM7005 数据表》，SCAS793
《LMK048X 数据表》，SNAS605
《SN74AUP1T04 数据表》，SCES800
《高速时钟数据转换器》，SLYT075

13.2 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商＂按照原样＂提供。这些内容并不构成 TI 技术规范，并且不一定反映 TI 的观点；请参阅 TI 的《使用条款》。

TI E2ETM 在线社区 TI 的工程师对工程师（E2E）社区。此社区的创建目的在于促进工程师之间的协作。在 e2e．ti．com 中，您可以咨询问题，分享知识，拓展思路并与同行工程师一道帮助解决问题。
设计支持 $T I$ 参考设计支持可帮助您快速查找有帮助的 E2E 论坛，设计支持工具以及技术支持的联系信息。
13.3 商标

E2E is a trademark of Texas Instruments．
All other trademarks are the property of their respective owners．
13.4 静电放电警告

A 这些装置包含有限的内置 ESD 保护。存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损

13.5 术语表

SLYZO22－TI 术语表。
这份术语表列出并解释术语，缩写和定义。

14 机械，封装和可订购信息

以下页面包含机械，封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更，恕不另行通知，且不会对此文档进行修订。如需获取此数据表的浏览器版本，请参阅左侧的导航栏。

MECHANICAL DATA

Bottom View

NOTES：A．All linear dimensions are in millimeters．Dimensioning and tolerancing per ASME Y14．5M－1994．
B．This drawing is subject to change without notice．
C．This is a Pb －free solder ball design．

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
ADS52J90ZZE	ACTIVE	NFBGA	ZZE	198	160	RoHS \& Green	SNAGCU	Level-3-260C-168 HR	-40 to 85	ADS52J90	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: Tl defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TRAY

Chamfer on Tray corner indicates Pin 1 orientation of packed units.
*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature $\left({ }^{\circ} \mathbf{C}\right)$	L (mm)	W $(\mathbf{m m})$	K0 $(\mu \mathrm{m})$	P1 $(\mathbf{m m})$	CL $(\mathbf{m m})$
ADS52J90ZZE	ZZE	NFBGA	198	160	10×16	150	315	135.9	7620	19.2	13.5
$(\mathbf{m m})$											

重要声明和免责声明

TI＂按原样＂提供技术和可靠性数据（包括数据表），设计资源（包括参考设计），应用或其他设计建议，网络工具，安全信息和其他资源不保证没有瑕疵且不做出任何明示或暗示的担保，包括但不限于对适销性，某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任：（1）针对您的应用选择合适的 TI 产品，（2）设计，验证并测试您的应用，（3）确保您的应用满足相应标准以及任何其他功能安全，信息安全，监管或其他要求。
这些资源如有变更，恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔，损害，成本，损失和债务，TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti．com 上其他适用条款／TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址：Texas Instruments，Post Office Box 655303，Dallas，Texas 75265
Copyright © 2022 ，德州仪器（TI）公司

[^0]: （1）For detailed description，see 表 33.
 （2）Either the custom or ramp pattern setting is required for PRBS pattern selection．

