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ABSTRACT
Video signals captured directly from charge-coupled device (CCD) cameras naturally
have interlaced effects and are in a 4:2:2 interleaved format. They typically need to be
converted to a 4:2:0 planar format before being encoded because most video
compression standards accept input only in 4:2:0 format. It is better to reduce or
remove the interlaced artifacts in the original video signal when feeding it to a
progressive encoder because these artifacts degrade visual quality and increase video
encoder loading.

This application report describes how to do simple de-interlacing and a YUV 4:2:2 to
4:2:0 color format conversion on the TMS320DM6446 using the resizer hardware
through the use of two examples. The first one performs the de-interlacing operation on
input video frames in 4:2:2 format at National Television System Committee (NTSC)
standard definition resolution and generates de-interlaced output at the same format
and resolution. The second one combines the de-interlacing operation with a 4:2:2 to
4:2:0 conversion to generate the 4:2:0 format output at a 4CIF resolution.

The purpose of this application report is to show how to use the existing hardware (the
resizer on TMS320DM6446) to fully remove interlaced artifacts in the captured video
signal and offload the 4:2:2 to 4:2:0 conversion task from the DSP. Because the resizer
was not designed specifically for de-interlacing purposes, the de-interlacer being
implemented uses a simple, non-ideal algorithm. The provided examples have their
usages in applications when a perfect, yet expensive, de-interlacer is not required. This
is especially true when DSP millions instructions per second (MIPS) need to be saved
by offloading the 4:2:2 to 4:2:0 conversion and de-interlacing operations to some other
hardware. In fact, such a method for achieving de-interlacing can at times provide
quality that is at par or even better than some high-quality, high-complexity
de-interlacing algorithms after video compression is taken into account.

Note: The source code released with this application report assumes that
Codec Engine 1.x is being deployed. Memory_getPhysicalAddress()
has become an unsupported Codec Engine API for CE 2.0 and higher.
If you are using CE 2.x and higher, replace it with the more powerful,
and supported Memory_getBufferPhysicalAddress() API.

This application report contains project code that can be downloaded from this link.
http://www-s.ti.com/sc/techlit/sprc374.gz
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Video signal captured directly from CCD cameras has interlaced effects and is in a 4:2:2 interleaved
format. It typically needs to be converted to a 4:2:0 planar format before being encoded because most
video compression standards accept input only in a 4:2:0 format. Interlaced artifacts in the original video
signal are better to be reduced or removed when feeding it to the encoder because those artifacts not only
downgrade the video’s visual quality but also increase the video encoder loading.

This application report describes how to use the resizer hardware in the TMS320DM6446 processor to do
a 4:2:2 to 4:2:0 color format conversion and de-interlacing. Two examples are provided.
• The first one performs the de-interlacing operation on the input video frames in 4:2:2 format at NTSC

standard definition resolution (NTSC SD) and generates de-interlaced output at the same format and
resolution.

• The second one combines the de-interlacing operation with a 4:2:2 to 4:2:0 conversion to convert each
4:2:2 format, NTSC standard resolution input frame to an output frame in 4:2:0 format at 4CIF
resolution (704×480).

The purpose of this application report is to show how to use an existing hardware module, the resizer in
TMS320DM6446, to remove interlaced artifacts in the captured video signal and convert them to an
encoder friendly format to save DSP MIPS. Because the the resizer was specifically designed for video
resolution scaling purpose but not for de-interlacing, the de-interlacer being implemented here is simple
from an algorithm perspective. It basically discards every odd row in the original video frame and
re-interpolates it using neighboring even rows. The provided examples have their usages in the
applications when a perfect yet expensive de-interlacer is not required but DSP MIPS need to be saved by
offloading the 4:2:2 to 4:2:0 conversion and de-interlacing operations to some other hardware. One usage
case might be applying it before a low bit rate encoder. In this case, a high-quality de-interlacer is overkill
because much detailed information in the input video frame is lost after compression. For applications
demanding a high-quality de-interlacer, more complicated algorithms need to be implemented by software.

In the rest of the section, some background knowledge is introduced. Section 2 describes the
de-interlacing and 4:2:2 to 4:2:0 conversion algorithms. Section 3 describes the implementation details.
Section 4 serves as the user's guide for the provided examples. Section 5 provides references.

Linux is a registered trademark of Linux Torvalds in the U.S and/or other countries.
All other trademarks are the property of their respective owners.
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1.1 Video Signal Captured From CCD Camera
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1.2 YUV 4:2:0 Planar Data for Video Encoder
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The video frames captured from a CCD camera are in standard resolution. The American NTSC standard
definition (NTSC SD) resolution is 720 pixels per row, 480 pixels per column, and 30 frames per second.
The European PAL standard definition (PAL SD) resolution is 720 pixels per row, 576 pixels per column,
and 25 frames per second. In this document, we assume the input video signal is in NTSC SD resolution.

The information for each pixel contains three components:
• Y, which is the luminance (luma) information
• Cb (U), which is the blue color information
• Cr (V), which is the red color information

Because human eyes are more sensitive to luminance but less sensitive to color information, the
standards define that color components (chroma) are down-sampled by half horizontally in the captured
video signal. Thus, for a NTSC SD CCD camera, each captured frame has 720×480 Y values, 360×480 U
values, and 360×480 V values. Each value is 8 bits (a byte) in range [0, 255], which makes each NTSC
SD frame (720+360+360) × 480 = 691200 bytes.

The Y/U/V components in the captured frame are typically interleaved. They usually are called YUV 4:2:2
interleaved format, or simply 4:2:2 format. Figure 1 and Figure 2 show two typical organizations, where
Y/U/Vi,j means the Y/U/V component on row i and column j. The examples shown in the document
assume the input data are organized as Figure 2.

Figure 1. YUYV Interleaved 4:2:2 Data

Figure 2. UYVY Interleaved 4:2:2 Data

Most video compression standards require the input video frames to be in YUV 4:2:0 format. There are
two distinctions between 4:2:2 interleaved data and 4:2:0 planar data.
• The chroma information is down-sampled vertically further by another half. That is, for each NTSC SD

frame, U or V components each contain 360×240 bytes. Thus, for each NTSC SD frame in 4:2:0
format, the total size is 720×480 + 360×240×2 = 518400 bytes. The video compression standards
require chroma to be down-sampled further so the encoders have less data to process while
maintaining acceptable visual quality for human eyes.

• Efficient implementations of video compression standards further require that luma and chroma
components are separated in memory because the encoding algorithms may process them in different
ways.
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1.3 Interlaced Artifacts
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Figure 3 shows the NTSC SD video frame in 4:2:0 planar format.

Figure 3. YUV Planar 4:2:0 Data

When the NTSC/PAL standard was being defined, hardware and bandwidth constraints required individual
frames to be captured as two separate shots. A video frame is divided in odd/even fields, and each shot
captures the odd/even rows. The two fields are then merged together to form a complete frame. For NTSC
standard where video frames are captured at 30f/s, the start time between two sequential shots is 16.67
ms. For PAL standard, the corresponding interval is 20 ms. Such a solution creates interlaced artifacts
when there are fast motion activities in the video scenes to be captured.

Figure 4 shows how interlaced artifacts are created. Suppose in the video scene there is a rectangular
object moving horizontally in the right direction. The odd field captures the rectangular at position 1. Later
the even field captures the rectangular at the position that is slightly right-shifted compared to position 1.
When these two fields are merged, the vertical edges of the rectangular are no longer smooth but show
the saw-tooth effect. Such artifacts created by capturing a moving video object at different shots are called
interlaced artifacts.

Figure 4. Interlaced Effects

Interlaced artifacts not only downgrade visual quality, but since they are represented as high-frequency
noise, they prove to be particularly challenging for progressive video encoders.
• Human eyes are more sensitive to low-frequency information and much less sensitive to

high-frequency information. Therefore, removing some high-frequency information in the original frame
when encoding the video can maintain acceptable visual quality.

• In many cases, for each 16×16 or 8×8 block in a video frame, we can find a similar or even identical
block in a neighboring frame because adjacent video frames contain correlated information. Therefore,
when encoding a block in a frame, it is a good idea to find a similar or identical block in the previously
coded frame, and code only the delta between them to achieve a high-compression ratio. In most
video compression standards, a motion estimation (ME) module is defined for this purpose.
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1.4 Resizer Hardware in TMS320DM6446
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In the worst case, interlaced artifacts can appear in almost every 16×16 or 8×8 block in video frames
capturing high amounts of motion activities. When encoding a block, such high-frequency noises can
cause the progressive-based ME module difficulties or even failures in finding the similar block in the
previous coded frame, which makes the delta bigger and increases the number of bits to encode it. To
make it worse, many bits are wasted to encode the interlaced artifacts that are supposed to be removed.
Therefore, it is a good idea to reduce or remove the interlaced artifacts in the captured frame before
feeding it to a progressive video encoder.

There is a resizer hardware module in the video processing sub-system (VPSS) of the TMS320DM6446
processor for the purpose of resizing an uncompressed video frame. Figure 5 is the high-level block
diagram of the resizer.

Figure 5. Resizer in TMS320DM6446

The resizer module can accept input image/video data from either the preview engine or external memory.
The output of the resizer is sent to external memory. The resizer module is programmable via its registers
that are accessible by a host processor (ARM core in TMS320DM6446). The following features are
supported by the resizer module.
• Maximal output width of 1280 horizontal pixels
• Output width must be 32-byte aligned
• Support from 1/4× to 4× scaling in each direction (horizontal and vertical). The scaling factor is

independent for each direction.
– For 1/4x to 1/2x scaling, 4 7-tap filters are used that each filter represents phase 0, 0.25, 0.5, and

0.75, respectively. The total number of effective coefficients is 28.
– For 1/2x to 4x scaling 8 4-tap filters are used that each filter represents phase 0, 0.125, 0.25,

0.375, 0.5, 0.625, 0.75, and 0.875, respectively. The total number of effective coefficients is 32.
• All the filter coefficients are programmable.
• Programmable luminance sharping (enhancement).

The resizer performs horizontal resizing, then vertical scaling. Between these scalings, a luminance
enhancement feature is optional. Because vertical adjacent pixels are not contiguous in physical memory,
they are placed contiguously in a line buffer for processing to achieve higher efficiency.
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2 De-Interlacing and YUV 4:2:2 to 4:2:0 Conversion Algorithm

2.1 Interlacing History
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The resizer needs to be configured correctly before performing image scaling. The following are important
parameters for configuration purpose.
• in_hsize/out_hsize, which is the width (horizontal size) of the input/output frame. Due to hardware

constraints, the scaling ratio is roughly but NOT exactly equal to out_hsize/in_hsize. That is, if in_hsize
= 720 and out_hsize = 360, the actual scaling factor recognized by the resizer is not exactly equal to
360/720 = . To make exactly 1/2× scaling, in_hsize needs to be adjusted to 720 + delta. The exact
value of delta is calculated by some internal mathematical equations in the resizer and is not explained
in this document. However, it can be obtained using an offline utility program, which will be released
with the production version of the resizer driver.

• in_vsize/out_vsize, which is the height (vertical size) of the input/output frame. Again, the scaling ratio
is roughly but NOT exactly equal to out_vsize/in_vsize. The delta amount to adjust in_vsize can be
calculated using the utility program provided with the resizer driver.

• in_pitch, which defines the start point of each row of the input frame. Let X represents the start
address of row N, then the start address of row N+1 is X + in_pitch.

• inptyp and pix_fmt, which define the input frame format.
– For 4:2:0 planar format, inptype = RSZ_INTYPE_PLANAR_8BIT and pix_fmt =

RSZ_PIX_FMT_PLANAR.
– For 4:2:2 interleaved format organized as Figure 1 (YUYV), inptype =

RSZ_INTYPE_YCBCR422_16BIT and pix_fmt = RSZ_PIX_FMT_YUYV.
– For 4:2:2 interleaved format organized as Figure 2 (UYVY), inptype =

RSZ_INTYPE_YCBCR422_16BIT and pix_fmt = RSZ_PIX_FMT_UYVY.
• hfilter_coeffs[0:31], which define the horizontal filter coefficients.

– For 1/4x to 1/2x scaling where 4 7-tap filters are used, hfilter_coeffs[ i×8 + 0, …, i×8 + 6] (i=0,1,2,3)
correspond to filter taps for phase 0.25×i. For example, hfilter_coeffs[0, 1, …, 6] are the 7 taps for
phase 0 filter. hfilter_coeffts[7, 15, 23, 31] are not used.

– For 1/4x to 1/2x scaling where 8 4-tap filters are used, hfilter_coeffs[ i×4 + 0, …, i×4 + 3] (i=0, …, 7)
correspond to filter taps for phase 0.125×i. For example, hfilter_coeffs[0, 1, 2, 3] are the 4 taps for
phase 0 filter.

• vfilter_coeffs[0:31] which define the vertical filter coefficients. They are organized in the same way as
hfilter_coeffs.

The filter coefficients are in Q8 format and in the range [-256, 256]. A filter coefficient X set for the resizer
corresponds to the real number X/256, i.e., if a coefficient is set to 256 for the resizer, it is real value is
1.0.

For details on resizer module in TMS320DM6446, please refer to TMS320DM644x DMSoC Video
Processing Front End (VPFE) User's Guide (SPRUE38) and TMS320DM6446 Digital Media
System-on-Chip (SPRS283).

The use of interlace capture and interlace display of video signals originated from the need to conserve
bandwidth in the early 20th century. The idea was to capture, transmit, and display only half a frame every
60th of a second, rather than a full frame. This is achieved by capturing (and displaying) even and odd
scanlines in an alternating pattern at approximately 60 fields per second. Therefore, de-interlacing
involves recreating missing fields that were never captured in the first place and as a result is inherently
not an exact science.
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2.2 Front-End vs. Back-End De-Interlacing

2.3 De-Interlacing Methods

www.ti.com De-Interlacing and YUV 4:2:2 to 4:2:0 Conversion Algorithm

The need for de-interlacing video arises for two main reasons. First, de-interlacing is required when
interlaced video content is displayed on a progressive video display. De-interlacing also is required when
interlaced video content is compressed using a progressive video encoder. The quality needs for the
former are typically much higher than that of the later. This is based on whether de-interlacing is
performed before or after video compression. Therefore, there are many different ways to perform
de-interlacing, each with their own level of algorithmic complexity and computational requirements. The
choice of which method to use is often determined by the needs of the application, required video quality,
and available resources.

A progressive frame is one that consists of all lines within the frame being captured at the same time
instance. For example, a 480p30 sequence is made of 30 progressive frames captured each second.
Each individual frame is made up of 480 lines of video that were all captured at the same time instance. A
simple way to think of this is that each progressive frame is just a 480-lined picture captured every 1/30th
of a second. In contrast, in an interlaced scheme, video frames are composed as a combination of two
alternating fields that are from different time instances. For example, a 480i60 sequence consists of 60
interlaced fields captured each second. Each video frame is composed of a top field of 240 lines and a
bottom field of 240 lines. The top field consists of only even rows of the frame while the bottom field
consists of only odd rows of the frame. Each top and bottom pair of fields that create an interlaced frame
is captured at a 1/60th of a second interval apart from each other.

In an interlaced frame, there is often a strong temporal correlation between a missing field and its
neighboring co-located fields. In other words, although a bottom field at t = 33.3 ms might not have been
captured, it potentially has a strong correlation with the bottom fields that were captured at t = 16.7 ms
and t = 50.0 ms. In addition to co-located fields, a missing bottom field at t = 33.3 ms also has a strong
spatial correlation with the captured top field at t=33.3 ms.

De-interlacing is simply the process of utilizing these two correlations to recreate fields that were never
captured. The different de-interlacing algorithms that convert interlaced frames into progressive frames
use different combinations of these two basic correlations. Some methods rely solely on spatial
correlations while others rely on temporal correlations. More sophisticated de-interlacing algorithms use a
combination of the two correlations within a single frame. The most intelligent and computationally
expensive algorithms use such a combination after extensive analysis of the current and neighboring
frames.

Typically for areas with minimal motion, temporal correlation is quite high. In fact, in areas with no motion
at all, the correlation is 100%. However, for areas of a frame with moderate to severe motion, high
temporal correlation is achieved only when motion is compensated for. Otherwise, co-located fields often
become of little use in generating a missing field. The motion compensation needed to make use of
temporal correlations within scenes containing motion requires algorithms that can range from 15-40% of
typical DSP loadings of video compression algorithms.

In contrast, high spatial correlation between a missing field and an available opposite field has less to do
with motion and more to do with the level of spatial detail within a frame. Candidate frames with high
spatial detail (i.e., high-frequency content) are more susceptible to degradation when utilizing spatial
correlations between fields. Conversely, frames with less spatial detail are less vulnerable to such loss of
quality.

Therefore, a simple spatial correlation based method discards an entire set of fields and uses only
information from the remaining field to generate the missing data. For example, in the case of 480i60,
discarding all bottom field data would yield a 240p30 video. The remaining 240p30 data is then resized
vertically by a factor of 2X to generate a 480p30 de-interlaced result. Although this method removes 100%
of all interlacing artifacts, the disadvantage from this approach is the loss of vertical fidelity.
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2.4 Other Alternate Approaches

2.5 4:2:2 to 4:2:0 Conversion Algorithm

3 Implementation Details

3.1 Implementing a De-Interlacer Alone

Implementation Details www.ti.com

Such a loss of vertical fidelity can be drastic in some cases; however, the consequence is not always dire.
The viability of such a route depends on several factors. If such a de-interlacing method is used to convert
high-quality interlaced video into progressive video for immediate progressive display, the approach may
prove to be less than satisfactory. Instead, such an approach may be adequate when used as a
pre-processing step before progressive compression, This is based on the fact that lossy video
compression algorithms, especially at low bitrates, typically discard high frequencies. Depending on the
source content, video quality, and compression needs of the application, such a method for achieving
de-interlacing can at times prove to be at par with some high-quality, high-complexity de-interlacing
algorithms after compression is taken into account.

In addition to generating compressed video at reasonable quality for certain applications, such an
approach is also low on the range of computational complexity for the various de-interlacing algorithms. In
fact, many DSPs (including DM6446) incorporate hardware resizers that can facilitate such an approach at
no expense to DSP loading. Achieving reasonable quality de-interlacing without consuming DSP cycles
makes such an approach highly attractive for certain applications. This is especially true when the DSP
cycles saved can be alternately used to further enhance compression quality. Using DSP cycles for
software based de-interlacing instead of using an available hardware resizer typically has a marginal
impact on the quality of compressed video. Allocating those same cycles to further enhance video
compression algorithms can, however, often have a significant impact on the compressed video quality.

An alternate approach, would be to discard a field, encode 240p30, and rescale vertically by 2X back to
480p30 on the decode side. Because only half the data is being encoded, such an approach can be used
either as a means to conserve bandwidth or to freely allocate up to twice as many bits to a given frame (in
an attempt to achieve much higher quality). Another alternative is to use an interlaced-based video
encoder (such as MPEG-4 advanced simple profile), encode 480i60, and perform the de-interlacing on the
decode side as well. Both approaches, however, perform the de-interlacing step on decompressed video
content rather than on original source content. De-interlacing always yields better results when performed
on original source content rather than on decompressed content. This is because the addition of
compression artifacts in these methods reduces spatial and temporal correlation levels. Therefore, great
care must be taken to ensure satisfactory video quality when using either of these alternate approaches.

Yet another approach involves de-interlacing an image when the source video requires a downscaling
operation. Converting a 480i60 video sequence into a 352×240p30 would be one example of such a case.
With this scenario, the optimal approach would be to discard an entire field and only downscale the
remaining field horizontally. Doing so provides a progressive video signal without any loss of additional
output vertical fidelity. The same approach can be used for other downscaling ratios.

Offloading a 4:2:2 to 4:2:0 conversion of the DSP enables DSP cycles to be utilized for computationally
expensive operations, such as video encoding or video analytics. The conversion entails vertically
down-sampling all chroma buffers by a factor of 2 and unpacking the video data from an interleaved to a
planar format. The vertical down-sampling can be achieved by using the DM6446 resizer in its intended
use. The unpacking can be achieved by using the resizer to perform horizontal down-sampling coupled
with specific filter coefficients that effectively mask out unwanted data. For example, because 4:2:2 data is
stored in a U1Y1V1Y2 format, scaling this data down by a factor of 2 with appropriate coefficients yields
Y1Y2. When applied to an entire row of 4:2:2 data, an entire row of 4:2:0 Y data is generated. A similar
approach can be used to individually unpack the U and V buffers as well.

The de-interlacing method presented in this application report is to remove every odd row in the original
image and re-interpolate them using the neighboring even row pixels. The drawback of this approach is
that it removes half of the information contained in the odd rows while performing de-interlacing. It is a
cheap but not perfect de-interlacer implemented on hardware to offload DSP processing.
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The input frame is assumed to be in a 4:2:2 interleaved format organized as Figure 2 (UYVY). The frame
resolution is NTSC SD or 720×480 pixels per frame. The output is in the same format and resolution.

The basic idea to make the resizer discard every odd row and re-interpolate them is illustrated in Figure 6.
We tell the resizer that the width of the input frame is 720 pixels but the pitch is twice as wide. That is,
in_hsize is set to 724 pixels, which is not exactly 720, as explained in Section 1.4. The parameter in_pitch
is set to (720+360×2)×2 = 2880 bytes. In this way, the resizer only performs horizontal scaling on even
rows in the left and discards the odd rows in the right. Further, we tell the resizer that the width of the
output frame is 720 pixels and output pitch is 1440 (720+360×2) bytes. Thus, the resizer is configured to
perform horizontal scaling at ratio 1:1, and adjacent output rows will be contiguous in memory.

The input and output vertical size is set to 244 and 480 pixels respectively so that resizer performs 1:2
up-scaling vertically. Again, in_vsize = 244 but not 240, as explained in Section 1.4.

Figure 6. De-Interlacing

Because the horizontal scaling is at ratio 1:1, only the 4-tap filter for phase 0 is used, that is, only
hfiter_coeffs[0, 1, 2, 3] are used. We do not intend to perform any filtering horizontally but want to keep
each value unchanged in the original frame; the values of hfilter_coeffs[0, 1, 2, 3] are set as follows.

hfilter_coeffs[0] = 256;

hfilter_coeffs[1] = hfitler_coeffs[2] = hfiter_coeffs[3] = 0;

The vertical scaling is performed at ratio 1:2, which means the phase 0 and phase 0.5 4-tap filters are
used. The phase 0 filter is applied to neighboring even rows in the input frame to generate even rows in
the output frame. Again, because we want to keep even row pixel values in the input frame unchanged,
vfilter_coeffs[0, 1, 2, 3] should be set as follows:

vfilter_coeffs[0] = 256;

vfilter_coeffs[1] = vfitler_coeffs[2] = vfiter_coeffs[3] = 0;

SPRAAK3B–December 2008 De-Interlacing and YUV 4:2:2 to 4:2:0 Conversion on DM6446 Using the Resizer 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAK3B


Implementation Details www.ti.com

The phase 0.5 filter is applied to neighboring even rows in the input frame to generate (re-interpolate) odd
rows in the output frame. The coefficients correspond to phase 0.5 filter are vfilter_coeffs[16, 17, 18, 19].
When interpolating an odd row, we give more weight to the two even rows next to the odd row to be
interpolated, and less weight to the other two even rows. Specifically, vfilter_coeffs[16, 17, 18, 19] are set
as follows, where 160 and -32 correspond to real value 0.625 and -0.125, respectively.

vfilter_coeffs[17] = vfilter_coeffs[18] = 160;

vfilter_coeffs[16] = vfitler_coeffs[19] = -32;

The following pseudo code shows how resizer is used to accomplish this task. The comments and
explanations to the pseudo code are embedded as the bold text.
inImageSize = 720*480*2; // input image size is in 422 interleaved format
outImageSize = inImageSize; // output image is in the same size

fin = fopen ( inputFileName, "rb" ); // open file containing input frames
fout = fopen ( outputFileName, "wb" ); // open file to write output frames to
// allocate a physically contiguous memory as input buffer and get its physical address
inBuf = Memory_contigAlloc( imageSize, Memory_DEFAULTALIGNMENT);
inBufPhyAddr = Memory_getPhysicalAddress(inBuf);
resize.in_buf.index = -1; // -1 means the buffer is user supplied
resize.out_buf.index = 0;
resize.in_buf.offset = inBufPhyAddr;

// Initialize resizer device and get its file descriptor
resizerFd = initResizerDevice();

// ask resizer device to allocate memory for output buffer
req_outbufs.size = outImageSize;
req_outbufs.buf_type = RSZ_BUF_OUT;
req_outbufs.count =1;
ioctl( resizerFd, RSZ_REQBUF, &req_outbufs );

// map the output buffers to user space. The user space buffer address is outBuffer
bufd.buf_type = RSZ_BUF_OUT;
bufd.index = 0;
ioctl( resizerFd, RSZ_QUERYBUF, &bufd);
outBuffer = (char*)mmap( 0, outImageSize, PROT_READ | PROT_WRITE,

MAP_SHARED, resizerFd, bufd.offset);
resize.out_buf.size = outImageSize;

// set size parameters for resizer, as explained before
params.in_vsize = 244;
params.in_hsize = 724;
params.out_hsize = 720;
params.out_vsize = 480;
params.out_pitch = 1440;
params.in_pitch = 2880;

// tell resizer the input frame is in 422 interleaved format
params.inptyp = RSZ_INTYPE_YCBCR422_16BIT;
params.pix_fmt = RSZ_PIX_FMT_UYVY;

params.yenh_params.type = RSZ_YENH_DISABLE; // disable the luminance enhancement module
// set starting pixel and phase information
params.vert_starting_pixel =0;
params.horz_starting_pixel =0;
params.hstph = 0;
params.vstph = 0;

// clear horizontal filter coefficients for safety
for ( i = 0; i < 32; I++ ) {
params.hfilt_coeffs[i] = 0;
params.vfilt_coeffs[i] = 0;

}

// set coefficient for phase 0 horizontal filter
params.hfilter_coeffs[0] = 256;

// set coefficient for phase 0 vertical filter
params.vfilt_coeffs[0] = 256;
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3.2 Implementing De-Interlacer With YUV 4:2:2 to 4:2:0 Conversion

3.2.1 De-Interlacing and Extracting Y Components

www.ti.com Implementation Details

// set coefficients for phase 0.5 vertical filter
params.vfilt_coeffs[16] = -32;
params.vfilt_coeffs[17] = 160;
params.vfilt_coeffs[18] = 160;
params.vfilt_coeffs[19] = -32;

// configures the resizer using the parameters
ioctl( resizerFd, RSZ_S_PARAM, &params );

// set the resizer speed to fastest
rszSpeed = 0;
rszError = ioctl( resizerFd, RSZ_S_EXP, &rszSpeed );

while ( !feof (fin ) ) {

// read a whole input frame. Otherwise, quit.
if ( inImageSize != fread( inBuf, 1, inImageSize, fin ) )
break;

// ask resizer to do de-interlacing
ioctl( resizerFd, RSZ_RESIZE, &resize );

// write the de-interlaced frame to output file
fwrite( resizedBuffer, 1, outImageSize, fout );

}

This example explains how to combine the de-interlacing operation with the 4:2:2 to 4:2:0 conversion
operation. For each input frame in 4:2:2 interleaved format, the resizer needs to be called 3 times to
generate the de-interlaced output frame in 4:2:0 planar format, which means 3 sets of configuration
parameters need to be maintained. This is because the 4:2:2 to 4:2:0 conversion needs to extract YUV
values being interleaved together into 3 separate planes while the resizer hardware is not able to do that
in 1 pass. Again, we assume the input frame is in NTSC SD resolution and UYVU 4:2:2 format. The output
frame is in 4CIF resolution (704×480) instead of NTSC SD resolution (720×480). In the example provided,
the right 16 columns in the input frame are cut due to the 32-byte output alignment limitation of the resizer.
Alternately, 8 columns from the right and 8 columns from the left could have been cropped. The detailed
explanation is shown below.

The first call is to extract all the Y components in the input frame and perform de-interlacing on them. The
idea is illustrated in Figure 7. Y components in every odd row need to be removed and re-interpolated
using Y components in neighboring even rows. Again, in_pitch is set to 2880 bytes, in_vsize is set to 244,
and out_vsize is set to 480 as before. Vertically, the scaling ratio is still 1:2.

Ideally we want to the width of the output Y plane to be 720 bytes, which unfortunately is not 32-byte
aligned. The compromise is to make the output width 704 (out_hsize=704), which requires the right 16
columns to be removed.

An additional concern is to make sure that the interleaved U/V data does not interfere with generating the
de-interlaced Y output. The solution is to tell the resizer to treat the input frame as a image in 4:2:0
plannar format ( inptye = RSZ_INTYPE_PLANAR_8BIT, pix_fmt = RSZ_PIX_FMT_PLANAR). Then we tell
the resizer to perform 2:1 scaling horizontally to extract every other Y component in the input frame. Thus,
in_hsize is set to 1414 bytes, which is not exactly 704×2=1408, as explained in Section 1.4.
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Figure 7. De-Interlacing + 4:2:2 to 4:2:0 Conversion: 1st Call for Y

Phase 0 and 0.5 4-tap filters are used for vertical scaling ratio at 1:2. The phase 0 filter is applied to Y
components in neighboring even rows in the input frame to generate Y components of even rows in the
output frame. vfilter_coeffs[0,1,2,3] should be set as following to keep Y values in even rows unchanged.

vfilter_coeffs[0] = 256;

vfilter_coeffs[1] = vfitler_coeffs[2] = vfiter_coeffs[3] = 0;

The phase 0.5 filter is applied to Y components in neighboring even rows in the input frame to generate
(re-interpolate) Y components of odd rows in the output frame. The coefficients correspond to phase 0.5
filter are vfilter_coeffs[16, 17, 18, 19]. Again, we give more weight to the two even rows next to the odd
row to be interpolated, and less weight to the other two even rows. Specifically, vfilter_coeffs[16, 17, 18,
19] are set as follows, where 160 and -32 correspond to real value 0.625 and -0.125. respectively.

vfilter_coeffs[17] = vfilter_coeffs[18] = 160;

vfilter_coeffs[16] = vfitler_coeffs[19] = -32;

Only the phase 0 4-tap filter is used for horizontal downscaling at ratio 2:1. hfilter_coeffs[0, 1, 2, 3] are set
as follows to extract every Y component after U/V component.

hfilter_coeffs[1] = 256;

hfilter_coeffs[0] = vfitler_coeffs[2] = vfiter_coeffs[3] = 0;

Note: If the input frame is in YUYV (instead of UYVY) 4:2:2 interleaved format, then
hfitler_coeffs[0]=256 and hfilter_coeffs[1] = hfilter_coeffs[2] = hfilter_coeffs[3] = 0.
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3.2.2 Extract and Down-Sample U Components Vertically
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The U components in a 4:2:2 interleaved format have been horizontally down-sampled by a ratio of 2:1
with respect to the Y component. To generate the output frame in a 4:2:0 planar format, they need to be
extracted and further down-sampled vertically by a ratio of 2:1. As a result, the de-interlacing operation
does not need to be applied to U components. This is because down sampling vertically by a ratio of 2:1
involves discarding all the odd rows, which automatically generates progressive U components.

The idea is illustrated in Figure 8. Because the output width for Y components has to be 704 due to the
32-byte output alignment limitation of the resizer, the output width for the U and V components should be
352. To extract every U component in the input frame, we tell the resizer to treat the input frame as a
image in 4:2:0 plannar format (inptye = RSZ_INTYPE_PLANAR_8BIT, pix_fmt =
RSZ_PIX_FMT_PLANAR). Then we configure it to perform horizontal down-scaling at 1:4 ratio to extract
every U component. Therefore, in_pitch is set to 720×2 = 1440 bytes, in_hsize is set to 1412 bytes, and
out_hsize is set to 352 bytes. Again, in_hsize is not exactly 704×2=1408, as explained in Section 1.4.

Figure 8. De-Interlacing + 4:2:2 to 4:2:0 Conversion: 2nd Call for U

To perform horizontal downscaling at ratio 1:4, the phase 0 7-tap horizontal filter is used. They are set as
follows to keep the U values unchanged.

hfilter_coeffs[0] = 256;

hfilter_coeffs[1] = vfitler_coeffs[2] = vfiter_coeffs[3] =

hfilter_coeffs[4] = vfitler_coeffs[5] = vfiter_coeffs[6] = 0;

Note: If the input frame is in YUYV (instead of UYVY) 4:2:2 interleaved format, then
hfitler_coeffs[1]=256 and other coefficients are zeros.

To perform vertical downscaling at ratio 2:1, in_vsize is set to 484 and out_vsize is set to 240. in_vsize is
not exactly 480, as explained in Section 1.4.
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3.2.3 Extract and Down-Sample V Components Vertically

3.2.4 Pseudo Code

Implementation Details www.ti.com

The phase 0 4-tap filter is used to perform vertical 2:1 down scaling. To keep the U values in even row
unchanged and remove U values in every odd row, vfilter_coeffs[0,1,2,3] are set as follows.

vfilter_coeffs[0] = 256;

vfilter_coeffs[1] = vfitler_coeffs[2] = vfiter_coeffs[3] = 0;

The operation on V components is similar to that on U components. The only difference is that
hfilter_coeffs[0, 1, 2, 3, 4, 5, 6] need to be set as follows to extract the V components in the input frame.

hfilter_coeffs[2] = 256;

hfilter_coeffs[0] = vfitler_coeffs[1] = vfiter_coeffs[3] =

hfilter_coeffs[4] = vfitler_coeffs[5] = vfiter_coeffs[6] = 0;

Note: If the input frame is in YUYV (instead of UYVY) 4:2:2 interleaved format, then
hfitler_coeffs[3]=256 and other coefficients are zeros.

The following is the pseudo code showing how to use resizer to perform de-interlacing and 4:2:2 to 4:2:0
conversion. The explanations and comments are embedded as bold text.
inImageSize = 720*480*2; // input frame is NTSC SD resolution, 422 format
outImageSize = 704*480; // output size for Y plane

fin = fopen (inputFileName, "rb" ); // open file containing input video frames
fout = fopen ( envp->videoOutFile, "wb" ); // open file to write output frames to
// allocate a physically contiguous memory as input buffer and get its physical address
inBuf = Memory_contigAlloc( imageSize, Memory_DEFAULTALIGNMENT);
inBufPhyAddr = Memory_getPhysicalAddress(inBuf);
for ( i = 0; i < 3; i++ ){
resize[i].in_buf.index = -1; // -1 means the buffer is user supplied
resize[i].in_buf.offset = inBufPhyAddr;

}

// Initialize resizer device, get 3 file descriptors corresponding to Y, U, V operation
for ( i = 0; i < 3; i++ ) {
resizerFd[i] = initResizerDevice();

}

// ask resizer to allocate contiguous memory as output buffer for Y, U, V plane
req_outbufs[0].size = outImageSize;
req_outbufs[1].size = outImageSize>>2; // size of U and V plane is 1/4x of Y plane
req_outbufs[2].size = outImageSize>>2;
for ( i = 0; i < 3; i++ ) {
req_outbufs[i].buf_type = RSZ_BUF_OUT;
req_outbufs[i].count = 1;
ioctl( resizerFd[i], RSZ_REQBUF, &req_outbufs[i] );
bufd[i].buf_type = RSZ_BUF_OUT;
bufd[i].index = 0;
ioctl( resizerFd[i], RSZ_QUERYBUF, &bufd[i] );

}

// map output buffers to user space, buffer address for component i is outBuffer[i]
outBuffer[0] = (char*)mmap( 0, outImageSize, PROT_READ | PROT_WRITE,

MAP_SHARED,resizerFd[0], bufd[0].offset );
outBuffer[1] = (char*)mmap( 0, outImageSize>>2, PROT_READ | PROT_WRITE,

MAP_SHARED,resizerFd[1], bufd[0].offset );
outBuffer[2] = (char*)mmap( 0, outImageSize>>2, PROT_READ | PROT_WRITE,

MAP_SHARED,resizerFd[2], bufd[0].offset );
resize[0].out_buf.size = outImageSize;
resize[1].out_buf.size = resize[2].out_buf.size = outImageSize>>2;
for ( i = 0; i < 3; i++ ){
resize[i].out_buf.index = 0; // index != -1 means it is allocated by resizer

}
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// clear filter coefficients for safety
for ( i = 0; i < 3; i++ ) {
for ( j = 0; j < 32; j++ ) {
params[i].hfilter_coeffs[j] = 0;
params[i].vfilter_coeffs[j] = 0;
}

}

// set params which are common for Y, U, V
for ( i = 0; i < 3; i++ ) {
// tell resizer to treat input frame as 420 planar format so that operation is 8bit based
params[i].inptyp = RSZ_INTYPE_PLANAR_8BIT;
params[i].pix_fmt = RSZ_PIX_FMT_PLANAR;

params[i].yenh_params.type = RSZ_YENH_DISABLE; // disable Y enhancement module

params[i].cbilin = 0;
params[i].vert_starting_pixel =0;
params[i].horz_starting_pixel =0;
params[i].hstph = 0;
params[i].vstph = 0;
params[i].yenh_params.gain = 0x7f;
params[i].yenh_params.slop = 0x7f;
params[i].yenh_params.core = 0;

}

// set params specific for Y component
params[0].in_vsize = 244;
params[0].in_hsize = 1414;
params[0].out_hsize = 704;
params[0].out_vsize = 480;
params[0].out_pitch = 704;
params[0].in_pitch = 2880;
params[0].hfilt_coeffs[1] = 256; // extract Y from input frame
params[0].vfilt_coeffs[1] = 256; // keep Y values in even rows unchanged
params[0].vfilt_coeffs[16] = -32; // re-interpolate Y values in odd rows using this filter
params[0].vfilt_coeffs[17] = 160;
params[0].vfilt_coeffs[18] = 160;
params[0].vfilt_coeffs[19] = -32;

// set params specific for U, V
for ( i = 1; i < 3; i++ ) {
params[i].in_pitch = 1440;
params[i].out_hsize = 352;
params[i].out_vsize = 240;
params[i].out_pitch = 352;
params[i].in_vsize = 484;
params[i].in_hsize = 1412;

}
params[1].hfilt_coeffs[0] = 256; // extract U from input frame
params[2].hfilt_coeffs[2] = 256; // extract V from input frame
params[1].vfilt_coeffs[0] = 256; // keep U values in even rows unchanged
params[2].vfilt_coeffs[0] = 256; // keep V values in even rows unchanged
// configure the 3 resizer instances using the params
for ( i = 0; i < 3; i++ ) {
ioctl ( resizerFd[i], RSZ_S_PARAM, &params[i] );

}

// set resizer speed to fastest. Since it is a device based parameter instead of a file
// descriptor based parameter, calling it once is enough
rszSpeed = 0;
ioctl( resizerFd[0], RSZ_S_EXP, &rszSpeed );

while ( !feof (fin ) ) {

// keep reading a whole input frame. Quit if not.
if ( inImageSize != fread( inBuf, 1, inImageSize, fin );
break;

// calling resizer 3 times to do de-interlacing and 422 to 420 conversion
for ( i = 0; i < 3; i++ ) {
ioctl( resizerFd[i],RSZ_RESIZE,&resize[i]);
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4 Example User's Guide

4.1 Package Contents

4.2 How to Run

Example User's Guide www.ti.com

}

// write Y, U, V plane output to file
fwrite( resizedBuffer[0], 1, outImageSize, fout );
fwrite( resizedBuffer[1], 1, outImageSize>>2, fout );
fwrite( resizedBuffer[2], 1, outImageSize>>2, fout );

}

Note: The Memory_getPhysicalAddress() is an obsolete CE 1.xx API. For CE 2.00 and later users,
call Memory_getBufferPhysicalAddress() instead of Memory_getPhysicalAddress().

sprc374.gz is the package containing the provided examples. Type the following command to unzipping it
on the Linux® development host.
tar –xzf sprc374.gz

Table 1 shows the package content.

Table 1. Package Content
Name Description
test_uyvy_720×480_2f.yuv This is a YUV raw video file in UYVY 4:2:2 format at NTSC SD resolution. It has two frames.
zhe_szdeinterlacer This folder contains all the source code to implement the simpler de-interlacer.
zhe_szresize This folder includes all the source code implementing simple de-interlacing and 4:2:2 to 4:2:0

conversion.

Note: The resizer driver is not included in this package because the production version of the driver
was not released at the time this document was published. To test the provided example
program, please download the production version of the resizer driver when it is officially
released from the TI website, www.ti.com

The following steps show how to run the provided example executables. The prerequisite for users is that
the DM6446 DVEVM demos are already installed in the DM6446 EVM board and can be executed
successfully.
1. Transfer davinci_rsz_driver.ko to directory /opt/dvevm on the DM6446 EVM board. /opt/dvevm is the

directory where the DM6446 DVEVM demo resides.
2. Transfer test_uyvy_720×480_2f.yuv provided by the example package to directory /opt/dvevm on the

DM6446 EVM board.
3. Transfer binary zhe_szdeinterlacer in directory zhe_szdeinterlacer/release of the provided package to

directory /opt/dvevm on the DM6446 EVM board.
4. Transfer binary zhe_szresize in directory zhe_szresize/release of the provided package to directory

/opt/dvevm on the DM6446 EVM board.
5. Switch to directory /opt/dvevm on the DM6446 EVM board.
6. Type loadmodules.sh if it has not been done at the Linux booting time.
7. Type insmod davinic_rsz_driver.ko to load the resizer driver into the Linux kernel.
8. Type zhe_szdeinterlacer -i test_uyvy_720×480_2f.yuv -o output_file_name to execute the simple

de-interlacer. The input file is specified as test_uyvy_720×480_2f.yuv with “-i” option. Users are
allowed to feed their own input files if they are in yuvy 4:2:2 format at NTSC SD resolution. The output
file name is specified with “-o”. The actual name can be any. The output frames are de-interlaced with
the same format and resolution as the input file.

16 De-Interlacing and YUV 4:2:2 to 4:2:0 Conversion on DM6446 Using the Resizer SPRAAK3B–December 2008
Submit Documentation Feedback

www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAK3B


4.3 How to Compile

5 References
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9. Type zhe_szresize -i test_uyvy_720×480_2f.yuv -o output_file_name to execute the program doing
both simple de-interlacing and 4:2:2 to 4:2:0 conversion. The meaning of “-i” and “-o” are the same as
the ones in zhe_szdeinterlacer. The output frames are de-interlaced in 4:2:0 format at 704×480
resolution.

Compiling the provided examples require that the DM6446 DVEVM package has been installed on the
Linux development host. The following steps show how to compile the zhe_deinterlacer program.
1. Transfer directory zhe_deinterlacer provided with the example package to

directory"/home/user/dvevm_x_xx/demos/" on the Linux development host. "/home/user/dvevm_x_xx"
is the directory where the DM6446 DVEVM package is installed.

2. Switch to directory "/home/user/dvevm_x_xx/demos/zhe_deinterlacer"on the Linux development host
and type make. The executable binary will be in the /release sub-directory.

The following steps show how to compile the zhe_resizer program. They are similar as compiling
zhe_deinterlacer.
1. Transfer directory zhe_resizer provided with the example package to directory

"/home/user/dvevm_x_xx/demos/" on the Linux development host.
2. Switch to directory "/home/user/dvevm_x_xx/demos/zhe_resizer" on the Linux development host and

type make. The executable binary is in the /release sub-directory.

• TMS320DM644x DMSoC Video Processing Front End (VPFE) User's Guide (SPRUE38)
• TMS320DM6446 Digital Media System-on-Chip (SPRS283)
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