太阳能降压/升压电池充电器

作者：Jeff Falin，德州仪器 (TI) 现场应用工程师
王力 (Wang Li)，德州仪器 (TI) 现场应用工程师

引言

太阳能电池充电已经非常普遍。一节太阳能电池的典型电压为 0.7V。一些太阳能电池板可以有一块到数块串联电池，能够产生较高的电压范围。今天市场上大多数电池充电器都会对其输入电压进行调低或者降低处理。因此，如果要对一块两节式锂离子 (Li-ion) 电池充电，我们都需要一块至少能够产生 8.4V 电压的太阳能板。然而，这种充电器却无法用于对笔记本电脑中所使用的多节锂离子电池进行充电，也不能对太阳能灯使用的 12V 铅酸电池进行充电。把一个降压电池充电器改造成一个同时能够进行降压和提升处理的电池充电器是可实现的。本文将为您说明降压电池充电器改造成降压/升压 SEPIC 充电器过程中需要注意的一些问题，并把 TI bq24650 电池充电器控制器用于太阳能电源，以为您提供一个设计实例。

SEPIC 功率级与降压功率级的比较

图 1 显示了一个电池充电器控制器的简化结构图。充电器控制器 IC 对 RSNS 的充电电流和反馈电阻器 (R_FB 和 R_BFB) 的电池电压进行监控，并对功率级输出进行调节，以满足各种充电参数要求。如果输入源电压可以高于和低于最大电池电压，则可以使用一个一直拥有降压和升压功能的 SEPIC 功率级。

图 2 对比了同步降压功率级和非同步 SEPIC 功率级。我们使用降压控制器的高侧栅极驱动 (GDRVHi) 来驱动 SEPIC 转换器的功率 FET (QPWR)。但是，要想对降压控制器进行配置使其驱动 SEPIC 转换器的同步整流开关，并不是一件容易的事。因此，我们将二极管 D_DIRECT 代替 Q_SYNC 并且没有使用低侧栅极驱动。另外，不管哪个开关处于开启状态，降压转换器都向负载提供经过电容 C_O_BUCK 和 C_O_CHRGR 滤波的连续电感电流。与降压转换器不同，SEPIC 转换器仅使用 Q_PWR 对电感充电。在这期间，输出电容必须提供电池充电电流。当 D_DIRECT 开启时，当前接受充电的电感同时提供输出电容再充电电流和电池充电电流。因此，SEPIC 转换器的输出电压纹波始终会高于相同电感和输出电容以及相同输出功率的降压转换器。这种纹波会使电池检测电阻得到错误的电流测量结果。如图 1 所示，相比降压式充电器，SEPIC 充电器要求使用更大的滤波电容 (C_FILTER) 和输出电容 (C_O_SEPIC 和 C_O_CHRGR)。
V_{BAT} < V_{BAT(LOW)} 时限制预充电电流

电池经过深夜放电以后，电池电压会低于预定 V_{BAT (LOW)} 阈值。为了电池的安全性，充电器不能向电池提供全充电电流。因此，我们建议在充电器和电池之间使用一个限流电阻器，以将充电电流限定在某个更低的预充电电流值。一旦电池电压超出该选定 V_{BAT (LOW)}，便利用一个 FET 让电阻器短路，以便控制器提供更高的充电电流。图 3 显示了如何利用电阻器 R_{PRECHRG}，FET (Q_{SHRT}) 和比较器来实现这一功能。

正确选择 R_{PRECHRG} 的大小，以便流经 R_{PRECHRG} 的电流 I_{PRECHRG} 的压降加上深度放电电池电压 (V_{BAT (LOW)})，高于充电器的低电池阈值（例如：V_{LOW})，其通常由 VFB 引脚检测。正确选择 Q_{SHRT} 的大小，以适应最大电池电压 (V_{BAT(MAX)}) 和最大充电电流 (I_{CHRG(MAX)})。连接比较器的电阻器 (R_{HYS}) 提供磁滞。因此，比较器馈给检测电压需要电阻分压器。

V_{BAT} > V_{IN} 或者 V_{BAT} < V_{TH (BASHT)} 时确保正常运行

降压充电器期望电池电压始终都低于其输入电压。实际上，许多充电器都有一种功能，可以在 V_{BAT} 大于 V_{IN} 时让充电器进入睡眠模式。另一种方法是，如果 VBAT 降到某个阈值以下，则 IC 假设电池断开，然后进入保护模式。如果使用电流检测引脚 (V_{RSNS+} 和 V_{RSNS-}) 来确定电池的状态，则需要对检测电压进行平滑转换。图 4 显示了如何使用一个构配为分流监控器的测量放大器，如何对 R_{SN} 的检测电流信息进行平滑转换。该电路可以让检测电压的 DC 设置点保持足够低，以便 IC 不进入睡眠模式，它还可以让电压保持足够高，以便 IC 不进入短路保护模式。如果充电器没有自带基准电压 (V_{REF})，则可以使用一个外部基准 IC。

最大充电电流计算

SEPIC 转换器的最大充电电流与其有效输入功率有关，包括电压和电流。估算最大充电电流的一种简单方法是计算功率平衡 P_{OUT} / P_{IN} = \eta_{EST}，其中 \eta_{EST} 为类似工作条件下升压充电器的效率估算值。下面方程式可用于计算具体电池电压的最大充电电流：

\[
I_{CHRG(MAX)} = \frac{V_{IN(MPP)} \times I_{IN(MPP)} \times \eta_{EST}}{V_{BAT}}
\]
其中 $V_{IN(MPP)}$ 为太阳能电池板的最大功率点电压，而 $I_{IN(MPP)}$ 为太阳能电池板的最大功率点电流。

需正确选择 R_{SN} 的大小，以提供 $I_{\text{CHRG(MAX)}}$。由于电感之间的电容 CMID 被充电至输入电压，Q_{PWR} 必须具有稍高于 $V_{IN(MAX)} + V_{\text{BAT(MAX)}}$ 的额定电压。在 SEPIC 转换器中，L_1 的峰值电流为最大输入电流 $I_{\text{CHRG(MAX)}}$ 加上一半纹波电流 $(\Delta I_l/2)$，而 L_2 的峰值电流和二极管 DRECT 为最大输出电流 $(I_{\text{CHRG(MAX)}} + \Delta I_l/2)$。开启时 Q_{PWR} 承受这些峰值电流的总和，因此它必须有高于 $(I_{\text{IN(MPP)}} + I_{\text{CHRG(MAX)}} + \Delta I_l)$ 的定额电流。bq24650 充电器控制器可对充电电流进行调节，以让太阳能电池板输出维持在其最大功率点。

太阳能电池板设计举例

表 1 列出了图 1 功能引脚名称和图 5 中相应的 bq24650 引脚名称。图 5 显示了经过配置的充电控制器，其使用 8.4V 的最大充电电压对一块两节锂离子电池充电。最大充电电流限定在 1.3A，我们使用标准设计原则来选择功率 NFET (Q2) 和整流二极管 (D1) 的大小以用于 SEPIC 转换器。正确选择电感和输出电容 (C3 和 C4) 的大小，以降低电感电流纹波及其产生的输出电压纹波，并增加小信号控制环路相位裕量。我们使用了占面积积相同但比其他单电感组件稍微差一点的耦合电感，代替两个单独的电感。如果已经使用了两个单独的电感，则这种耦合

\[
6.2 \text{V} - 4.5 \text{V} / 0.133 \text{A} = 13 \Omega
\]

表 1 控制器引脚名称对照表

<table>
<thead>
<tr>
<th>图 1 控制器引脚名称</th>
<th>Bq24650引脚名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDRVHI</td>
<td>HIDRV</td>
</tr>
<tr>
<td>GDRVLO</td>
<td>LODRV</td>
</tr>
<tr>
<td>VRSNS+</td>
<td>SRP</td>
</tr>
<tr>
<td>VRSNS-</td>
<td>SRN</td>
</tr>
<tr>
<td>FB</td>
<td>VFB</td>
</tr>
</tbody>
</table>
图6显示了这种充电器的效率。尽管 bq24650 经过内部补偿用于降压充电器，但是当其配置为一个 SEPIC 充电器时，它的小信号控制环路在一个较宽的运行范围均可保持稳定，如图 7 所示。bq24650 与不同的功率级电感和不同电容及电池一起使用时，设计人员必须确认环路稳定性。

结论
人们对于降压/升压电池充电器的需求不断增长，特别是在对太阳能充电需求快速增长的背景下。遵循本文中介绍的设计原则，并使用建议附加电路，设计人员可以将 bq24650 等降压充电器控制器转换成一个 SEPIC 充电器，把不同降压充电器转换为降压/升压 SEPIC 充电器时，设计人员必须了解充电器的工作原理。以便确定需要使用哪一种附加电路，并确定能够稳定地运行。

相关网站
power.ti.com
www.ti.com/product/partnumber
用bq24650，CSD17308Q3，INA139，OPA237或者TLV7211替换上面的“partnumber”
重要声明
德州仪器(TI)及其下属子公司有权在不事先通知的情况下，随时对所提供的产品和服务进行更正、修改、增强、改进或其它更改，并有权随时中止提供任何产品和服务。客户在下单前应获取最新的相关信息，并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI条款与条件。

TI保真其销售的硬件产品的性能符合TI标准保修的适用范围。仅在TI保真范围内，且TI认为有必要时才可使用测试或其它质量控制技术。除非政府做出了硬性规定，否则没有必要对每种产品的所有参数进行测试。

TI对应用帮助或客户产品设计不承担任何义务。客户应对其使用TI组件的产品和应用自行负责，为尽量减少与客户产品和应用相关的风险，客户应提供充分的设计与操作安全措施。

TI不对任何TI专利权、版权、屏蔽作品权或其它与使用了TI产品或服务的组合设备、机器、程序相关的TI知识产权中授予的直接或隐含许可作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息，不能构成从TI获得使用这些产品或服务的许可，授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可，或TI的专利权或其它知识产权方面的许可。

对于TI的产品手册或数据表，仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。在复制信息的过程中对该内容的篡改属于非法的、欺诈性商业行为。TI对此类篡改过的文件不承担任何责任。

在转让TI产品或服务时，如果存在对产品或服务参数的虚假陈述，则会失去相关TI产品或服务的明示或暗示授权，且这是非法的、欺诈性商业行为。TI对此类虚假陈述不承担任何责任。

TI产品未获得用于关键的安全应用中的授权，例如生命支持应用（在该类应用中一旦TI产品故障将预计造成重大的人员伤亡），除非各用户已经达成了专门管理此类使用的协议。购买者的购买行为即表示，他们具备有关其应用安全以及规避衍生所有专业技术和知识，并且认可和同意，尽管任何应用相关信息或支持仍可能由TI提供，但他们将独立负责满足在关键安全应用中使用其产品及TI产品所需的所有法律、法规和安全要求。此外，购买者必须全额赔偿因此类关键安全应用中使用TI产品而给TI及其代表造成的损失。

TI产品并非设计或专门用于军事/航空应用，以及环境方面的产品，除非TI特别注明该产品属于“军用”或“增强型”产品。只有TI指定的军用产品才满足军用规格，购买者认可并同意，对TI未指定军用的产品进行军方面方面应用，风险由购买者单独承担，并且独立负责在此类相关应用中满足所有法律和法规要求。

TI产品并非设计或专门用于汽车应用以及环境方面的产品，除非TI特别注明该产品符合ISO/TS 16949要求。购买者认可并同意，如果他们未在汽车应用中使用任何未被指定的产品，TI对未能满足应用所需要求不承担任何责任。

可访问以下URL地址以获取有关其它TI产品和应用解决方案的信息；

<table>
<thead>
<tr>
<th>产品</th>
<th>应用</th>
</tr>
</thead>
<tbody>
<tr>
<td>数字音频</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>放大器和线性器件</td>
<td>www.ti.com/amplifiers</td>
</tr>
<tr>
<td>数据转换器</td>
<td>www.ti.com/dataconverters</td>
</tr>
<tr>
<td>DLP®产品</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP — 数字信号处理器</td>
<td>www.ti.com/dsp</td>
</tr>
<tr>
<td>时钟和计时器</td>
<td>www.ti.com/clockandtimers</td>
</tr>
<tr>
<td>接口</td>
<td>www.ti.com/interface</td>
</tr>
<tr>
<td>逻辑</td>
<td>www.ti.com/logic</td>
</tr>
<tr>
<td>电源管理</td>
<td>www.ti.com/power</td>
</tr>
<tr>
<td>微控制器 (MCU)</td>
<td>www.ti.com/microcontrollers</td>
</tr>
<tr>
<td>RFID 系统</td>
<td>www.ti.com/rfidsys</td>
</tr>
<tr>
<td>OMAP 机动性处理器</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>无线连接</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
<tr>
<td>德州仪器在线技术支持社区</td>
<td>www.deysisupport.com</td>
</tr>
</tbody>
</table>

邮寄地址：上海市浦东新区世纪大道 1568 号，中智大厦 32 楼 邮政编码：200122
Copyright © 2012 德州仪器 半导体技术（上海）有限公司