ABSTRACT

A common issue with developing a new system from start based on transceivers is how to test the various parts of the system either by themselves or as part of the entire system.

Texas Instruments provides a very powerful and comprehensive tool called SmartRF™ Studio 7, which enables testing of all our devices; however, in some cases, the hardware requirements for the system to operate may not be available or using a PC may not be the preferred way to performing testing.

The software described in this application report provides a simple alternative in these use cases. The software is based on basic drivers already developed for MSP430's to implement a simple UART-based test system.

The software discussed in this document can be downloaded from the following URL: http://www.ti.com/lit/zip/swra493.
1 Features and Benefits of UART-Based Test Suite

This software is based on a set of standard drivers that have already been released for various transceivers and microcontrollers. The new feature is the ability to run a test suite over a simple two-wire universal asynchronous receiver/transmitter (UART) connection to a simple terminal program.

The most common UART speed is 115200 (8N1), this setting is used for all projects except those involving the MSP430G2 Launch PAD, which only supports 9600 (8N1).

Long Range Sub1Ghz demonstration
Select from items below:

1) Continuous Unmodulated TX (line, chan) eg.(1 25)
2) Continuous Modulated TX (line, chan) eg.(2 25)
3) Static RX (RX leakage test) (line, chan) eg.(3 25)
4) TX Single Channel BER (line, chan, pkt) eg.(4 25 1000)
5) RX Single Channel BER (line, chan, pkt) eg.(5 25 1000)
6) TX freq. hopping BER (line, pkt) eg.(6 1000)
7) RX freq. hopping BER (line, pkt) eg.(7 1000)
8) RX sniff mode (line, chan, len) eg.(8 25 20) len=0 > variable
9) SmartRF Selector (line, 1=Low, 2=Med, 3=High) eg.(9 2)
10) Radio Setup (line, freq, chan spc) eg. (10 902 750 500)

Current configuration: (Device = CC1101)
Config: 9 Low data rate => 1200bps, 4kHz dev, 25kHz RX BW
Freq : 10 902 750 500

CMD >

After the software has been successfully downloaded to the chosen development kit and a correctly configured UART connection has been established, the text-based menu system seen above should appear. If it does not appear on the first try, pressing hard reset on the development kits will start the process from the beginning and the UART menu will appear.

The following subsections provide a brief description of each menu items.

1.1 Continuous Unmodulated TX

This command starts a special test mode that produces an unmodulated carrier at a specified frequency; choose the frequency by selecting a channel starting from 0. The value 0 produces a frequency at the base frequency of the current configuration; the current configuration can be altered. For more details, see Section 1.10.

Continuous Unmodulated TX (line, chan), for example,(1 25)
This command is enabled by entering 1 followed by the desired channel number for this test. For details on base frequency and channel spacing configuration, see Section 1.10.

```
Current configuration: (Device = CC1101)
  Config: 9 Low data rate => 1200bps, 4kHz dev, 25kHz RX BW
  Freq : 10 902 750 500

CMD >
  1 25
  Started unmodulated TX, Press RETURN key twice to stop
```

To exit the test mode, send two consecutive “carriage-returns”. This is done by hitting the return key on the terminal program twice, which resets the chip into idle mode ready for the next command.

1.2 Continuous Modulated TX

This command starts a second special test mode that produces a modulated carrier at a specified frequency; choose the frequency by selecting a channel starting from 0. The value 0 produces a frequency at the base frequency currently configured in Section 1.10.

```
Continuous Modulated TX (line, chan), for example, (2 25)
```

This command is enabled by entering 2 followed by the desired channel number for this test. For details on base frequency and channel spacing configuration, see Section 1.10. To exit test mode, see Section 1.1.

1.3 Static RX

This command starts a third special test mode that forces the device into RX at a specified frequency; choose the frequency by selecting a channel starting from 0. The value 0 produces a frequency at the base frequency currently configured in Section 1.10.

```
Static RX (RX leakage test) (line, chan), for example, (3 25)
```

This command is enabled by entering 3 followed by the desired channel number for this test. For details on base frequency and channel spacing configuration, see Section 1.10. To exit test mode, see Section 1.1.

1.4 TX Single Channel BER

This command starts the transmit side of a bit error rate test at a specific frequency and based on the configuration specified in Section 1.10.

```
TX Single Channel BER (line, chan, pkt), for example, (4 25 1000)
```
This command is enabled by entering 4 followed by the desired channel number and the number of packets wanted in the test. The maximum number of packets accepted by the tool is 65535.

- The TX single channel test mode is automatically entered if no buttons are touched within the first 60 seconds after power up, which enables range testing without the need of a computer.

The details of data link can be found on the UART output during the test. These details include packet counter, measured RSSI and byte errors found during the transmission of reception of each individual packet.

```
Current configuration: (Device = CC1101)
  Current configuration:
  Config: 9 Low data rate => 1200bps, 4kHz dev, 25kHz RX BW
  Freq : 10 902 750 500

CMD > 4 25 1000

Perform RF burst transmit function with fixed channel
PKT FW-RSSI/ERR RW-RSSI/ERR DELAY
  0 -74 0 -76 0 -11109
  1 -73 0 -76 0 -11109
  2 -73 0 -76 0 -11109
  3 -72 0 -76 0 -9522
  4 -72 0 -76 0 -11109
```

1.5 **RX Single Channel BER**

This command starts the receiver side of a bit error rate test at a specific frequency and based on the configuration specified in Section 1.10.

RX Single Channel BER (line, chan, pkt), for example, (5 25 1000)

This command is enabled by entering 5 followed by the desired channel number and the number of packets wanted in the test. The maximum number of packets accepted by the tool is 65535.

```
Current configuration: (Device = CC1101)
  Current configuration:
  Config: 9 Low data rate => 1200bps, 4kHz dev, 25kHz RX BW
  Freq : 10 902 750 500

CMD > 5 25 1000

Perform RF burst receive function with fixed channel
PKT FW-RSSI/ERR FREQ_ERR
  0 -74 0 11109
  1 -73 0 11109
  2 -73 0 11109
```

This mode can also be entered by just pressing a button (varies for each hardware configuration) on the development kit within the first 60 seconds after power up, which enables range testing without the need of a computer.
1.6 **TX Frequency Hopping BER**

This command starts the transmit side of a frequency hopping bit error rate test based on the configuration specified in Section 1.10.

```
TX freq. hopping BER  (line, pkt), for example, (6 1000)
```

This command is enabled by entering 6 followed by the desired number of packets in the test. The maximum number of packets accepted by the tool is 65535.

1.7 **RX Frequency Hopping BER**

This command starts the receive side of a frequency hopping bit error rate test based on the configuration specified in Section 1.10.

```
CMD > 7 1000
Perform RF burst receive function with fixed channel
PKT FW-RSSI/ERR FREQ_ERR
  0 -74 0 11109
  1 -73 0 11109
  2 -73 0 11109
```

This command is enabled by entering 7 followed by the desired number of packets in the test. The maximum number of packets accepted by the tool is 65535.

Due to the frequency hopping operation, the time it takes for the initial link to be made will vary. This results in the first set of packet being missed by the transmitter, which is expected behavior.
1.8 **RX Sniff Mode**

This command enables a special conspicuous listening mode or sniff mode. The receiver tries to demodulate any packet on the air at the specified channel and print the content of the packet on the UART port. The configuration specified in Section 1.10 will be used for packet sniffing.

```
Current configuration: (Device = CC1101)
  Current configuration:
  Config: 9 Low data rate -> 1200bps, 4kHz dev, 25kHz RX BW
  Freq : 10 902 750 500

CMD > 8

Perform RF burst receive function with fixed channel
PKT FW-RSSI/ERR FREQ_ERR
  0 -74 0 11109
  1 -73 0 11109
  2 -73 0 11109
```

1.9 **SmartRF Selector**

This command selects between three default settings: low, medium and high data rate. The settings are taken from SmartRF Studio version 7.0 (2.1.0). Simple modifications to the SYNC words have been done to enable interoperability between CC112x and CC110x series devices.

```
Current configuration: (Device = CC1101)
  Current configuration:
  Config: 9 Low data rate -> 1200bps, 4kHz dev, 25kHz RX BW
  Freq : 10 902 750 500

CMD > 9 0

When selecting the low data and the medium data rate, they are interoperable between the two generations of devices. However, the CC112x does not support data rates above 200kbps so the high-speed mode is not compatible across device families.
```

1.10 **Radio Setup**

The only setting that is available to change from the UART interface system is the base frequency in steps of 1kHz. This enables you to change the base frequency of the test and allows you to dial-in any frequency error that there might be between to boards operating in narrow band but running of standard XTALs.

```
Current configuration: (Device = CC1101)
  Current configuration:
  Config: 9 Low data rate -> 1200bps, 4kHz dev, 25kHz RX BW
  Freq : 10 902 750 500

CMD > 10 903 000 501
```
The interpreter used to decode the commands is very simple and cannot interpret the entire 9-digit frequency value. Therefore, you have to write the wanted frequency in three sets of 3 digits as shown above.

1.11 **Automatic Mode**

Each of the development kits are able to run in autonomous mode. To enable the use case of least available hardware, it was chosen to have the software automatically start in TX mode after a 60 second timeout; however, if a button has been pressed within the first 60 seconds the board immediately enters RX mode. In this mode, it is not possible to change the configuration of the radios in run-time; the lowest data rate option is automatically selected.

Use the LEDs to get feedback on the quality of the data link (green LED is generally good and red LED is for missed or failed packets).

2 **Hardware Requirements to Run the Software**

The software has been written in an effort to make it portable and very small. The required flash size is less than 16KB when compiled on an MSP430 and the required RAM is less than 512 bytes. This makes it possible to run the software on the lowest capacity value line MSP430 LaunchPAD, the MSP430G2553. Port exists for the MSP430F5529 LaunchPAD and the MSP430F5438A-based development kit called the “TRXEB”.

3 **Configuring Hardware Options**

The main configuration file for the various development kits is called hal_spi_rf_xxx.c. For this release, three such board support package files were generated:

- hal_spi_rf_exp5529.h
- hal_spi_rf_exp430g2.h
- hal_spi_rf_trxeb

Inside each of these files are three statements that define the specific devices used on the hardware. Here, the selections are the CC1101 or the CC112x series of transceivers and then, optionally, the range extender with each of the transceivers is used.

```c
#define USE_CC1101
#define USE_CC112X
#define ENABLE_RANGE_EXTENDER
```

This next statement defines the crystal frequency used on the hardware. For each device, there is a range of applicable crystal frequencies to choose between (this statement is used to configure the software for the specific values chosen).

```c
#define RF_XTAL 26000
```

4 **Port to Test Software to Custom Hardware**

This section describes how to port the code to a different piece of hardware either customer specific or a TI development kit not currently supported.
4.1 SPI Configuration for the Transceiver

The serial peripheral interface (SPI) port on the MSP430 should be configured as a 3-pin device where the chip select pin is controlled manually. The detailed pin configuration is found in `hal_spi_rf_xx.h`, where `xx` denotes which specific hardware is being compiled.

```c
/* Transceiver SPI signal */
#define RF_PORT_SEL P3SEL
#define RF_PORT_OUT P3OUT
#define RF_PORT_DIR P3DIR
#define RF_PORT_IN P3IN
#define RF_MOSI_PIN BIT0
#define RF_MISO_PIN BIT1
#define RF_SCLK_PIN BIT2
```

4.2 Chip Select for the Transceiver

The next set of definitions help to configure the location of the chip select pin to use to communicate with the transceiver.

```c
#define RF_CS_N_PORT_SEL P2SEL
#define RF_CS_N_PORT_DIR P2DIR
#define RF_CS_N_PORT_OUT P2OUT
#define RF_CS_N_PIN BIT2
```

4.3 Reset Pin for the Transceiver

For the CC112x series of devices there is a reset pin, which can be optionally used. On all of the TI development kits the reset pin is used; therefore, it needs to be configured correctly.

```c
/* Transceiver optional reset signal */
#define RF_RESET_N_PORT_SEL P2SEL
#define RF_RESET_N_PORT_DIR P2DIR
#define RF_RESET_N_PORT_OUT P2OUT
#define RF_RESET_N_PIN BIT6
```
4.4 Interrupt Configuration for the Transceiver

These next sets of definitions configure the location of the interrupt enabled signals between the transceiver and the MCU.

```c
/* Transceiver interrupt configuration */
#define RF_PORT_VECTOR PORT2_VECTOR
#define RF_GDO_OUT P2OUT
#define RF_GDO_DIR P2DIR
#define RF_GDO_IN P2IN
#define RF_GDO_SEL P2SEL
#define RF_GDO_PxIES P2IES
#define RF_GDO_PxIFG P2IFG
#define RF_GDO_PxIE P2IE
#define RF_GDO_PIN BIT0

/* Transceiver interrupt configuration */
#define RF_PORT_VECTOR PORT2_VECTOR
#define RF_GDO_OUT P2OUT
#define RF_GDO_DIR P2DIR
#define RF_GDO_IN P2IN
#define RF_GDO_SEL P2SEL
#define RF_GDO_PxIES P2IES
#define RF_GDO_PxIFG P2IFG
#define RF_GDO_PxIE P2IE
#define RF_GDO_PIN BIT0
```

4.5 Optional Control Pins for the Range Extender

To enable the use of the optional front-end module, specifically the CC1190, the specific pins are configured as shown below:

```c
/* CC1190 Control signals */
#define RF_LNA_EN_PxOUT P1OUT
#define RF_LNA_EN_PxDIR P1DIR
#define RF_LNA_EN_PIN BIT6
#define RF_PA_EN_PxOUT P2OUT
#define RF_PA_EN_PxDIR P2DIR
#define RF_PA_EN_PIN BIT7
```

4.6 Optional Pins for Creating a Button User Interface

To enable the use of the optional button-based user interface, the specific pins are configured as shown below:

```c
/* Optional button interrupt configuration */
#define BUTTON_VECTOR PORT1_VECTOR
#define BUTTON_OUT P1OUT
#define BUTTON_DIR P1DIR
#define BUTTON_IN P1IN
#define BUTTON_SEL P1SEL
#define BUTTON_PxIES P1IES
#define BUTTON_PxIFG P1IFG
#define BUTTON_PxIE P1IE
#define BUTTON_PIN P1REN
```
4.7 Optional LED Pin Configuration

It is strongly recommended to use LED indicators that are configured as shown below:

```c
/* Macro to enable LEDs */
#define LED1_PxOUT P1OUT
#define LED1_PxDIR P1DIR
#define LED1_PIN BIT0
#define LED2_PxOUT P4OUT
#define LED2_PxDIR P4DIR
#define LED2_PIN BIT7
#define LED3_PxOUT P1OUT
#define LED3_PxDIR P1DIR
#define LED3_PIN BIT0
#define LED4_PxOUT P4OUT
#define LED4_PxDIR P4DIR
#define LED4_PIN BIT7
```

Many of the hardware configurations only have two physical LEDs on them. For those cases, an acceptable experience is provided by just reusing those two LEDs as shown in the example above.

5 References

1. CC1120-CC1190 BoosterPack (SWRA492)
2. CC112X/CC1175 Low-Power High Performance Sub-1 GHz RF Transceivers/Transmitter (SWRU295)
3. CC120X Low-Power High Performance Sub-1 GHz RF Transceivers User’s Guide (SWRU346)
4. CC1120 High-Performance RF Transceiver for Narrowband Systems Data Sheet (SWRS112)
5. CC1121 High-Performance Low-Power RF Transceiver Data Sheet (SWRS111)
6. CC1125 Ultra-High Performance RF Narrowband Transceiver Data Sheet (SWRS120)
7. CC1200 Low-Power, High-Performance RF Transceiver Data Sheet (SWRS123)
8. CC112x, CC1175 Silicon Errata (SWRZ039)
9. SmartRF Studio 7 (SWRC176)
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products

Audio
- www.ti.com/audio

Amplifiers
- amplifier.ti.com

Data Converters
- dataconverter.ti.com

DLP® Products
- www.dlp.com

DSP
- dsp.ti.com

Clocks and Timers
- www.ti.com/clocks

Interface
- interface.ti.com

Logic
- logic.ti.com

Power Mgmt
- power.ti.com

Microcontrollers
- microcontroller.ti.com

RFID
- www.ti-rfid.com

OMAP Applications Processors
- www.ti.com/omap

Wireless Connectivity
- www.ti.com/wirelessconnectivity

Applications

Automotive and Transportation
- www.ti.com/automotive

Communications and Telecom
- www.ti.com/communications

Computers and Peripherals
- www.ti.com/computers

Consumer Electronics
- www.ti.com/consumer-apps

Energy and Lighting
- www.ti.com/energy

Industrial
- www.ti.com/industrial

Medical
- www.ti.com/medical

Security
- www.ti.com/security

Space, Avionics and Defense
- www.ti.com/space-avionics-defense

Video and Imaging
- www.ti.com/video

TI E2E Community
- e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated