
SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 1

Jeff Stafford

Application Report
SPRAAQ2 – October 2007

TMS320F281x Boot ROM Serial Flash Programming

ABSTRACT

This application report describes the implementation of TI’s Flash application program
interface (API), the software interface to TI’s Flash algorithms. Understanding the
fundamentals of the Flash API documentation prior to using this application report is
important. This document does not replace the Flash API documentation; instead, it
guides you among several sets of TI documentation with the Flash API documentation
being the most critical. For a complete list of related documents, see the References
section in this application report.
The option available for serial-based Flash programming on the TMS320F281x devices
in-circuit at this time is Spectrum Digital’s SDFlash utility. This is an excellent off-the-
shelf Windows® based tool for programming the TMS320F281x devices in-circuit using
IEEE Standard 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan
Architecture or system communications interface (SCI). It is the recommended path
when a GUI-based solution will work. If your programming options do not include a
Windows-based PC, this document will help you configure a custom test fixture.
Example software is provided in applicable sections of the document. The hardware
used in this document includes:
• Spectrum Digital’s F2812 eZdsp™ and IEEE Std. 1149.1-1990 (JTAG) emulator

(XDS510™ universal serial bus (USB))
• Link-research RS-232 interface board
Project collateral and source code discussed in this application report can be
downloaded from the following URL: http://www.ti.com/lit/zip/SPRAAQ2.

Contents
1 Introduction .. 3
2 Methodology .. 4
3 Procedure .. 7
4 Flash Program Timing Results .. 25
5 References .. 35
Appendix A TMS320F281x Memory Maps ... 36
Appendix B TMS320F281x Flash Sectors ... 38
Appendix C 8-Bit Data Stream Expected by Boot ROM SCI-A .. 40
Appendix D Hex-Conversion File Formats ... 42
Appendix E Software Flowcharts ... 43
Appendix F CKFA Linker and HEX2000 MAP Files ... 47
Appendix G Example Software – File Listing and Descriptions .. 50

List of Figures
1 F281x Flash Boot-Loading Options ... 3
2 Transfer CKFA to RAM LOAD Addresses ... 4
3 CKFA Transfer to RAM RUN Addresses ... 5
4 CKFA Transfers AppCode to RAM Buffer 1 .. 5
5 CKFA Starts Programming Flash .. 6

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/lit/zip/SPRAAQ2

2 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

6 Flash Programming Completed .. 6
7 Overview of AppCode File Processing ... 7
8 AppCode Project for 128 KW Flash .. 8
9 Excluding a Linker Command File From Build .. 8
10 AppCode Code Composer Studio Project – Configuring COFF2BIN Batch File 12
11 Code Composer Studio On-Chip Flash Programmer Calculating CHECKSUM 13
12 CKFA Calculating AppCode Checksum at Start-Up ... 14
13 Overview of CKFA File Processing ... 15
14 CKFA’s Code Composer Studio Project ... 18
15 CKFA Project Build Options – Final Build Steps .. 19
16 HyperTerminal Communications Configuration .. 21
17 Echoed Character From F2812 SCI Auto-Baud Logic .. 22
18 HyperTerminal - CKFA Software Ready to Update F281x Baud-Rate 23
19 HyperTerminal - CKFA Transfer Failure Due to a Locked F281x 23
20 HyperTerminal - CKFA Checksum Determines Flash is Not Erased 24
21 HyperTerminal - CKFA Software is Ready to Transfer and Program Application Code. 24
22 HyperTerminal - CKFA Software Has Transferred and Programmed Application Code 25
23 Block Diagram of Flash Programming From ICT to F2810 Target Board 26
24 Photo of Emulated ICT to F281x Target Board .. 27
25 Emulated ICT Ready for CKFA Transfer From PC ... 29
26 Emulated ICT Ready for AppCode Transfer From PC ... 30
27 Emulated ICT Ready to Start F281x Target Procedure .. 30
28 Preparing the Memory Window for Target Board Response Messages 31
29 CKFA Transfer From Emulated ICT to Target Board Successful 32
30 CKFA Baud-Rate Relocked to Emulated ICT at 1.875 Mbps ... 33
31 AppCode Flash Programming on Target Board Successful ... 34
A-1 F2812 Memory Map .. 36
A-2 F2810 Memory Map .. 37
D-1 Intel MCS86 Hexadecimal Object Format .. 42
D-2 Motorola-S Object Format .. 42
E-1 CKFA Flowchart A .. 43
E-2 CKFA Flowchart B .. 44
E-3 CKFA Flowchart Through ESTOP .. 45
E-4 SCI Block Processing Flowchart ... 46

List of Tables

1 Boot Mode GPIO Pins .. 20
2 F2812 eZdsp Jumper Settings .. 21
3 Flash Parameters at 150-MHz SYSCLOUT ... 26
4 Link Research RS-232 Board Connections to EICT (F2812 eZdsp) 29
5 Link Research RS-232 Board Connections to EICT (F2812 eZdsp) 29
B-1 F2812 and F2811 Flash Sector Addresses .. 38
B-2 F2810 Flash Sector Addresses .. 39
C-1 LSB/MSB Loading Sequence in 8-Bit Data Stream .. 40
G-1 Directory Structure Used in This Application Report .. 50
G-2 CKFA Files Used in This Application Report .. 50
G-3 AppCode Files Used in This Application Report ... 51
G-4 EICT Files Used in This Application Report .. 51
G-5 FileIOShell Files Used in This Application Report .. 51

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 3

www.ti.com

Introduction

1 Introduction

Serial-based (RS-232) Flash programming for the TMS320F2812, TMS320F2811, or TMS320F2810
(F281x) is a popular method used to program devices in-circuit. One of its main advantages is reducing
the handling of the parts which reduces the risks of damage that would come from off-board Flash
programming options. The SCI communication could be from a PC, production line in-circuit tester, or
another processor.
Each of the steps required for Flash programming through the F281x Boot read-only memory (ROM)
SCI-A option are discussed in this document:
• Interfacing with the Boot ROM to transfer kernel software and Flash algorithms into target random

access memory (RAM)
• Transferring and programming application code into target Flash
• Minimizing Flash programming time
Any communication option supported by the board design can be used with the custom Flash
programming API provided by TI: Download TMS320F2810, TMS320F2811 and TMS320F2812 Flash API
(http://www-s.ti.com/sc/techlit/sprc125.zip). The F281x Boot ROM provides options to transfer the Flash
API to RAM using the SCI, serial peripheral interface (SPI), or parallel general-purpose input/output
(GPIO). For other communication interfaces, you can provide these in a one-time programmable (OTP)
memory or in a protected sector of Flash. See Figure 1 for an illustration of these bootloading options.

User’s

Application

Flash API

Flash
Algorithms

OTP/Flash
Array Control

Figure 1. F281x Flash Boot-Loading Options

This application report uses the SCI-A Flash boot-loading option of the Boot ROM.
The option available for SCI-based Flash programming on the TMS320F281x in-circuit at this time is
Spectrum Digital’s SDFlash utility. Spectrum Digital describes the software tool as a Windows GUI based
utility that allows you to flash program a DSP Target using a Spectrum Digital JTAG Emulator. Each target
requires Flash programming algorithms specific to that specific DSP and the Flash memory on that board.
For a complete list of C2000™ Flash options, visit www.ti.com.

XDS510, C2000, Code Composer Studio are trademarks of Texas Instruments.
Intel is a registered trademark of Intel Corporation in the U.S. and other countries.
Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
Motorola is a registered trademark of Motorola, Inc.
eZdsp is a trademark of Spectrum Digital.
All other trademarks are the property of their respective owners.

F2810/F2811/F2812 B

Code
Composer

Studio
C SDFlash

A

Parallel
SPI
SCI

JTAG

Boot ROM

API Code
Execution

SARAM

CPU

OTP and
Flash
Array

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www-s.ti.com/sc/techlit/sprc125.zip
http://www.ti.com/

4 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Methodology

Entry Point

CKFA
RS-232

PC or ICT

SCI

28x
CPU

2 Methodology
The key components to the procedure described here are:
• The F281x Boot ROM’s SCI-A
• Communication Kernel and Flash API (CKFA)
• Your application code (AppCode)
The basic procedure is:
• The CKFA is transferred to the F281x internal RAM through the SCI under Boot ROM control
• The AppCode is transferred to the F281x RAM and programmed into Flash under CKFA control

Note: The CKFA code used in this application report is based on the Flash API example code that
is part of Download TMS320F2810, TMS320F2811 and TMS320F2812 Flash API
(http://www-s.ti.com/sc/techlit/sprc125.zip); therefore, the Flash API documentation is an
excellent reference for the API, the example code provided with the API, and this document.
Closely consider the Flash API documentation prior to any modifications to the CKFA source
code.

2.1 Transferring CKFA to F281x RAM

First, transfer the CKFA binary file to its LOAD addresses in unsecured RAM using the Boot ROM SCI-A
option (Figure 2). Since the F281x could be in a locked state, the CKFA code must first run from
unsecured RAM. For more information, see the Code Security Module (CSM) section in the TMS320x281x
DSP System Control and Interrupts Reference Guide (SPRU078).

Unsecured RAM

Boot ROM

Figure 2. Transfer CKFA to RAM LOAD Addresses

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www-s.ti.com/sc/techlit/sprc125.zip
http://www-s.ti.com/sc/techlit/SPRU078

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 5

www.ti.com

Methodology

Once the Boot ROM code completes the transfer of the CKFA, it transfers control of the F281x CPU to
CKFA (Figure 3). After the CSM is unlocked, the CKFA code has access to all internal RAM and Flash.

Figure 3. CKFA Transfer to RAM RUN Addresses

The LOAD addresses are defined by the linker command file that the CKFA code uses. If the unlocking
process is successful, then the CKFA code copies a main portion of itself from its load addresses in
unsecured RAM to its RUN addresses in secured RAM. If the unlock attempt is unsuccessful, the CKFA
code transmits this status using the SCI.
Using secured RAM is not the goal of the CKFA. Instead, this procedure makes the large RAM of H0
available for the upcoming AppCode transfer. If the CKFA software was small enough, it would be
transferred to the unsecured RAM blocks of MO/M1 and executed from there.

2.2 Transferring and Programming Application Code
With the CKFA code executing and controlling the target’s SCI-A peripheral, the application code’s binary
file is transferred to the 4 KW RAM buffer 1 (Figure 4). Once this buffer is full, the Flash programming is
started and the CKFA code transfers the next 4 KW AppCode block to RAM buffer 2 (Figure 5).

Figure 4. CKFA Transfers AppCode to RAM Buffer 1

The Flash API functions provide a call-back function that allows the SCI to continue to transfer data to
RAM while Flash is being programmed. The CKFA code uses the call-back function capability to program
Flash with RAM:
• Buffer 1 data while filling buffer 2 with the next AppCode block
• Buffer 2 data while filling buffer 1 with the next AppCode block

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

6 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Methodology

Boot ROM

RAM Buffer #1

Flash programming begins when RAM buffer 1 is filled. Programming time is reduced because the SCI
characters are continuously received into the SCI 16-level FIFO while the Flash is being programmed.
The approach used in this application report requires complete allocation of the entire 64 KW of the
F2810’s Flash. This also applies to the 128 KW of Flash for the F2811 and F2812. All Flash addresses
must be allocated. Therefore, the code with this document has a fixed Flash programming start address of
0×3E8000 for the F2810, and 0×3D8000 for the F2811. See Appendix A and Appendix B for the device
memory map and Flash sector addresses.

Figure 5. CKFA Starts Programming Flash

2.3 Programming Completed and Entry Point to Application Code Defined
When programming is complete, the F281x program counter is set to the entry point of Flash (0×3F7FF6)
(Figure 5 and Appendix B). The digital signal processor (DSP) is now ready to run the application code
programmed into Flash. This code executes at reset if the GPIO pins related to the boot modes are
configured for Flash execution (Figure 6).

Figure 6. Flash Programming Completed

Boot ROM

RAM Buffer #1

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 7

www.ti.com

Procedure

3 Procedure
Programming your application code into Flash using the approach presented in this application report
consists of preparing the application and the CKFA software, establishing serial communications, and then
doing the actual Flash programming. These steps are explained in detail in the next sections.

3.1 Prepare Application Code
To program the application code into Flash, the CKFA code receives the AppCode in binary form through
the SCI and then programs the entire Flash range of addresses. The CKFA code requires the application
code to do the following:
• Fill unused Flash addresses
• Create a single binary file for SCI

Compile/Link

Hex2000.exe

AppCode_COFF2BIN_2810.bat
AppCode_COFF2BIN_2812.bat

FilelOshell.exe

Ready for SCI Transfer

Figure 7. Overview of AppCode File Processing

3.1.1 Filling Unused Flash Addresses

The CKFA software controls the F281x DSP during the AppCode SCI transfer to RAM and subsequent
Flash programming. The AppCode must be configured to fill all addresses of Flash, even unused
addresses. This allows the CKFA software to process continuous blocks of data, which reduces Flash
programming time.
In addition, filling unused Flash addresses with a specific constant value can add functional stability to
your system. If the application software fetches an opcode from an address outside of the expected
program range (software bug), you can force an illegal-instruction trap if you fill unused Flash addresses
with a constant that is known to be an illegal op-code. If you fill Flash with the value of 0×FFFF, then you
are guaranteed to generate an illegal opcode trap. For more information, see the TMS320C28x DSP CPU
and Instruction Set Reference Guide (SPRU430).

Filling unused Flash with 0×FFFF also reduces Flash programming time. As the Flash programming step
only writes 0s to the bits that require it, if all unused Flash bits are 1s then programming does not occur on
these bits, reducing programming. TI ships F281x completely erased, which means every Flash location is
0×FFFF upon shipping. Therefore, the unused Flash addresses on a new part are already loaded with the
recommended fill value of 0×FFFF.

HEX Format
(Motorola-S)

COFF
(.out)

Application
Code Source
(.c, .h, .asm)

Binary

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRU430

8 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Procedure

3.1.1.1 Select 64 KW or 128 KW Linker Command File
Linker command files, for both the 64 KW F2810 and 128 KW F2811/F2812, are provided with this
application report. Figure 8 shows that the F2810.cmd file is included in the AppCode project, but is
excluded from the build process. The icon next to the F2810.cmd file is missing the down arrow, indicating
that the F2810.cmd file is excluded from the build process.

Figure 8. AppCode Project for 128 KW Flash

You can apply specific build options to each file in a project, such as excluding it from the project build. To
set the individual file build options, right-click on a file, and select File Specific Options from the context
menu. By unchecking the Exclude file from build option in the Build Option dialog, the F2812.cmd file is
included in the next project build (Example 12). Reverse this process to exclude the F2810.cmd file from
the next build. You only want the F2812.cmd or the F2810.cmd file, depending on your application
software memory requirements.

Figure 9. Excluding a Linker Command File From Build

The Code Composer Studio™ software project needs to be rebuilt, compiled, and linked after any source
code or project build option modifications.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 9

www.ti.com

Procedure

MEMORY
{
PAGE 0:

RAML0
L0 */

/* Program Memory */
: origin = 0x008000, length = 0x001000 /* on-chip RAM block

**
TMS320C2000 COFF Linker PC v4.1.0

**
OUTPUT FILE NAME: <./Debug/AppCode.out>
ENTRY POINT SYMBOL: "_c_int00" address: 003ec000

MEMORY CONFIGURATION

3.1.1.2 Using Linker to Fill Unused Flash Addresses
Figure 7 illustrates the build process used by the AppCode to go from source code to a single binary file.
The linking stage can fill unused Flash addresses. The linker uses a command file to define the memory
range to the target processor. It then directs the program and data sections from the AppCode into these
defined memory ranges. If these ranges are not completely used, a fill value can be used to make sure
that all addresses have been loaded. Example 1 shows how the fill value of 0×FFFF is being used to fill
any unused addresses in the memory ranges named: FLASHE, FLASHD, and FLASHC. Note that
FLASHB does not have a fill value. That is discussed in the next section when the hex converter fills this
Flash section with the same 0×FFFF fill value.

Example 1. Linker Command File for Filling Unused Addresses With 0xFFFF

FLASHE : origin = 0x3E8000, length = 0x004000, fill =0xFFFF /* on-chip FLASH */
FLASHD : origin = 0x3EC000, length = 0x004000, fill =0xFFFF /* on-chip FLASH */
FLASHC : origin = 0x3F0000, length = 0x004000, fill =0xFFFF /* on-chip FLASH */
FLASHB : origin = 0x3F4000, length = 0x002000 /* on-chip FLASH */

Example 2 shows the MAP file output from linking the AppCode. Note that the fill value of 0×FFFF is
shown in the right-most column, and this fill value is associated with the memory ranges defined in the
linker command file.

The FLASHB range does not have a fill value assigned to it, and this range is shown as having 0×2000
addresses that are unused. These are filled in the next section using the hex converter.

Example 2. Linker MAP File With 0xFFFF Fill Values

 name origin length used attr fill
---------------------- -------- --------- -------- ---- --------

PAGE 0: RAML0 00008000 00001000 00000086 RWIX
 FLASHE 003e8000 00004000 00004000 RWIX ffff
 FLASHD 003ec000 00004000 00004000 RWIX ffff
 FLASHC 003f0000 00004000 00004000 RWIX ffff
 FLASHB 003f4000 00002000 00000000 RWIX
 FLASHA 003f6000 00001f80 00001f80 RWIX ffff
 CSM_RSVD 003f7f80 00000076 00000076 RWIX
 BEGIN 003f7ff6 00000002 00000002 RWIX
 CSM_PWL 003f7ff8 00000008 00000008 RWIX
 ROM 003ff000 00000fc0 00000000 RWIX
 RESET 003fffc0 00000002 00000000 RWIX
 VECTORS 003fffc2 0000003e 00000000 RWIX

3.1.1.3 Using the Hex Converter to Fill Unused Flash Addresses

The hex converter (HEX2000 utility) is used to convert the COFF formatted output from the linker to an
ASCII hex file. The format of this ASCII hex file can be controlled from a command file, similar to the
linker. Example 3 shows the F2810 HEX2000 command file used for the AppCode. HEX2000 is
documented in the TMS320C28x Assembly Language Tools User’s Guide (SPRU513).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRU513

10 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Procedure

Example 3. AppCode HEX2000 F2810 Command File

In Example 4, FLASHB has the correct fill value of 0×FFFF, and the other Flash sections filled by the
linker are shown with fill values represented by symbols starting with these characters: $fillxxx.

Example 4. Hex Converter MAP File With 0xFFFF Fill Values

3.1.2 Create AppCode Binary File

All unused Flash addresses have been filled. This section looks at how to create an AppCode’s binary file
suitable for CKFA’s SCI transmission and Flash programming, see Figure 7.
HEX2000 produces an ASCII formatted file that could have been used in this application report, but there
are two drawbacks:
• It takes ASCII 16-bits to represent 8-bits of binary data required for Flash programming
• Performing this conversion with CKFA adds to the overall Flash programming time

AppCode.out

-map AppCode_hex.map
-o AppCode.hex
-m
-memwidth 16
-image

ROMS
{

FLASH2810: origin = 0x3e8000, len = 0x10000, romwidth = 16, fill = 0xFFFF
}

**
TMS320C2000 COFF/Hex Converter v4.3.0
**

INPUT FILE NAME: <AppCode.out>
OUTPUT FORMAT: Motorola-S

PHYSICAL MEMORY PARAMETERS

Default data width : 16
Default memory width : 16
Default output width : 8

OUTPUT TRANSLATION MAP
--
003e8000..003f7fff Page=0 Memory Width=16 ROM Width=16 "FLASH2810"
--

OUTPUT FILES: AppCode.hex [b0..b15]

CONTENTS: 003e8000..003e80ff .econst Data Width=2
003e8100..003ebfff $fill000 Data Width=2
003ec000..003ec3b9 .text Data Width=2
003ec3ba..003ec43f ramfuncs Data Width=2
003ec440..003ec458 .cinit Data Width=2
003ec459..003effff $fill001 Data Width=2
003f0000..003f3fff $fill002 Data Width=2
003f4000..003f5fff FILL = 0000ffff
003f6000..003f7f7f $fill003 Data Width=2
003f7f80..003f7ff5 csm_rsvd Data Width=2
003f7ff6..003f7ff7 codestart Data Width=2
003f7ff8..003f7fff csmpasswds Data Width=2

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 11

www.ti.com

Procedure

FileIOShell.exe is used to convert the ASCII output of HEX2000 to binary format. This utility is configured
to convert from Motorola-S record (16-bit, big endian) to binary file formats. See Appendix G for
Motorola-S record format.
Example 3 shows the HEX2000 F2810 command file instructing HEX2000 to generate a Motorola-S
formatted ASCII file. The syntax of this file is described below:

• AppCode.out

• -map AppCode_hex.map

• -o AppCode.hex

• -m

• -memwidth 16

• -image

= COFF executable input file

= HEX2000 MAP output file (contents shown in Example 2)

= hex file output

= Specify Motorola-S record format

= 16-bit memory width, big endian

= this allows the fill parameter to be used

The output file, AppCode.hex, becomes an input to FileIOShell which converts it to binary form ready for
CKFA controlled SCI transmission and Flash programming.

Example 5. AppCode.hex (ASCII Reader), Mot-S Input File to FileIOShell.exe

Example 6. AppCode.bin (Binary Reader), Binary Output From FileIOShell.exe

3.1.2.1 Generating AppCode.bin From CCS

In the Code Composer Studio project AppCode.pjt, build options are configured to call the
AppCode_COFF2BIN_281x.bat on every build. There are two versions of this batch file, one for the 64
KW Flash range of the F2810 (AppCode_COFF2BIN_2810.bat), and one for the 128 KW range of the
F2811/F2812 (AppCode_COFF2BIN_2812.bat). Essentially these files are identical, except that they use
different command files for the HEX2000 utility to define the two different Flash ranges.

Example 7. AppCode_COFF2BIN_2810.bat

S00600004844521B
S2223E8000C1F5003EC1F5003EC1F5003EC1F5003EC1F5003EC1F5003EC1F5003EC1F5BD
S2223E800F003EC1F5003EC1F5003EC1F5003EC1F5003EC1F5003EC0B0003EC0B5003EAD
S2223E801EC0BA003EC0BF003EC0C4003EC0C9003EC0CE003EC0D3003EC0D8003EC0DDF3

c1 f5 00 3e c1 f5 00 3e c1 f5 00 3e c1 f5 00 3e c1 f5 00 3e c1 f5 00 3e c1 f5 00 3e c1 f5 00 3e
c1
f5 00 3e c1 f5 00 3e c1 f5 00 3e c1 f5 00 3e c1 f5 00 3e c0 b0 00 3e c0 b5
00 3e c0 ba 00 3e c0 bf 00 3e c0 c4 00 3e c0 c9 00 3e c0 ce 00 3e c0 d3 00 3e c0 d8 00
3e c0 dd

cd debug

C:\CCStudio_v3.1\C2000\cgtools\bin\hex2000.exe AppCode_hex_2810.cmd

FileIOShell.exe -I AppCode.hex -o AppCode.bin

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

12 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Procedure

Example 8. AppCode_COFF2BIN_2812.bat

Configure the Code Composer Studio project build options to execute the batch file that corresponds to
the memory range that your project is configured for.

Figure 10. AppCode Code Composer Studio Project – Configuring COFF2BIN Batch File

3.1.2.2 Generating AppCode.bin Without Code Composer Studio
If Code Composer Studio is not being used, then convert either a COFF or a Motorola-S record file to the
binary format suitable for CKFA SCI transmission and Flash programming. If the format of the input file is
COFF, use either AppCode_COFF2BIN_2810.bat or AppCode_COFF2BIN_2812.bat. If the format of the
input file is Motorola-S record, use the batch file FileIOShell Only.bat.

Example 9. FileIOShell Only.bat

3.1.3 Calculating Expected Checksum for Application Software

The application code's checksum can be calculated using Code Composer Studio's Flash programmer
plug-in. The CKFA software uses the checksum to verify that the application code has been programmed
into Flash correctly.

cd debug

C:\CCStudio_v3.1\C2000\cgtools\bin\hex2000.exe AppCode_hex_2812.cmd

FileIOShell.exe -I AppCode.hex -o AppCode.bin

FileIOShell.exe -I AppCode.hex -o AppCode.bin

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 13

www.ti.com

Procedure

3.1.3.1 Calculating Checksum With Code Composer Studio
The checksum can be calculated using the Code Composer Studio on-chip Flash programmer after Flash
has been programmed at least once. Flash is scanned through JTAG by the host PC, adding each 16-bit
memory location to a total sum. In Figure 11, the on-chip Flash programmer calculated 0×6E13 for the
application software’s Flash CHECKSUM.
Once the CHECKSUM has been calculated, it needs to be included into the CKFA software so that it can
verify the Flash after the application code has been programmed.

Figure 11. Code Composer Studio On-Chip Flash Programmer Calculating CHECKSUM

3.1.3.2 Calculate Checksum Without Code Composer Studio
The CKFA calculates the Flash checksum at the start of its execution to determine whether the Flash is in
an erased condition. This calculation determines the AppCode checksum without using Code Composer
Studio. The AppCode must be programmed into Flash using the CKFA. After Flash programming, the
CKFA responds that there was a checksum error since the calculated value is different than the expected
value, but the calculated value is transmitted by the CKFA. This value represents the AppCode checksum
and can then be included in the CKFA software for verification of subsequent Flash programming.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

14 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Procedure

Figure 12. CKFA Calculating AppCode Checksum at Start-Up

3.2 Prepare CKFA

The CKFA code consists of the communication kernel and the Flash API. As described earlier, the CKFA
is transferred to the F281x RAM using the F281x SCI-A boot code. Once it is transferred to RAM, the
SCI-A boot code transfers CPU control to the CKFA code so it can transfer the application code into RAM,
and then program it into Flash. To do this, the following steps are required:
1. Configure the F281x phased-locked loop (PLL) for the desired CPU clock rate.

The F2812 eZdsp uses a 30 MHz oscillator; therefore, the PLL was configured accordingly to output a
150 MHz CPU clock (maximum rate).

Note: As stated in the TMS320x281x Boot ROM Reference Guide (SPRU095), the Boot ROM does
not change the PLL state; therefore, the PLL setting may be different depending on whether
the F281x is reset by the Code Composer Studio software or from a power cycle.

2. Update the CKFA with AppCode passwords to unlock the F281x’s code security module (CSM).
The CKFA software requires that the CSM is unlocked. TI ships devices with Flash completely erased
and CSMs unlocked. The unlocking process is not required for first-time programming. For additional
information on the CSM, see the TMS320x281x DSP System Control and Interrupts Reference Guide
(SPRU078).

3. Configure the CKFA for 64 KW or 128 KW Flash size.
4. Create a single binary file for SCI transmission.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRU095
http://www-s.ti.com/sc/techlit/SPRU078

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 15

www.ti.com

Procedure

Compile/Link

Hex2000.exe CKFA_COFF2BIN.bat

HEX2BIN.exe

Ready for SCI Transfer

Figure 13. Overview of CKFA File Processing

3.2.1 Update Expected AppCode Checksum in CKFA Software

The expected AppCode checksum is stored in Example_Flash281x_API.c. After calculating a new
checksum, update the 16-bit value for the constant CHECKSUM_EXPECTED. The CKFA software
compares this value against its calculated checksum. Once the checksum is updated, the CKFA software
needs to be compiled, linked, and a new CKFA binary file generated.

Example 10. Expected Checksum Used by CKFA – Example_Flash281x_API.c

3.2.2 Configure CKFA Software for Oscillator Frequency on F281x Target Board

Example_Flash281x_API.h contains the constant (PLLCR_VALUE) that defines the PLL multiplier setting.
Flash281x_API_Config.h contains the constant (CPU_RATE) that defines the CPU_RATE for the system.
The Flash timing parameters are based on this setting and if it is not set correctly, the Flash could be
damaged.
Review the contents of these files to verify that PLLCR_VALUE and CPU_RATE are set to values that
correspond to your F281x target board. If they are not, then make the required modifications and rebuild
(compile, link, and convert to binary format) the CKFA software.

HEX Format

(Intel)

COFF
(.out)

Application
Code Source
(.c, .h, .asm)

Binary

#define CHECKSUM_EXPECTED 0x6E13

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

16 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Procedure

/*---
2. Specify the clock rate of the CPU (SYSCLKOUT) in ns.

Take into account the input clock frequency and the PLL multiplier
that your system will use.

Use one of the values provided, or define your own.
The trailing L is required tells the compiler to treat
the number as a 64-bit value.

Only one statement should be uncommented.

Example: CLKIN is a 30 MHz crystal. The PLL is enabled.

If your application will set PLLCR = 0xA then the CPU clock
will be 150 MHz CPU (SYSCLKOUT = 150 MHz).

In this case, the CPU_RATE will be 6.667L
Uncomment the line: #define CPU_RATE 6.667L

---*/

//--

Example 11. PLL Setting Defined in Example281x_Flash281x_API.h

Example 12. CPU_RATE Defined in Flash281x_API_Config.h

#define CPU_RATE 6.667L // for a 150MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 7.143L // for a 140MHz CPU clock speed (SYSCLKOUT)
//#define CPU_RATE 8.333L // for a 120MHz CPU clock speed (SYSCLKOUT)

// #define PLLCR_VALUE 0x0009 // SYSCLKOUT = (OSCLK*9)/2
// #define PLLCR_VALUE 0x0008 // SYSCLKOUT = (OSCLK*8)/2

// SYSCLKOUT = (OSCLK*10)/2 #define PLLCR_VALUE 0x000A

/*---
Specify the PLL Control Register (PLLCR) value.

Uncomment the appropriate line by removing the leading double slash: //
Only one statement should be uncommented.

Your application must set the PLLCR Register before calling any
of the Flash API functions.

Example: CLKIN is a 30 MHz crystal.

You need to have a 150 MHz CPU clock (SYSCLKOUT = 150 MHz).
In this case, PLLCR must be set to 10 (0x000A)
Uncomment the line: #define PLLCR_VALUE 10
Comment out the remaining lines with a double slash: //

---*/

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 17

www.ti.com

Procedure

Setting for using the F2810 (Flash281x_API_Config.h):

Setting for using the F2811 (Flash281x_API_Config.h):

3.2.3 Configure CKFA for Correct Flash Range (64 KW or 128 KW)
Specify a device in file Flash281x_API_Config.h. Select either F2810 or F2811 by setting the desired
processor #define to 1 in the file Flash281x_API_Config.h, used in the CKFA project.

Example 13. Specifying 64 KW or 128 KW Flash Range for CKFA

#define FLASH_F2810 1
#define FLASH_F2811 0
#define FLASH_F2812 0

#define FLASH_F2810 0
#define FLASH_F2811 1
#define FLASH_F2812 0

3.2.4 Create CKFA Binary File

Once the CKFA is configured for the correct rate, passwords, and Flash range, you must create the binary
file suitable for Boot ROM SCI-A transmission.

3.2.4.1 Use Code Composer Studio to Rebuild CKFA Software
After modifications are made to the CKFA software, rebuild it using the Code Composer Studio projects
that are included with this application report. The Code Composer Studio projects include additional build
steps to convert the linked output into a binary format suitable for the SCI-A bootloader. It is important to
use the included Code Composer Studio projects whenever rebuilding the CKFA or your application
software.
From within the Code Composer Studio, open the CKFA project by selecting Open from the Project menu.
After verifying the settings of PLLCR_VALUE and CPU_RATE in Example_Flash281x_API.h and
Flash281x_API_Config.h, respectively, select Rebuild All from the Project menu.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

18 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Procedure

3.2.4.2 CKFA’s Code Composer Studio Project Details
The Code Composer Studio project for the CKFA software consists of the following files (Figure 14).

Figure 14. CKFA’s Code Composer Studio Project

Note that the CKFA software is based on the Flash API example code. The difference between the Flash
API example code and the CKFA code used in this application report is that the Flash API example does
not transfer the code into RAM using the SCI-A boot option. Instead, it is designed so that the Flash API is
already programmed into the F281x Flash and can be directly copied into RAM. This is a scenario typical
for in-field programming. As demonstrated by this document, using the SCI-A boot option is typical for
production programming of parts before shipping.

3.2.4.3 Generating CKFA.bin From Code Composer Studio

The CKFA project build options include a final build step that calls for a batch file that converts the COFF
executable produced by building the project into a binary format suitable for SCI communication
(Figure 15).
The F281x SCI-A boot option expects binary data transmission; ASCII-Hex format is not an option for the
data stream. To convert a COFF executable to binary, the first step is to convert the COFF executable to
ASCII-Hex format using the TI hex converter tool. This application report uses the Intel style ASCII-Hex
format.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 19

www.ti.com

Procedure

Figure 15. CKFA Project Build Options – Final Build Steps

The contents of the batch file, CKFA_COFF2BIN.bat, are listed below. It calls the C2000 Hex converter to
convert the COFF executable, generated by the linker, to ASCII-Hex format (Intel). For more detailed
information on the HEX-conversion utility, see the TMS320C28x Assembly Language Tools User’s Guide
(SPRU513).

Example 14. CKFA_COFF2BIN.bat

The CKFA_hex.cmd contains the command-line instructions for the HEX2000 converter. The key output to
this process is the CKFA.hex file that is used as the input to the HEX2BIN converter to generate the
binary file.

• CKFA.out

• -map CKFA_hex.map

• -o CKFA.hex

• -I

= COFF executable input file

= HEX2000 MAP output file

= Hex file output

= Specify Intel record format

cd debug

C:\CCStudio_v3.1\C2000\cgtools\bin\hex2000.exe CKFA_hex.cmd

HEX2BIN CKFA.hex

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRU513

20 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Procedure

Example 15. CKFA_hex.cmd

Once the file is in ASCII-Hex format, it can be converted to binary using any one of several widely
available binary converters. For this application report, the Intel hex to binary converter used was
HEX2BIN (http://gnuwin32.sourceforge.net/).
CKFA.bin follows the SCI-A bootloading option formatting expectations. See Section F.3 for the expected
8-bit SCI data stream format.

Example 16. CKFA.bin (Binary Reader), Binary Output From HEX2BIN.exe

3.3 Establishing Communication With Boot ROM’s SCI-A Code

The following steps must be verified to enable SCI communication with the F281x’s Boot ROM code.

3.3.1 Configuring F281x Target Board for SCI-A Boot Option
At reset, the F281x scans four GPIO pins to determine the intended mode of operation. The Jump to
FLASH option is the default mode, as it is implemented if there are no external connections to the four
scanned GPIO pins at reset. See Table 1 for the GPIO pins that are scanned at reset. There is an internal
pull-up resistor on GPIOF4 that makes the Jump to FLASH option default.

Table 1. Boot Mode GPIO Pins

Boot Mode Selected GPIOF4 GPIOF12 GPIOF3 GPIOF2

(1) PU - Pin has an internal pullup. NoPU = Pin doe not have an internal pullup.
(2) Extra care must be taken on the external logic due to any toggling effect of the SPICLK to select a boot mode.
(3) If the selected boot mode is Flash, H0, or OTP, then no external code is loaded by the bootloader.

CKFA.out

-boot
-sci8
-map CKFA_hex.map
-o CKFA.hex
-I

aa 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f2 02 6b 01 00 00 00 01 04
fe 1f 76 c1 01 1a 1a 00 40 1a 18 ff df 1a 1a 00 20 00 8f 6c 02 40 76 37 01 00 8f 6c 02

KeyValue = 0x08AA
Reserved = 0x0000 …
Entry Point = 0x000002F2
Block #1 Size = 0x016B
Block #1 Destination = 0x00000100

 (SCITXDA) (MDXA) (SPISTEA) (SPICLK)
GPIO PU status(1) PU NoPU NoPU NoPU
Jump to Flash/ROM address 0×3F 7FF6
A branch instruction must be programmed here prior to
reset to re-direct code execution as desired.

1 X X X

Call SPI_Boot to load from an external serial SPI
EEPROM(2)

0 1 X X

Call SCI_Boot to load SCI-A 0 0 1 1
Jump to H0 SARAM address 0×3F 8000(3) 0 0 1 0
Jump to OTP address 0×3D 7800 0 0 0 1
Call Parallel_Boot to load from GPIO Port B 0 0 0 0

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://gnuwin32.sourceforge.net/)

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 21

www.ti.com

Procedure

Table 2 shows the jumper settings for the SCI_Boot option with the F2812 eZdsp used in this application
report.

Boot ROM Options

Table 2. F2812 eZdsp Jumper Settings
JP7 (GPIOF4) JP8 (GPIOF12) JP11 (GPIOF3) JP12 (GPIOF2)

(SCITXDA) (MDXA) (SPISTEA) (SPICLK)

Jump to FLASH 1-2 X X X
Boot From SCI-A 2-3 2-3 1-2 1-2

3.3.2 Configuring Serial Communication Hardware
The F2812 eZdsp does not include an RS-232 transceiver. This application report uses the Link Research
board LR-2812COM that connects directly to the F2812 eZdsp and provides an RS-232 link to the PC.
Complete product information for the Link Research model LR-2812COM can be downloaded from the
following URL: http://www.link-research.com/.

3.3.3 Configuring Serial Connection Software (PC)

HyperTerminal is the PC software program used in this application report for serial communications. First,
you must configure HyperTerminal for the communications format used by the Boot ROM SCI-A boot
option. Also, you should select a slower baud rate to start with, such as 9600 bps and then increasing it to
38400 or 57600 bps. This avoids having an immediate communications problem.
Figure 16 shows the configuration of serial port COM1 with the following settings:
• 115200 bps (recommend starting out with 9600 bps)
• 8-bit data bits
• No parity
• 1 stop bit
• Flow control = None

Figure 16. HyperTerminal Communications Configuration

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www.link-research.com/

22 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Procedure

With HyperTerminal configured and ready for transmitting or receiving data, prepare the F281x target by
cycling its power (turn the power off and then on). This resets the F281x Boot ROM and causes it to scan
the four GPIO boot pins for their configuration. If you have them configured for SCI-A boot mode, the
F281x begins executing the SCI_Boot code in Boot ROM.
This code will first configure the SCI-A port’s baud rate using the auto-baud feature of this port. To lock in
the F281x SCI-A baud-rate to the baud-rate configured for HyperTerminal, type the character ‘a’ or ‘A’.
This is the expected character of the auto-baud feature of the SCI and it is used to configure the SCI
baud-rate on the DSP. See the flowchart of the Boot ROM code in the TMS320x281x Boot ROM
Reference Guide (SPRU095). The Boot ROM code echoes the received character back to HyperTerminal
to identify that the baud-rate has been successfully configured (see Figure 17). The auto-baud function is
documented in the TMS320x28xx, 28xxx DSP Serial Communication Interface (SCI) Reference Guide
(SPRU051).

Figure 17. Echoed Character From F2812 SCI Auto-Baud Logic

If the entered character is not echoed back to HyperTerminal, verify the following conditions:
• Hardware connections are in place
• F2812 target board power was cycled to force a reset
• F2812 GPIO boot pins (GPIOF4, F12, F3, and F2) are configured for SCI boot mode
• Verify HyperTerminal settings are correct
If the above conditions are verified, then the baud-rate of HyperTerminal needs to be reduced and the
auto-baud locking process restarted.

3.4 Flash Programming Procedure

Once the application and CKFA software are prepared for transfer, and serial communication has been
established with the Boot-ROM SCI code, you are now ready to start the Flash programming process.
This consists of the serial transfer of the CKFA software, unlocking the CSM, transferring the application
code, and verification that the application code was programmed correctly.

3.4.1 Transfer CKFA Software
The target baud-rate is set and ready to transfer the CKFA. Within HyperTerminal, select Send Text File
from the Transfer menu. Then, select the CKFA.bin file in the code→CKFA→Debug folder.
The transferred characters are echoed to the HyperTerminal screen by the SCI Boot ROM code. These
echoed characters can be used to verify that each character sent has been received correctly. This
application report does not verify each transmitted character. Verification is achieved by calculating a
checksum on the Flash after the application code is programmed.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRU095
http://www-s.ti.com/sc/techlit/SPRU051

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 23

www.ti.com

Procedure

Figure 18 shows that the CKFA transfer to RAM is complete and executing, with the processor unlocked,
when the HyperTerminal display appears.

Figure 18. HyperTerminal - CKFA Software Ready to Update F281x Baud-Rate

3.4.2 Unlocking the CSM
If the CSM is locked and the incorrect passwords were used in the CKFA software, then your
HyperTerminal screen will look like Figure 19. Correct the password values used in
Example_Flash281x_CsmKeys.asm, rebuild the CKFA software, reset the DSP, and attempt the CKFA
transfer again.

Figure 19. HyperTerminal - CKFA Transfer Failure Due to a Locked F281x

3.4.3 Prep Target Using CKFA Interface

Once the processor is unlocked and the CKFA software is executing, the CKFA software enables and
configures the PLL. For this application report, the CPU is configured to run at 150 MHz. With the new
CPU rate, the CKFA software needs to update the SCI-A baud rate. Type ‘a’ or ‘A’ to relock the auto baud
logic to the HyperTerminal baud rate, as shown in Figure 20. If the baud-rate is unable to relock after
typing ‘a’ or ‘A’ several times, reduce the HyperTerminal’s baud rate and start the process over.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

24 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Procedure

Once the baud-rate is updated, the CKFA software calculates a checksum on the Flash and transmits this
using the SCI-A. You can use this data to determine the following:
• If the Flash is already erased, the checksum is 0×0000. The erase step can be skipped and the Flash

programmed.
• If the checksum is equal to the value of expected of the application software, then the device is already

programmed as intended and the entire process can end.
• If the checksum is none of these cases, then the Flash has been programmed with data other than the

intended application code and must be erased. It is critical that you answer yes (‘y’) to the Erase
FLASH? prompt (Figure 20).

TI ships the F281x Flash completely erased so you can immediately program the Flash.

Figure 20. HyperTerminal - CKFA Checksum Determines Flash is Not Erased

While the device is erasing, it is important not to interrupt the process. Wait for the erase to complete.
Once the Flash is erased, you will receive a status update of erasing done. At this point, the CKFA
software is ready to receive the application code (see Figure 21).

Figure 21. HyperTerminal - CKFA Software is Ready to Transfer and Program Application Code

3.4.4 Transfer AppCode

To transfer the application software using HyperTerminal, select Send Text File from the Transfer menu.
Then, select the AppCode.bin file from the code→AppCode→Debug folder. Once the application is
received and programmed into Flash, the CKFA software calculates a checksum on the Flash. This value
is transmitted using SCI-A and compared against a value stored in Example_Flash281x_API.c. If the
calculated checksum matches the expected value, this is communicated using SCI-A, showing that the
checksum was verified (Figure 22).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 25

www.ti.com

Flash Program Timing Results

Figure 22. HyperTerminal - CKFA Software Has Transferred and Programmed Application Code

3.4.5 Verify AppCode Execution
The F281x is now ready to execute the application code out of Flash.
1. Remove power from the F281x target board.
2. Change the GPIO boot mode pins from SCI boot mode to Jump to Flash mode. (On the F2812 eZdsp,

this is easily done by moving JP7 from position 2-3 to 1-2.)
3. Apply power to the F281x target board. The application code will execute out of Flash. (If you are using

the F2812 eZdsp, the DS2 LED will be blinking.)

4 Flash Program Timing Results

As reducing programming time is a goal of this application report, the document methodology takes that
into consideration by:
• Continuous transfer of application code into two 4 KW buffers
• Eliminating any overhead (non-data) from AppCode binary file
• Checking Flash condition before programming to optionally skip erase step
• Filling all unused memory to 0xFFFF (erased state)
• Maximizing SCI-A baud-rate with the CKFA code setting PLL
Typical program times are listed in the TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810,
TMS320C2811, TMS320C2812 Data Manual (SPRS174) with 500 ms and 250 ms listed for 16 KW and 8
KW sectors, respectively. The F2810 has three 16 KW and two 8 KW sectors; therefore, the typical
programming time for the entire 64 KW of Flash is 2s.
Maximizing baud rate reduces the programming time significantly. Table 3 shows Flash programming
times referenced from the TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810,
TMS320C2811, TMS320C2812 Data Manual (SPRS174).

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRS174
http://www-s.ti.com/sc/techlit/SPRS174

26 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Flash Program Timing Results

CKFA and
AppCode

CKFA and AppCode

RS-232

PC

SCIA

28x
CPU

SCIA

SCIB

28x
CPU

External
RAM

(AppCode)

 RAM (ICT)

Flash

Internal RAM
(CKFA)

Boot ROM

RAM (CKFA)

Flash (AppCode)

RAM Buffer #1

RAM Buffer #2

Boot ROM

Table 3. Flash Parameters at 150-MHz SYSCLOUT (1)

PARAMETERS MIN TYP MAX UNIT

Program
time

16-bit word

Using Flash API v1 35 μs
Using Flash API v2.10 50 μs

8K sector

Using Flash API v1 170 ms
Using Flash API v2.10 250 ms

16K sector

Using Flash API v1 320 ms
Using Flash API v2.10 500 ms

Erase time

8K sector 10 s
16K sector 11 s

IDD3VFLP
IDD3VFL Erase 75 mA

Program 35 mA
IDDP VDD current consumption during erase/program cycle 140 mA
IDDIOP VDDIO current consumption during erase/program cycle 20 mA

(1) Typical parameters, as seen at room temperatures, including function call overhead.

4.1 PC to F281x Target Board
Using the timer in HyperTerminal, the application code takes approximately 37 seconds to program the
AppCode configured for 64 KW with the RS-232 baud-rate set for 38400 bps. At 57600 bps, the
programming is reduced to 24 seconds.

4.2 ICT to F281x Target Board
Baud-rate can be greatly increased with direct connections to the F281x; SCI-A receive and transmit is
possible. RS-232 transceiver bandwidths are limited and significantly increase programming time. The
AppCode configured for 64 KW Flash programs in 1.4 seconds using the emulated ICT (EICT) hardware
used in this application report.

4.2.1 Methodology
The PC is used to transfer the CKFA and AppCode binary files to RAM on the EICT. The F2812 eZdsp
represents the EICT. The CKFA binary file is stored in the eZdsp’s internal RAM. The AppCode binary file
is stored in the F2812 eZdsp; it has 64 KW of external RAM.
The PC to EICT transfer is done using RS-232 and HyperTerminal, a relatively slow data transfer.

Emulated ICT (281x eZdsp) F281x Target

Figure 23. Block Diagram of Flash Programming From ICT to F2810 Target Board

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 27

www.ti.com

Flash Program Timing Results

The EICT to F281x target is fast because it does not use RS-232 transceivers. The SCI pins are directly
connected between the EICT and eZdsp, just as they would be with an ICT on a production line. The
CKFA is controlling the F281x target and its PLL setting. Together this allows the EICT to transfer to the
F281x target at a baud-rate of 1.875 Mbps.

EICT - Target

Direct SCI
Connection

PC RS-232
Interface

Emulated
ICT (EICT)

F281x Target

CCS JTAG
Interface

Hardware:
• (2) F2812 eZdsp From Spectrum Digital
• RS-232 Interface From Link Research
• JTAG Emulator From Spectrum Digital

Software:
• PC = HyperTerminal
• EICT = Application Report EICT SW
• Target = Application Report CKFA SW

Figure 24. Photo of Emulated ICT to F281x Target Board

4.2.2 Flash Timing Results
With the Flash programming process understood, look at the amount of time it takes to program the Flash
using the technique presented in this application report. Timing is directly related to the baud-rate for the
serial transfer of the 64 kW or 128 kW application code.

4.2.2.1 Baud-Rate Settings for CKFA Transfer From EICT to F281x Target
The target Boot ROM code determines the baud rate for the CKFA transfer from EICT to the F281x
because the Boot ROM does not enable the PLL at reset. The resulting CPUCLK for the target is then
based on the input oscillator frequency, which is 30 MHz on the F281x eZdsp.
At reset, the PLL is disabled. The resulting CPUCLK is based on the oscillator frequency. This results in a
CPUCLK = 30 MHz.
At reset, the low-speed peripheral clock (LSPCLK) is configured as CPUCLK/4, which is not changed by
the Boot ROM code. This results in a LSPCLK of 7.5 MHz.
The minimum value for the SCI baud-rate register is 1. This results in a max baud-rate of 468 Kbps for the
F281x Target at reset.
Transferring the CKFA at 468 Kbps is much faster than the RS-232 typical PC (HyperTerminal) baud rate
of 38 or 56 Kbps. In addition, the CKFA binary file size is small (6.4KB), compared to the AppCode size of
128 or 256KB. Maximizing the baud rate for the AppCode transfer is critical.

EICT:
CPUCLK = 150 MHZ
LSPCLK = 150 MHz/2 = 75 MHz
BRR = 19
Baud-Rate = LSPCLK/((BRR+1)*8) =
468750 bps

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

28 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Flash Program Timing Results

Target:
CPUCLK = 30 MHZ PLL bypassed at reset and not enabled by Boot ROM]
LSPCLK = 30 MHz/4 = 7.5 MHz [/4 default at reset]
BRR = 1 [Set by SCI-Autobaud]
Baud-Rate = LSPCLK/((BRR+1)*8) =
468750 bps

4.2.2.2 Baud-Rate Settings for AppCode Transfer From EICT to F281x Target

With the CKFA code controlling the F281x target, the SCI baud-rate can be configured to the maximum
rate supported by external hardware connections. The maximum baud-rate supported by the F281x SCI is
20 Mbps, limited by the F281x IO buffer speed.
The PLL is configured by the CKFA software as x5. This results in a CPUCLK of 150 MHz.
The LSPCLK is configured by the CKFA software as CPUCLK/2. This results in a LSPCLK of 75 MHz.
The minimum value for the SCI baud-rate register supported by the hardware used in this application
report is 4. This results in a maximum baud-rate of 1.875 Mbps for the F281x eZdsp target. A BRR setting
of 3 was tested (2.34 Mbps), but this resulted in serial communications errors.

EICT:
CPUCLK = 150 MHZ
LSPCLK = 150 MHz/2 = 75 MHz
BRR = 4
Baud-Rate = LSPCLK/((BRR+1)*8) = 1.875 Mbps

Target:
CPUCLK = 150 MHZ [PLL enabled by CKFA]
LSPCLK = 150 MHz/2 = 75 MHz [LSPCLK divider set by CKFA]
BRR = 4 [Set by SCI-Autobaud]
Baud-Rate = LSPCLK/((BRR+1)*8) = 1.875 Mbps

4.2.3 ICT Flash Programming Procedure

Using an ICT allows for much faster serial port baud-rates. Connecting directly to the serial pins of the
processor eliminates the speed-limiting use of an RS-232 transceiver, as used in the previous section
when a PC was used for Flash programming. Achievable baud-rates for an ICT based system are > 2
Mbps. In this application report, 1.875 Mbps was achieved using an F2812 eZdsp to emulate an ICT.

4.2.3.1 Connecting PC to Emulated ICT
You must connect an RS-232 cable between the PC and the F2812 eZdsp representing the ICT. Since the
F2812 eZdsp does not have an RS-232 transceiver, the RS-232 interface from Link-Research was used.
Complete product information for Link Research model LR-F2812COM-2 can be downloaded from the
following URL: http://www.link-research.com/.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www.link-research.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 29

www.ti.com

Flash Program Timing Results

As the Link Research board is designed to match the Spectrum Digital eZdsp headers, the connections
point to the same header positions (Table 4).

Table 4. Link Research RS-232 Board Connections to EICT (F2812 eZdsp)

 Link-Research RS-232 Board Spectrum Digital F2812 eZdsp
SCIRXDB P4-19 P4-19
SCITXDB P4-20 P4-20

4.2.3.2 Connecting Emulated ICT to F281x Target Board

You must connect SCI-A from the EICT (F2812 eZdsp) to the SCI-A of the target board (F2812 eZdsp).
The eZdsp header pins P8-2 and P8-3 are used. Be sure to swap the transmit and receive connections
between the boards (Table 5).

Table 5. Link Research RS-232 Board Connections to EICT (F2812 eZdsp)

EICT Target

P4-20 P4-20
P8-3 SCITXDA P8-4 SCIRXDA

P8-39 GND P8-39 GND

4.2.3.3 Prepare Emulated ICT Software

The following steps show how to connect the IEEE Std. 1149.1-1990 (JTAG) emulator to the EICT.
1. Connect the IEEE Std. 1149.1-1990 (JTAG) emulator to EICT.
2. Open the Code Composer Studio workspace SCI_FLASH_AppReport.wks.
3. Reset the CPU.
4. Load the code.
5. Run in real-time mode
6. Set the Watch and Memory windows to continuously update in real-time mode.

4.2.3.4 Lock Baud Rate Between PC and Emulated ICT

The EICT software first configures the EICT hardware’s baud rate to match the baud rate set for the PC
(HyperTerminal). With the EICT software running, under Code Composer Studio control, enter the
autobaud character (‘a’ or ‘A’) into the HyperTerminal window. (Be sure to include the quotation as part of
your entry.) In response, the EICT software will confirm that the EICT baud rate is locked and ready for
CKFA binary file transfer (see Figure 25).

Figure 25. Emulated ICT Ready for CKFA Transfer From PC

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

30 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Flash Program Timing Results

4.2.3.5 Transfer CKFA and AppCode From PC to Emulated ICT RAM
Transfer the CKFA software from HyperTerminal using the same procedure as described in Section 3.4.1.
Within HyperTerminal, select Send Text File from the Transfer menu. Then, select the CKFA.bin file from
the code→CKFA→Debug folder.

Figure 26. Emulated ICT Ready for AppCode Transfer From PC

Transfer AppCode software from HyperTerminal using the same procedure as described in Section 3.4.4.
Within HyperTerminal, select Send Text File from the Transfer menu. Then, the AppCode.bin file from the
code→AppCode→Debug folder.

4.2.3.6 Lock Baud Rate Between Emulated ICT and F281x Target Board’s Boot ROM Code

The EICT now has both the CKFA and AppCode binary files loaded into its RAM. The EICT is ready to
follow the standard procedure used earlier, but instead of using the slow HyperTerminal RS-232 transfer,
you use the fast direct connection of the EICT.
The EICT transmits the procedures to follow to HyperTerminal (Figure 27). The PC is connected to the
EICT’s SCI-B, this does not disturb the SCI-A communication between the EICT and the target.

Figure 27. Emulated ICT Ready to Start F281x Target Procedure

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 31

www.ti.com

Flash Program Timing Results

4.2.3.7 Transfer CKFA From Emulated ICT to F281x Target Board
With Code Composer Studio running in real-time mode and the Watch and Memory Windows configured
for continuous refresh, cycle the power on the F281x target board. Leave the second Watch Window tab
open. For the F2812 eZdsp, you must remove the 5 V power supply and then reapply it.
Notice that the EICT’s SCIA has a receive error; typically, SciaRegs.SCIRXST.all is 178. As instructed in
HyperTerminal, reset EICT’s SCIA by writing a 0 and then a 1 to SciaRegs.SCIFFTX.bit.SCIRST. Note
that SciaRegs.SCIRXST.all now equals 0.
Set the target board’s baud rate. Enter the autobaud character (‘a’ or ‘A’) into the Watch Window,
SciaRegs.SCITXBUF = 'a'. Be sure to include the quotations as part of your entry. In response, the target
board sends the autobaud character back and you should see it in the Watch Window variable
SciaRegs.SCIRXEMU (97 = ‘a’).
The target board is not ready to receive the CKFA transfer. Before you start the transfer, prepare the
Code Composer Studio Memory Window to receive messages from the target board. Select Memory→Fill
from the Code Composer Studio Edit Menu. Fill memory at 0×3F8000 (length 0×2000) with 0×3131 (“11”)
(Figure 28).

Figure 28. Preparing the Memory Window for Target Board Response Messages

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

32 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Flash Program Timing Results

Start the CKFA transfer by setting the flag_ReadyToTransferCKFA to 0 in the Watch Window. The
transfer is complete when the Memory Window displays this message from the CKFA software running on
the target board, Processor is unlocked. Communication kernel received and executing. Type ‘a’ to relock
baud-rate: (see Figure 29). The next step is to increase the EICT baud-rate.

Figure 29. CKFA Transfer From Emulated ICT to Target Board Successful

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 33

www.ti.com

Flash Program Timing Results

4.2.3.8 Lock in New Maximum Baud-Rate
Set the EICT baud rate register to 4 in the Watch Window, SciaRegs.SCILBAUD = 4. The CKFA software,
running on the target board, has enabled its SCI-A autobaud logic to relock its baud rate to the new EICT
rate.
Enter the autobaud character (‘a’ or ‘A’) into the Watch Window, SciaRegs.SCITXBUF = 'a'. (Be sure to
include the quotations as part of your entry.) In response, the target board sends the autobaud character
back and you should see it in the Watch Window variable SciaRegs.SCIRXEMU (97 = ‘a’) (Figure 30).

Figure 30. CKFA Baud-Rate Relocked to Emulated ICT at 1.875 Mbps

In response to the target board’s message, Erase Flash?, enter the character ‘y’ into the Watch Window
(SciaRegs.SCITXBUF = 'y'). (Be sure to include the quotations as part of your entry.) This instructs the
CKFA software to erase the target board’s Flash.
The target board sends the message, Erasing … please wait, which can be seen in the Memory Window.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

34 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Flash Program Timing Results

4.2.3.9 Transfer AppCode From Emulated ICT to F281x Target Board
Start the AppCode transfer by setting flag_ ReadyToTransferAppCode to 0 in the Watch Window. The
transfer is complete when the Memory Window displays this message from the CKFA software running on
the target board, *** erasing done. Ready for application data transfer (see Figure 31).

Figure 31. AppCode Flash Programming on Target Board Successful

The AppCode transfer and Flash programming is complete when the Memory Window displays this
message from the CKFA software running on the target board, ** application programmed. Flash
Checksum = 0x6E13. ** checksum verified. This is the same message that you received when using
HyperTerminal to program AppCode into the target board’s Flash.
The programming time is listed in the Watch Window:
(start_time – end_time)/150e6 = 1.398 seconds

This is the benchmark timing using the F28x CPU count-down timer.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 35

www.ti.com

References

5 References
• Download TMS320F2810, TMS320F2811 and TMS320F2812 Flash API

(http://www-s.ti.com/sc/techlit/sprc125.zip)
• TMS320x281x DSP System Control and Interrupts Reference Guide (SPRU078)
• TMS320x281x Boot ROM Reference Guide (SPRU095)
• TMS320x28xx, 28xxx DSP Serial Communication Interface (SCI) Reference Guide (SPRU051)
• TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430)
• TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811, TMS320C2812 Data

Manual (SPRS174)
• Download: C281x C/C++ Header Files and Peripheral Examples - SPRC097

(http://www-s.ti.com/sc/techlit/sprc097.zip)
• TMS320C28x Assembly Language Tools User’s Guide (SPRU513)
• eZdsp 2812 Technical Reference (http://c2000.spectrumdigital.com/ezf2812/docs/ezf2812_techref.pdf)
• SDFlash Utility (www.spectrumdigital.com/)
• HEX2BIN, Intel Hex to Binary Converter (http://gnuwin32.sourceforge.net/)
• Link Research (www.link-research.com)

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/
http://www-s.ti.com/sc/techlit/sprc125.zip
http://www-s.ti.com/sc/techlit/SPRU078
http://www-s.ti.com/sc/techlit/SPRU095
http://www-s.ti.com/sc/techlit/SPRU051
http://www-s.ti.com/sc/techlit/SPRU430
http://www-s.ti.com/sc/techlit/SPRS174
http://www-s.ti.com/sc/techlit/sprc097.zip
http://www-s.ti.com/sc/techlit/SPRU513
http://c2000.spectrumdigital.com/ezf2812/docs/ezf2812_techref.pdf
http://www.spectrumdigital.com/
http://gnuwin32.sourceforge.net/
http://www.link-research.com/

www.ti.com

Appendix A TMS320F281x Memory Maps

A.1 F2812 Memory Map

Peripheral Frame 1
(Protected)

Peripheral Frame 2
(Protected)

Boot ROM (4K x 16)
(Enabled if MP/ = 0)MC

BROM Vector - ROM (32 x 32)
(Enabled if VMAP = 1, MP/ = 0, ENPIE = 0)MC

H0 SARAM (8K x 16)

Reserved

128-Bit Password

Flash (or ROM) (128K x 16 Secure Block)

Reserved (1K)

OTP (or ROM) (1K x 16, Secure Block)

Reserved

L0 SARAM (4K x 16, Secure Block)

L1 SARAM (4K x 16, Secure Block)

Reserved

Reserved

PIE Vector - RAM
(256 x 16)

(Enabled if VMAP
= 1, ENPIE = 1)

Peripheral Frame 0

Reserved

Reserved

M1 SARAM (1K x 16)

M0 SARAM (1K x 16)

M0 Vector - RAM (32 x 32)
(Enabled if VMAP = 0)

Data Space Program Space Data Space Program Space

XINTF Zone 0 (8K x 16,)XZCS0AND1

XINTF Zone 1 (8K x 16,) (Protected)XZCS0AND1

Reserved

Reserved

XINTF Zone 2 (0.5M x 16,)XZCS2

XINTF Zone 6 (0.5M x 16,)XZCS6AND7

XINTF Vector - RAM (32 x 32)
(Enabled if VMAP = 1, MP/ = 1, ENPIE = 0)MC

XINTF Zone 7 (16K x 16,)
(Enabled if MP/ = 1)

XZCS6AND7
MC

Reserved

0x00 0000

0x00 0040
0x00 0400

0x00 0800

0x00 0D00

0x00 0E00

0x00 2000

0x00 6000

0x00 7000

0x00 8000

0x00 9000

0x00 A000

0x3D 7800

0x3D 7C00

0x3D 8000

0x3F 7FF8

0x3F 8000

0x3F A000

0x3F F000

0x3F FFC0

0x00 2000

0x00 4000

0x08 0000

0x10 0000

0x18 0000

0x3F C000

L
o

w
 6

4K
(2

4x
/2

40
x

E
q

u
iv

al
en

t
D

at
a

S
p

ac
e)

H
ig

h
 6

4K
(2

4x
/2

40
x

E
q

u
iv

al
en

t
P

ro
g

ra
m

 S
p

ac
e)

Legend:

Only one of these vector maps - M0 vector, PIE vector, BROM vector, XINTF vector - should be enabled at a time.

Block
Start Address

On-Chip Memory External Memory XINTF

Appendix A

Figure A-1 shows the F2812 memory map.

A The memory blocks are not to scale.
B Reserved locations are reserved for future expansion. The application should not access these areas.
C Boot ROM and Zone 7 memory maps are active either in on-chip or XINTF zone depending on MP/MC, not in both.
D Peripheral frame 0, peripheral frame 1, and peripheral frame 2 memory maps are restricted to data memory only. The

program cannot access these memory maps in program space.
E Protected means that the order of Write followed by Read operations is preserved rather than the pipeline order.
F Certain memory ranges are EALLOW protected against spurious writes after configuration.
G Zones 0 and 1 and Zones 6 and 7 share the same chip select; therefore, these memory blocks have mirrored

locations.

Figure A-1. F2812 Memory Map

36 SPRAAQ2–October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

www.ti.com

A.2 F2810 Memory Map

Peripheral Frame 1
(Protected)

Peripheral Frame 2
(Protected)

Boot ROM (4K x 16)
(Enabled if MP/ = 0)MC

BROM Vector - ROM (32 x 32)
(Enabled if VMAP = 1, MP/ = 0, ENPIE = 0)MC

H0 SARAM (8K x 16)

Reserved

128-Bit Password

Flash (or ROM) (64K x 16 Secure Block)

Reserved

OTP (or ROM) (1K x 16, Secure Block)

Reserved

L0 SARAM (4K x 16, Secure Block)

L1 SARAM (4K x 16, Secure Block)

Reserved

Reserved

PIE Vector - RAM
(256 x 16)

(Enabled if VMAP
= 1, ENPIE = 1)

Peripheral Frame 0

Reserved

Reserved

M1 SARAM (1K x 16)

M0 SARAM (1K x 16)

M0 Vector - RAM (32 x 32)
(Enabled if VMAP - 0)

Data Space Program Space

0x00 0000

0x00 0040
0x00 0400

0x00 0800

0x00 0D00

0x00 0E00

0x00 2000

0x00 6000

0x00 7000

0x00 8000

0x00 9000

0x00 A000

0x3D 7800

0x3D 7C00

0x3D 8000

0x3F 7FF8

0x3F 8000

0x3F A000

0x3F F000

0x3F FFC0

L
o

w
 6

4K
(2

4x
/2

40
x

E
q

u
iv

al
en

t
D

at
a

S
p

ac
e)

H
ig

h
 6

4K
(2

4x
/2

40
x

E
q

u
iv

al
en

t
P

ro
g

ra
m

 S
p

ac
e)

Legend:

Only one of these vector maps - M0 vector, PIE vector, BROM vector - should be enabled at a time.

Block
Start Address On-Chip Memory

F2810 Memory Map

Figure A-2 shows the F2810 memory map.

A The memory blocks are not to scale.
B Reserved locations are reserved for future expansion. The application should not access these areas.
C Peripheral frame 0, peripheral frame 1, and peripheral frame 2 memory maps are restricted to data memory only. The

program cannot access these memory maps in program space.
D Protected means that the order of Write followed by Read operations is preserved rather than the pipeline order.
E Certain memory ranges are EALLOW protected against spurious writes after configuration.

Figure A-2. F2810 Memory Map

SPRAAQ2–October 2007 TMS320F281x Boot ROM Serial Flash Programming 37
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

www.ti.com

38 SPRAAQ2 – October 2007
Submit Documentation Feedback

Appendix B

Appendix B TMS320F281x Flash Sectors

B.1 Addresses of Flash Sectors in F2812 and F2811
The following F2812 and F2811 Flash sectors are programmed by the technique used in this application
report.

Table B-1. F2812 and F2811 Flash Sector Addresses
Address Range Program and Data Space

0×3D 8000 Sector J, 8K × 16
0×3D 9FFF
0×3D A000 Sector I, 8K × 16
0×3D BFFF
0×3D C000 Sector H, 16K × 16
0×3D FFFF
0×3E 0000 Sector G, 16K × 16
0×3E 3FFF
0×3E 4000 Sector F, 16K × 16
0×3E 7FFF
0×3E 8000 Sector E, 16K × 16
0×3E BFFF
0×3E C000 Sector D, 16K × 16
0×3E FFFF
0×3F 0000 Sector C, 16K × 16
0×3F 3FFF
0×3F 4000 Sector B, 8K × 16
0×3F 5FFF
0×3F 6000 Sector A, 8K × 16
0×3F 7F80 Program to 0×0000 when using the code security mode
0×3F 7FF5
0×3F 7FF6 Boot-to-Flash (or ROM) entry point (program branch instruction
0×3F 7FF7 here)
0×3F 7FF8 Security password (128 bit)
0×3F 7FFF (Do not program to all zeroes)

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

www.ti.com

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 39

B.2 Addresses of Flash Sectors in F2810
Addresses of Flash Sectors in F2810

The following F2810 Flash sectors are programmed by the technique used in this report.

Table B-2. F2810 Flash Sector Addresses
Address Range Program and Data Space

0×3E 8000 Sector E, 16K × 16
0×3E 9FFF
0×3E C000 Sector D,16K × 16
0×3E FFFF
0×3D C000 Sector H, 16K × 16
0×3D FFFF
0×3F 4000 Sector B, 8K × 16
0×3F 5FFF
0×3F 6000 Sector A, 8K × 16
0×3F 7F80 Program to 0×0000 when using the code security mode
0×3F 7FF5
0×3F 7FF6 Boot-to-Flash (or ROM) entry point (program branch instruction
0×3F 7FF7 here)
0×3F 7FF8 Security password (128 bit)
0×3F 7FFF (Do not program to all zeroes)

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

40 SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Appendix C

Appendix C 8-Bit Data Stream Expected by Boot ROM SCI-A

C.1 TMS320C28x Assembly Language Tools User’s Guide
The following data stream format is used by the Boot-ROM SCI-A boot option code. The software used in
this application report to transfer the CKFA software adheres to this format.

Table C-1. LSB/MSB Loading Sequence in 8-Bit Data Stream

Byte Contents

1 LSB = AA (KeyValue for memory width = 8 bits)
2 MSB = 08h (KeyValue for memory width = 8 bits)
3 LSB = Register initialization value or reserved for future use
4 MSB = Register initialization value or reserved for future use
… …

17 LSB = Reserved for future use
18 MSB = Reserved for future use
19 LSB = Upper half of entry point (PC[23:16]
20 MSB = Upper half of entry point (PC[31:24]
21 LSB = Lower half of entry point PC[7:0]
22 MSB = Lower half of entry point PC[15:8]
23 LSB = Block size in words of the first block to load. If the block size is 0, this indicates the end of

the source program. Otherwise, another block follows. For example, a block size of 0×000A would
indicate 10 words of 20 bytes in the block.

24 MSB = Block size
25 LSB = Upper half of destination address of first block Addr[23:16]
26 MSB = Upper half of destination address of first block Addr[31:24]
27 LSB = Lower half of destination address of first block Addr[7:0]
28 MSB = Lower half of destination address of first block Addr[15:8]
29 LSB = First word of the first block being loaded
30 MSB = First word of the first block being loaded

…

…

LSB = Last word of the first block of the source being loaded
MSB = Last word of the first block of the source being loaded
LSB = Block size of the second block
MSB = Block size of the second block
LSB = Upper half of destination address of second block Addr[23:16]
MSB = Upper half of destination address of second block Addr[31:24]
LSB = Lower half of destination address of second block Addr[15:8]
MSB = Lower half of destination address of second block Addr[8:0]
LSB = First word of the second block being loaded
MSB = First word of the second block being loaded
…

…

LSB = Last word of the second block of the source being loaded
MSB = Last word of the second block of the source being loaded
…

…

…

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

www.ti.com

Submit Documentation Feedback

TMS320C28x Assembly Language Tools User’s Guide

Table C-1. LSB/MSB Loading Sequence in 8-Bit Data Stream (continued)

Byte Contents

LSB = Block size of the last block
MSB = Block size of the last block
LSB = Upper half of the destination of last block Addr[23:16]
MSB = Upper half of destination address of second block Addr[31:24]
LSB = Lower half of destination address of second block Addr[15:8]
MSB = Lower half of destination address of second block Addr[8:0]
LSB = First word of the last block being loaded
MSB = First word of the last block being loaded
…

…

LSB = Last word of the last block being loaded
MSB = Last word of the last block being loaded

n LSB = 00h
n + 1 MSB = 00h - indicates the end of the source

SPRAAQ2 – October 2007 TMS320F281x Boot ROM Serial Flash Programming 41

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

42 SPRAAQ2 – October 2007
Submit Documentation Feedback

www.ti.com

Appendix D

Appendix D Hex-Conversion File Formats

D.1 Intel
An Intel® formatted hex file is used for the CKFA file conversion.

Figure D-1. Intel MCS86 Hexadecimal Object Format

Record Type Description

00 Data Record
01 End-of-file record
04 Extended linear address record

D.2 Motorola
A Motorola® formatted hex file is used for the AppCode file conversion.

Figure D-2. Motorola-S Object Format

Record Type Description

S0 Header Record
S2 Code/data record
S4 Termination record

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www.ti.com/

www.ti.com

Submit Documentation Feedback

Appendix E

Appendix E Software Flowcharts

E.1 CKFA
The following flowchart illustrates the CKFA execution order preparing the processor for the AppCode
transfer.

Unlock_Main.c

Unsecured RAM
Used as SCI Buffer

For AppCode
Transfer

PLL is in Bypass
Mode at Reset

(SYSCLK =
OSCCLK/2)

Example_
Flash28
1x_API.c

Callback Function
Used to Receive
SCI Data During

Flash Programming

New PLL Setting
Requires SCI Baud

Rate Update

Figure E-1. CKFA Flowchart A

SPRAAQ2 – October 2007 43

A

Clear HyperTerminal (HT)
Screen With Line Feeds

Unlock Attempt
Successful

?

No Error Message to HT:
"Incorrect Passwords, Failed

To Unlock Processor"

Yes End: ESTOP

Update HT:
"Processor Is Unlocked"

Attempt CSM
Unlock

Start: CKFA

Enable SCI FIFOs

Move Received CKFA From
Unsecured RAM To the Now

Unlocked Secure RAM

Set PLL and Flash Timing

Configure Callback Function

Configure SCI and Start
Autobaud Detect

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

www.ti.com

44 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

CKFA

Example_Flash28
1x_API.c

Figure E-2. CKFA Flowchart B

A

Update HT:
"Communication Kernel Received and Executing.

Type 'a' to Relock Baud-Rate."

Reset SCI and
FIFOs

HT Update:
"Baud-Rate Relocked"

HT Update:
"Flash Checksum = 0x "

Yes
Calc'd Checksum

= = 0
?

Update HT:
"FLASH Appears to
be Erased Already"

No

Update HT:
"FLASH is not Erased and Should not

be Programmed Until it is Erased."

Update HT:
"Erase Flash (Y/N)"

B

Calc Flash Checksum

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

www.ti.com

Submit Documentation Feedback

CKFA

Example_Flash28
1x_API.c

Calc'd No
Checksum = =

Expected Value
?

Update HT:
"**Checksum Error*"

Yes

Update HT:

"Checksum Verified"

End: ESTOP

Figure E-3. CKFA Flowchart Through ESTOP

SPRAAQ2 – October 2007 TMS320F281x Boot ROM Serial Flash Programming 45

Calc Flash Checksum

B

Erase Flash
(Y/N) = = n

?

No Update HT:
"Erasing . . . Please Wait"

Yes

Update HT:
"Ready for Application

Data Transfer . . ."
Update HT:

"**Erasing Done"

Receive AppCode and
Program Flash

SCIA_BlockProcessing(void)

Update HT:
"Application

Programmed"

Erase all Sectors

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

www.ti.com

44 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

SCI Block Processing

E.2 SCI Block Processing
The following flowchart illustrates the portion of the CKFA software that processes blocks of AppCode
data transfers. Blocks are received and then programmed into Flash.

Figure E-4. SCI Block Processing Flowchart

Received and
Programmed

FLASH_RANGE
?

Yes
Function Return

No

Update HT:
"."

Success
?

No
End: ESTOP

Yes

Program Flash With

RAM Buffer Data Just Filled

Fill 4 kW RAM Buffer With
Data Received From SCI

Update RAM Pointers

Start:
SCIA_BlockProcessing(Void)

Init:
FLASH_RANGE 64 kW (F2810) or 128 kW (F2811 or F2812)
DEST_ADDR Start of Flash = 0x003E8000
BufferSize 4 kW

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

www.ti.com

Submit Documentation Feedback

PAGE 1 :

PAGE 2 :
RAMH0_1
RAMH0_2

: origin = 0x3F8000, length = 0x001000
: origin = 0x3F9000, length = 0x001000

/* on-chip RAM block H0 */
/* on-chip RAM block H0 */

SECTIONS
{

.text_unsecured
{

: > RAMM0M1 PAGE = 0

unlock_main.obj (.text)
DSP281x_CodeStartBranch.obj (.text)
Example_Flash281x_CsmKeys.obj (.text)
DSP281x_MemCopy.obj (.text)
rts2800_ml.lib (.text)

}
econst_unsecured
{

: > RAMM0M1 PAGE = 0

unlock_main.obj (.econst)
}

.text : LOAD = RAMH0_1,
RUN = RAML0L1,
LOAD_START(_textLoadStart),
LOAD_END(_textLoadEnd),
RUN_START(_textRunStart),
PAGE = 1

.econst : LOAD = RAMH0_1,
RUN = RAML0L1,
LOAD_START(_econstLoadStart),

Appendix F

Appendix F CKFA Linker and HEX2000 MAP Files

F.1 CKFA Linker Command File
The CKFA linker command file is crucial to this application report. Note the distinctions between
unsecured and secured memory for the CKFA code (.text). The unsecured memory executes first,
allowing the CKFA to unlock the processor. Note also the overlay of H0RAM. This memory range is used
for two purposes: holding the CKFA software until the processor is unlocked and as a buffer for AppCode
transfers.

F.1.1 File Description – CKFA.cmd
The linker command file for the CKFA software plays a crucial role. The initial transfer of the entire CKFA
must assign addresses to unsecured memory to allow the SCI-A Boot ROM code to transfer the CKFA
software to RAM even if the device is locked.
Once the CKFA is transferred, the CSM is unlocked with the passwords used in
Example_Flash281x_CsmKeys.asm. After unlocking the CSM, the main CKFA software is transferred to
secured RAM and the large unsecured RAM is used for SCI communications buffers when transferring the
application software.
In summary, the CKFA.cmd does several tasks:
• Assigns load and run addresses to unsecured memory
• Assigns load addresses to unsecured memory and run addresses to secured memory
• Overlays load addresses of unsecured memory

Example F-1. CKFA.cmd

SCIA : origin = 0x007050, length = 0x000010 /* SCI-A registers */
RAML0L1 : origin = 0x008000, length = 0x002000 /* on-chip RAM block L0 L1 */
RAMM0M1 : origin = 0x000200, length = 0x000600 /* on-chip RAM block M0 */
RAMH0_1 : origin = 0x3F8000, length = 0x001000 /* on-chip RAM block H0 */
RAMH0_2 : origin = 0x3F9000, length = 0x001000 /* on-chip RAM block H0 */

SPRAAQ2 – October 2007 47

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

www.ti.com

44 TMS320F281x Boot ROM Serial Flash Programming SPRAAQ2 – October 2007
Submit Documentation Feedback

CKFA Linker MAP File – RAM Overlay

Example F-1. CKFA.cmd (continued)

F.2 CKFA Linker MAP File – RAM Overlay

**
TMS320C2000 COFF Linker PC v4.1.0

**

OUTPUT FILE NAME: <./Debug/CKFA.out>
ENTRY POINT SYMBOL: "code_start" address: 000002f2

MEMORY CONFIGURATION

The CKFA software uses the linker to overlay RAM. Note that RAMH0_1 and RAMH0_2 are used on both
PAGE 1 and PAGE 2. During the Boot ROM SCI-A transfer of the CKFA software at reset, the DSP could
be locked so the CKFA software is transferred to unsecured RAM (H0). Once the DSP is unlocked, the
CKFA software is transferred to the run address of 0×8000. This allows H0RAM to be used as SCI RAM
buffers when transferring the AppCode software.
.text 1 003f8000 000007ca RUN ADDR = 00008000

PAGE = 0
PAGE = 2
PAGE = 2
PAGE = 0
PAGE = 0

: > RAMH0_1
: > RAMH0_2
: > CSM_PWL
: > CSM_RSVD

: > RAMM0M1 codestart
BlockTransferBuffer1
BlockTransferBuffer2
csmpasswds
csm_rsvd

/* User Defined Sections */

: LOAD = RAMH0_1,
RUN = RAML0L1,
LOAD_START(_cinitLoadStart),
LOAD_END(_cinitLoadEnd),
RUN_START(_cinitRunStart),
PAGE = 1

.cinit

LOAD_END(_econstLoadEnd),
RUN_START(_econstRunStart),
PAGE = 1

 name origin length used attr fill

PAGE

0: RAMM0M1

00000100

00000200

000001f3

RWIX

 OTP 003d7800 00000800 00000000 RWIX
 FLASHJ 003d8000 00002000 00000000 RWIX
 FLASHI 003da000 00002000 00000000 RWIX
 FLASHH 003dc000 00004000 00000000 RWIX
 FLASHG 003e0000 00004000 00000000 RWIX
 FLASHF 003e4000 00004000 00000000 RWIX
 FLASHE 003e8000 00004000 00000000 RWIX
 FLASHD 003ec000 00004000 00000000 RWIX
 FLASHC 003f0000 00004000 00000000 RWIX
 FLASHB 003f4000 00002000 00000000 RWIX
 FLASHA 003f6000 00001f80 00000000 RWIX
 CSM_RSVD 003f7f80 00000076 00000000 RWIX
 BEGIN 003f7ff6 00000002 00000000 RWIX
 CSM_PWL 003f7ff8 00000008 00000000 RWIX
 ROM 003ff000 00000fc0 00000000 RWIX
 RESET 003fffc0 00000002 00000000 RWIX

 VECTORS 003fffc2 0000003e 00000000 RWIX

PAGE 1: RAMM0M1 00000300 00000500 00000400 RWIX
 SCIA 00007050 00000010 00000010 RWIX
 RAML0L1 00008000 00002000 00000a9c RWIX
 RAMH0_1 003f8000 00001000 000009fe RWIX

 RAMH0_2 003f9000 00001000 00000000 RWIX

PAGE 2: RAMH0_1 003f8000 00001000 00001000 RWIX
 RAMH0_2 003f9000 00001000 00001000 RWIX

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

www.ti.com

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 49

CKFA HEX2000 MAP File – 8-Bit SCI Boot Format

003f8000 000001d2 Example_Flash281x_API.obj (.text)
003f81d2 00000047 HexToASCII.obj (.text)
003f8219 000000c6 SCI.obj (.text)
003f82df 00000091 Flash2810_API_V210.lib : (.text)

.econst 1 003f87ca 00000234 RUN ADDR = 000087ca
 003f87ca 00000201 Example_Flash281x_API.obj (.econst)
 003f89cb 00000001 --HOLE-- [fill = 0]
 003f89cc 00000032 Flash2810_API_V210.lib : (.econst)

BlockTransferBuffer1
* 2 003f8000 00001000 UNINITIALIZED

003f8000 00001000 Example_Flash281x_API.obj (BlockTransferBuffer1)

BlockTransferBuffer2

* 2 003f9000 00001000 UNINITIALIZED
003f9000 00001000 Example_Flash281x_API.obj (BlockTransferBuffer2)

F.3 CKFA HEX2000 MAP File – 8-Bit SCI Boot Format
The CKFA software is converted into a format suitable for SCI transfer by the code in Boot ROM. This
requires an 8-bit format, header information, and each data block listed with address and size information.
The Appcode software does not require boot-loading format because its transfer is controlled by the CKFA
software.
**
TMS320C2000 COFF/Hex Converter v4.3.0
**

INPUT FILE NAME: <CKFA.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS

Default data width : 16
Default memory width : 8 (LS-->MS)
Default output width : 8

BOOT LOADER PARAMETERS

Table Type: SERIAL PORT (SCI 8 bit Mode)
Entry Point: 0x000002f2

OUTPUT TRANSLATION MAP
--
00000000..003fffff Page=0 Memory Width=8 ROM Width=8
--

OUTPUT FILES: CKFA.hex [b0..b7]

CONTENTS: 00000000..0000181d BOOT TABLE
.text_unsecured : dest=00000100 size=0000016b width=00000002

.econst_unsecured : dest=0000026c size=0000005f width=00000002
.cinit : dest=000002cb size=00000027 width=00000002

codestart : dest=000002f2 size=00000002 width=00000002
.text : dest=003f8000 size=000007ca width=00000002

.econst : dest=003f87ca size=00000234 width=00000002

--
00000000..003fffff Page=1 Memory Width=8 ROM Width=8 "*DEFAULT PAGE 1*"
--

NO CONTENTS

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

www.ti.com

50 SPRAAQ2 – October 2007
Submit Documentation Feedback

Appendix G

Appendix G Example Software – File Listing and Descriptions

The application code used in this report is based on the Flash example that is included in the
Download: C281x C/C++ Header Files and Peripheral Examples (SPRC097). The only modification
that was made was a function to toggle the GPIO to confirm that the application was executing from
Flash.

G.1 Directory Structure and File Listing

The application code’s Code Composer Studio project consists of the files shown in Table G-1 through
Table G-5.

Table G-1. Directory Structure Used in This Application Report
Directory Contents

C:\CCStudio_vx Code Composer Studio installation directory
\code\Appcode Application software
\code\EICT Emulated ICT software
\code\FileIOShell MOT2BIN software

Table G-2. CKFA Files Used in This Application Report
Filename Contents

\code\CKFA\CKFA.pjt Code Composer Studio project for CKFA software
\code\CKFA\CKFA_COFF2BIN.bat Batch file used in final Code Composer Studio build steps for

CKFA code – converts COFF to binary format
\code\CKFA\CKFA.cmd CKFA linker command file
\code\CKFA\source\Example_Flash281x_API.c Main CKFA source file
\code\CKFA\source\Unlock_main.c Source code that unlocks CSM
\code\CKFA\source\SCI.c Miscellaneous SCI functions
\code\CKFA\source HexToASCII.c Conversion code to display checksum in ASCII format
\code\CKFA\source\DSP281x_MemCopy.c Memory copy utility
\code\CKFA\source\Example_Flash281x_CsmKeys.asm Passwords used to unlock CSM
\code\CKFA\source\DSP281x_CodeStartBranch.asm CKFA code entry point
\code\CKFA\API Libraries\Flash2810_API_V210.lib F2810 Flash API Library
\code\CKFA\API Libraries\Flash2811_API_V210.lib F2811 FLASH API Library
\code\CKFA\API Libraries\Flash2812_API_V210.lib F2812 Flash API Library
\code\CKFA\Debug\CKFA.out CKFA COFF executable
\code\CKFA\Debug\CKFA.map CKFA COFF executable MAP file
\code\CKFA\Debug\CKFA_hex.cmd Command line input to hex2000.exe
\code\CKFA\Debug\CKFA.hex HEX file output from hex2000.exe (input to hex2bin.exe)
\code\CKFA\Debug\hex2bin.exe Intel HEX to binary converter
\code\CKFA\Debug\CKFA.bin Binary file output from hex2bin.exe

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2
http://www-s.ti.com/sc/techlit/SPRC097

www.ti.com

SPRAAQ2 – October 2007
Submit Documentation Feedback

TMS320F281x Boot ROM Serial Flash Programming 51

Directory Structure and File Listing

Table G-3. AppCode Files Used in This Application Report
Filename Contents

\code\AppCode\AppCode.pjt Code Composer Studio project for application software
\code\AppCode\AppCode_COFF2BIN_2810.bat F2810 batch file used in final Code Composer Studio build

steps for application code – converts COFF to custom binary
format

\code\AppCode\AppCode_COFF2BIN_2812.bat F2811/F2812 batch file used in final Code Composer Studio
build steps for application code – converts COFF to custom
binary format

\code\AppCode\Debug\AppCode.out Application code’s COFF executable
\code\AppCode\Debug\ AppCode.map Application code’s COFF executable MAP file
\code\AppCode\Debug\AppCode_hex_2810.cmd F2810 command line input to hex2000.exe
\code\AppCode\Debug\AppCode_hex_2812.cmd F2811/F2812 command line input to hex2000.exe
\code\AppCode\Debug\AppCode.hex HEX file output from hex2000.exe (input to FileIOShell.exe)
\code\AppCode\Debug\FileIOShell.exe Motorola-S record to binary converter
\code\AppCode\Debug\ AppCode.bin Binary file output from FileIOShell.exe
\code\AppCode\64kW Hex file \AppCode.bin Pre-configured 64 KW binary file for report’s example

application code
\code\AppCode\64kW Hex file \AppCode.hex Pre-configured 64 KW hex file for report’s example application

code
\code\AppCode\128kW Hex file \AppCode.bin Pre-configured 128 KW binary file for report’s example

application code
\code\AppCode\128kW Hex file \AppCode.hex Pre-configured 128 KW hex file for report’s example application

code

Table G-4. EICT Files Used in This Application Report
Filename Contents

\code\EICT\EICT.pjt Code Composer Studio project for EICT software
\code\EICT\max_baud_rate.c EICT software source code

Table G-5. FileIOShell Files Used in This Application Report

Filename Contents

\code\FileIOShell\FileIOShell.cpp FileIOShell source code
\code\FileIOShell\FileLibrary.cpp FileIOShell source code

http://www.ti.com/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAQ2

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	SPRAAQ2
	ABSTRACT
	1 Introduction
	Figure 1. F281x Flash Boot-Loading Options

	2 Methodology
	2.1 Transferring CKFA to F281x RAM
	Figure 2. Transfer CKFA to RAM LOAD Addresses
	Figure 3. CKFA Transfer to RAM RUN Addresses

	2.2 Transferring and Programming Application Code
	Figure 4. CKFA Transfers AppCode to RAM Buffer 1
	Figure 5. CKFA Starts Programming Flash
	Figure 6. Flash Programming Completed

	3 Procedure
	3.1 Prepare Application Code
	Figure 7. Overview of AppCode File Processing
	3.1.1.1 Select 64 KW or 128 KW Linker Command File

	Figure 8. AppCode Project for 128 KW Flash
	Figure 9. Excluding a Linker Command File From Build
	3.1.1.2 Using Linker to Fill Unused Flash Addresses
	Example 1. Linker Command File for Filling Unused Addresses With 0xFFFF
	Example 2. Linker MAP File With 0xFFFF Fill Values
	Example 3. AppCode HEX2000 F2810 Command File
	Example 4. Hex Converter MAP File With 0xFFFF Fill Values
	Example 5. AppCode.hex (ASCII Reader), Mot-S Input File to FileIOShell.exe
	Example 7. AppCode_COFF2BIN_2810.bat

	Figure 10. AppCode Code Composer Studio Project – Configuring COFF2BIN Batch File
	3.1.2.2 Generating AppCode.bin Without Code Composer Studio
	Example 9. FileIOShell Only.bat
	3.1.3.1 Calculating Checksum With Code Composer Studio

	Figure 11. Code Composer Studio On-Chip Flash Programmer Calculating CHECKSUM
	3.1.3.2 Calculate Checksum Without Code Composer Studio

	Figure 12. CKFA Calculating AppCode Checksum at Start-Up
	Figure 13. Overview of CKFA File Processing
	Example 10. Expected Checksum Used by CKFA – Example_Flash281x_API.c
	Example 11. PLL Setting Defined in Example281x_Flash281x_API.h
	Example 13. Specifying 64 KW or 128 KW Flash Range for CKFA
	3.2.4.1 Use Code Composer Studio to Rebuild CKFA Software
	3.2.4.2 CKFA’s Code Composer Studio Project Details

	Figure 14. CKFA’s Code Composer Studio Project
	3.2.4.3 Generating CKFA.bin From Code Composer Studio

	Figure 15. CKFA Project Build Options – Final Build Steps
	Example 14. CKFA_COFF2BIN.bat
	Example 15. CKFA_hex.cmd
	Example 16. CKFA.bin (Binary Reader), Binary Output From HEX2BIN.exe

	3.3.1 Configuring F281x Target Board for SCI-A Boot Option
	Table 1. Boot Mode GPIO Pins
	Table 2. F2812 eZdsp Jumper Settings
	3.3.2 Configuring Serial Communication Hardware
	3.3.3 Configuring Serial Connection Software (PC)
	Figure 16. HyperTerminal Communications Configuration
	Figure 17. Echoed Character From F2812 SCI Auto-Baud Logic

	3.4 Flash Programming Procedure
	3.4.1 Transfer CKFA Software
	Figure 18. HyperTerminal - CKFA Software Ready to Update F281x Baud-Rate
	Figure 19. HyperTerminal - CKFA Transfer Failure Due to a Locked F281x
	Figure 20. HyperTerminal - CKFA Checksum Determines Flash is Not Erased
	Figure 21. HyperTerminal - CKFA Software is Ready to Transfer and Program Application Code
	Figure 22. HyperTerminal - CKFA Software Has Transferred and Programmed Application Code

	4 Flash Program Timing Results
	Table 3. Flash Parameters at 150-MHz SYSCLOUT (1)
	4.2 ICT to F281x Target Board
	4.2.1 Methodology
	Figure 23. Block Diagram of Flash Programming From ICT to F2810 Target Board
	Figure 24. Photo of Emulated ICT to F281x Target Board
	4.2.2.1 Baud-Rate Settings for CKFA Transfer From EICT to F281x Target

	EICT:
	Target:
	4.2.2.2 Baud-Rate Settings for AppCode Transfer From EICT to F281x Target

	EICT:
	Target:
	4.2.3 ICT Flash Programming Procedure
	4.2.3.1 Connecting PC to Emulated ICT

	Table 4. Link Research RS-232 Board Connections to EICT (F2812 eZdsp)
	4.2.3.2 Connecting Emulated ICT to F281x Target Board

	Table 5. Link Research RS-232 Board Connections to EICT (F2812 eZdsp)
	4.2.3.3 Prepare Emulated ICT Software
	4.2.3.4 Lock Baud Rate Between PC and Emulated ICT

	Figure 25. Emulated ICT Ready for CKFA Transfer From PC
	4.2.3.5 Transfer CKFA and AppCode From PC to Emulated ICT RAM

	Figure 26. Emulated ICT Ready for AppCode Transfer From PC
	4.2.3.6 Lock Baud Rate Between Emulated ICT and F281x Target Board’s Boot ROM Code

	Figure 27. Emulated ICT Ready to Start F281x Target Procedure
	4.2.3.7 Transfer CKFA From Emulated ICT to F281x Target Board

	Figure 28. Preparing the Memory Window for Target Board Response Messages
	Figure 29. CKFA Transfer From Emulated ICT to Target Board Successful
	4.2.3.8 Lock in New Maximum Baud-Rate

	Figure 30. CKFA Baud-Rate Relocked to Emulated ICT at 1.875 Mbps
	4.2.3.9 Transfer AppCode From Emulated ICT to F281x Target Board

	Figure 31. AppCode Flash Programming on Target Board Successful

	5 References

	spraaq2
	Appendix A TMS320F281x Memory Maps
	A.1 F2812 Memory Map
	A.2 F2810 Memory Map

	SPRAAQ2
	Appendix B TMS320F281x Flash Sectors
	B.1 Addresses of Flash Sectors in F2812 and F2811
	Table B-1. F2812 and F2811 Flash Sector Addresses

	B.2 Addresses of Flash Sectors in F2810
	Table B-2. F2810 Flash Sector Addresses

	Appendix C 8-Bit Data Stream Expected by Boot ROM SCI-A
	C.1 TMS320C28x Assembly Language Tools User’s Guide
	Table C-1. LSB/MSB Loading Sequence in 8-Bit Data Stream
	Table C-1. LSB/MSB Loading Sequence in 8-Bit Data Stream (continued)

	Appendix D Hex-Conversion File Formats
	D.1 Intel
	Figure D-1. Intel MCS86 Hexadecimal Object Format

	D.2 Motorola
	Figure D-2. Motorola-S Object Format

	Appendix E Software Flowcharts
	E.1 CKFA
	Figure E-1. CKFA Flowchart A
	Figure E-2. CKFA Flowchart B
	Figure E-3. CKFA Flowchart Through ESTOP

	E.2 SCI Block Processing
	Figure E-4. SCI Block Processing Flowchart

	Appendix F CKFA Linker and HEX2000 MAP Files
	F.1 CKFA Linker Command File
	F.1.1 File Description – CKFA.cmd
	Example F-1. CKFA.cmd
	Example F-1. CKFA.cmd (continued)

	F.3 CKFA HEX2000 MAP File – 8-Bit SCI Boot Format

	Appendix G Example Software – File Listing and Descriptions
	G.1 Directory Structure and File Listing
	Table G-1. Directory Structure Used in This Application Report
	Table G-2. CKFA Files Used in This Application Report
	Table G-3. AppCode Files Used in This Application Report
	Table G-4. EICT Files Used in This Application Report
	Table G-5. FileIOShell Files Used in This Application Report
	IMPORTANT NOTICE

