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ABSTRACT

A block floating-point (BFP) implementation provides an innovative method of floating-point
emulation on a fixed-point processor. This application report implements the BFP algorithm
for the Fast Fourier Transform (FFT) algorithm on a Texas Instruments (TI) TMS320C55x
DSP by taking advantage of the CPU exponent encoder. The BFP algorithm as it applies to
the FFT allows signal gain adjustment in a fixed-point environment by using a block
representation of input values of block size N to an N-point FFT. This algorithm is applied
repetitively to all stages of the FFT. The elements within a block are further represented by
their respective mantissas and a common exponent assigned to the block. This method
allows for aggressive scaling with a single exponent while retaining greater dynamic range
in the output. This application report discusses the BFP FFT and demonstrates its
implementation in assembly language. The implementation is carried out on a fixed-point
digital signal processor (DSP). The fixed-point BFP FFT results are contrasted with the
results of a floating-point FFT of the same size implemented with MATLAB. For applications
where the FFT is a core component of the overall algorithm, the BFP FFT can provide results
approaching floating-point dynamic range on a low-cost fixed-point processor. Most DSP
applications can be handled with fixed-point representation. However, for those applications
which require extended dynamic range but do not warrant the cost of a floating-point chip,
a block floating-point implementation on a fixed-point chip readily provides a cost-effective
solution.
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1 Fixed- and Floating-Point Representations

Fixed-point processors represent numbers either in fractional notation − used mostly in signal
processing algorithms, or integer notation − primarily for control operations, address calculations
and other non-signal processing operations. Clearly the term fixed-point representation is not
synonymous with integer notation. In addition, the choice of fractional notation in digital signal
processing algorithms is crucial to the implementation of a successful scaling strategy for
fixed-point processors.

Integer representation encompasses numbers from zero to the largest whole number that can
be represented using the available number of bits. Numbers can be represented in twos
complement form with the most significant bit as the sign bit that is negatively weighted.

Fractional format is used to represent numbers between −1 and 1. A binary radix point is
assumed to exist immediately after the sign bit that is also negatively weighted. For the purpose
of this application report, the term fixed-point will imply use of the fractional notation.

0 1 0 1 0 1 1 1

� 27 26 25 24 23 22 21 20

Integer

� 26
� 24

� 22
� 21

� 20

� 64 � 16 � 4 � 2 � 1 � 87

0 1 1 1 0 0 0 0

Fractional

� 2�1
� 2�2

� 2�3

� 0.5 � 0.25 � 0.125 � 0.875

Radix point is assumed in this format

Figure 1. Diagram of Fixed-Point Representations − Integer and Fractional

Floating-point arithmetic consists of representing a number by way of two components − a mantissa
and an exponent. The mantissa is generally a fractional value that can be viewed to be similar to the
fixed-point component. The exponent is an integer that represents the number of places that the
binary point of the mantissa must be shifted in either direction to obtain the original number. In
floating point numbers, the binary point comes after the second most significant bit in the mantissa.
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0 1 1 1 1 0 0 0

� 2�1 2�62�52�42�32�22�120

Mantissa

Mantissa � 20
� 2�1

� 2�2
� 2�3

� 1 � 0.5 � 0.25 � 0.125 � 1.875

Implied mantissa bit

0

2�7

0 0 0 0

Exponent

23 22 21 20

Exponent � 22
� 20

� 4 � 1 � 5

Decimalvalue � 1.875 � 25
� 60

Figure 2. Diagram of Floating-Point Representation

2 Precision, Dynamic Range and Quantization Effects

Two primary means to gauge the performance of fixed-point and floating-point representations
are dynamic range and precision.

Precision defines the resolution of a signal representation; it can be measured by the size of the
least significant bit (LSB) of the fraction. In other words, the word-length of the fixed-point format
governs precision. For floating-point format, the number of bits that make up the mantissa give
the precision with which a number can be represented. Thus, for the floating-point case,
precision would be the minimum difference between two numbers with a given common
exponent. An added advantage of the floating-point processors is that the hardware
automatically scales numbers to use the full range of the mantissa. If the number becomes too
large for the available mantissa, the hardware scales it down by shifting it right. If the number
consumes less space than the available word-length, the hardware scales it up by shifting it left.
The exponent tracks the number of these shifts in either direction.

The dynamic range of a processor is the ratio between the smallest and largest number that can
be represented. The dynamic range for a floating-point value is clearly determined by the size of
the exponent. As a result, given the same word-length, a floating-point processor will always
have a greater dynamic range than a fixed-point processor. On the other hand, given the same
word-length, a fixed-point processor will always have greater precision than floating-point
processors.

Quantization error also serves as a parameter by which the difference between fixed-point and
floating-point representations can be measured. Quantization error is directly dependent on the
size of the LSB. As the number of quantization levels increases, the difference between the
original analog waveform and its quantized digital equivalent becomes less. As a result, the
quantization error also decreases, thereby lowering the quantization noise. It is clear then that
the quantization effect is directly dependent on the word-length of a given representation.

The increased dynamic range of a floating-point processor does come at a price. While providing
increased dynamic range, floating-point processors also tend to cost more and dissipate more
power than fixed-point processors, as more logic gates are required to implement floating-point
operations.



SPRA948

4 A Block Floating Point Implementation for an N-Point FFT on the TMS320C55x DSP

3 The Block Floating Point Concept

At this point it is clear that fixed and floating-point implementations have their respective
advantages. It is possible to achieve the dynamic range approaching that of floating-point
arithmetic while working with fixed-point processors. This can be accomplished by using
floating-point emulation software routines. Emulating floating-point behavior on a fixed-point
processor tends to be very cycle intensive, since the emulation routine must manipulate all
arithmetic computations to artificially mimic floating-point math on a fixed-point device. This
software emulation is only worthwhile if a small portion of the overall computation requires
extended dynamic range. Clearly, a cost-effective alternative for floating-point dynamic range
implemented on a fixed-point processor is needed.

The block floating point algorithm is based on the block automatic gain control (AGC) concept.
Block AGC only scales values at the input stage of the FFT. It only adjusts the input signal power.
The block floating point algorithm takes it a step further by tracking the signal strength from stage
to stage to provide a more comprehensive scaling strategy and extended dynamic range.

The floating-point emulation scheme discussed here is the block floating-point algorithm. The
primary benefit of the block floating-point algorithm emanates from the fact that operations are
carried out on a block basis using a common exponent. Here, each value in the block can be
expressed in two components − a mantissa and a common exponent. The common exponent is
stored as a separate data word. This results in a minimum hardware implementation compared
to that of a conventional floating-point implementation.

0 1 1 0 1 0 0 0

Mantissa

0

0 1 0 1

Exponent

0 1 1 0 0 1 0 0 0

0 1 1 0 1 1 0 0 0

0 1 0 1 0 0 0 0 0

0 1 0 1 1 0 0 0 0

All these numbers share
one common exponent

Figure 3. Diagram of Block Floating-Point Representation
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The value of the common exponent is determined by the data element in the block with the
largest amplitude. In order to compute the value of the exponent, the number of leading bits has
to be determined. This is determined by the number of left shifts required for this data element to
be normalized to the dynamic range of the processor. Certain DSP processors have specific
instructions, such as exponent detection and normalization instructions, that perform this task.
If a given block of data consists entirely of small values, a large common exponent can be used
to shift the small data values left and provide more dynamic range. On the other hand, if a data
block contains large data values, then a small common exponent will be applied. Whatever the
case may be, once the common exponent is computed, all data elements in the block are shifted
up by that amount, in order to make optimal use of the available dynamic range. The exponent
computation does not consider the most significant bit, since that is reserved for the sign bit and
is not considered to be part of the dynamic range.

As a result, block floating-point representation does provide an advantage over both, fixed and
floating-point formats. Scaling each value up by the common exponent increases the dynamic
range of data elements in comparison to that of a fixed-point implementation. At the same time,
having a separate common exponent for all data values preserves the precision of a fixed-point
processor. Therefore, the block floating-point algorithm is more economical than a conventional
floating-point implementation.

4 Bit-Growth of an FFT Stage

The precision of a decimation-in-time (DIT) FFT stage can be enhanced by predicting an
upcoming stage’s bit growth and normalizing the input block accordingly to use the maximum
possible dynamic range. Several factors determine a stage’s bit growth, such as the twiddle
factors involved, whether or not complex arithmetic is used, and the radix of the stage.

Since precision is saved by using two radix-2 stages rather than one radix-4 stage, all stages
implemented here are radix-2. The basic radix-2 butterfly computation in the DIT FFT algorithm
is shown in Figure 4 where both the input and twiddle factors are complex values.

A

B

A�

B�

Wn
N

Figure 4. Radix-2 DIT FFT Butterfly Computation

A� � (Ar � iAi) � (Wn
Nr

� iWn
Ni

)(Br � iBi)

B� � (Ar � iAi) � (Wn
Nr

� iWn
Ni

)(Br � iBi)

The real and imaginary parts of the butterfly output must be considered separately when
computing the theoretical bit growth since each component occupies a separate memory
location.

A� � (Ar � BrWn
Nr

� BiW
n
Ni

) � i(Ai � BrWn
Ni
� BiW

n
Nr

)

B� � (Ar � BrWn
Nr
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Ni
� BiW

n
Nr
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4.1 Bit Growth in the First Two Stages

In the first stage of any N-length DIT FFT where N is a power of two, WN0 = 1+j0 and WNN =
1+j0 are the only twiddle factors involved in the butterfly computations. Since A and B are
complex values with real and imaginary parts less than 1, the maximum growth factor is 2 (bit
growth of 1) according to equation 1.3, such as where A = B = 1 + j1. Stage two also has a
maximum growth factor of 2 since WN0 = 1+j0, WNN/4 = 0−i, and WNN = 1+j0 are the only twiddle
factors involved in stage two butterflies as seen in Figure 5.

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

0
NW

2W N

1
NW

3
NW

0
NW

−1

−1

−1

−1

−1

−1

−1

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

0
NW

0
NW

0
NW

0
NW

0
NW

2
NW

2
NW

Figure 5. 8-Point DIT FFT

4.2 Bit Growth in the Third and Following Stages

The third through the final log2N stages involve twiddle factors that have both a real and
imaginary component, enabling the butterflies to grow by more than a factor of two. In general,
the maximum growth factor for any radix-2 butterfly can be found by computing the maximum
absolute value of the real and imaginary parts of A’ and B’ as follows:

Max|A�|� Max�Ar � Br Wn
Nr

� Bi Wn
Ni
� � Max�Ai � Bi Wn

Nr
� Br Wn

Ni
�

� Max�Ar � Br cos(�) � Bi sin(�) � � Max�Ai � Bi cos(�) � Br sin(�) �

Max|B�|� Max�Ar � Br Wn
Nr

� Bi Wn
Ni
� � Max�Ai � Bi Wn

Nr
� Br Wn

Ni
�

� Max�Ar � Br cos(�) � Bi sin(�) � � Max�Ai � Bi cos(�) � Br sin(�) �

The real and imaginary parts of A and B include and are between −1 and 1, so

Max�Ar
� � Max�Ai

� � Max�Br
� � Max�Bi

� � 1

A maximum is reached when each of the three components in the real or imaginary part are of
the same sign and � is at an angle that corresponds to a maximum.

Max|A�| � Max|B�| � Max|1 � cos(�) � sin(�)|

d
d�

(1 � cos(�) � sin(�)) � 0
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(� cos(�) � sin(�)) � 0

Maximums at � �
�

4
� n�

2
n � 0, 1,.. . ,	

The maximum growth factor is 2.4142 (2 bits) , such as in the case where A = 1 + j0, B = 1 + j1,
and W = Π/4 + j Π/4 in the equation 1.1 butterfly computation. Thus, the input data must be
prescaled to allow for one bit of growth in the first two stages and two bits of growth in
each stage thereafter if overflow is to be averted .

5 Implementing the Block Floating-Point Algorithm

The block floating-point (BFP) analysis presented here is based on its application to a 16-bit,
N-point, complex DIT FFT with radix-2 stages and Q.15 data. The BFP FFT algorithm relies on
scaling before each stage to maximize precision yet prevent overflow and can be implemented
one of two ways.

• Fractional scaling  – Scaling by some non-integer value to normalize the input to � before
the first two stages and to 1/2.4142 before the following stages. Some precision can be
gained by fractional scaling when less than one bit of growth occurs, but a cycle intensive
computation of the reciprocal is required to normalize the data.

• Integer scaling  – Scaling by some power of two in order to normalize the input to � before
the first two stages and to 1/4 before the following stages. Scaling by powers of two incurs
some precision loss but involves computationally efficient shifts.

Fractional scaling is feasible through an iterative algorithm but might not warrant the small gain
over integer scaling. The BFP FFT algorithm implemented here scales by powers of two. It is
important to note that no automatic gain control (AGC) is implemented within the actual FFT
stage computation, such as in the case of the C55x DSPLIB function cfft_scale(), which
indiscriminately employs binary scaling (integer scaling by �) prevent overflow, regardless of the
data magnitude. Binary scaling offers a less cycle intensive approach to scaling but decreases
precision unnecessarily in most cases. The BFP method implemented here is designed to
handle any size of input data, whereas simple binary scaling may overflow in some cases where
the input magnitude of the maximum real or complex value exceeds 1/2.4142.

5.1 Scaling in the First Two Stages

The input data to the first stage of the complex FFT is scaled to occupy the maximum possible
dynamic range that allows for a single bit growth in the upcoming stage. In other words, if the
maximum datum is below � (8192 in Q.15) or above � (16384 in Q.15) then the input array is
normalized by some power of two that gives the maximum datum room for one bit of growth. On
the TMS320C55x, this is feasible through the CPU exponent encoder, which provides the
location of the MSB of a given datum. The data in the subsequent radix-2 stage then grows by
either zero or one bit. If no growth or only fractional growth occurs, then no scaling is performed.
If any real or imaginary data grows by one bit, then all values are scaled down by one bit to
prepare for second stage bit growth.
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5.2 Scaling in the Third and Following Stages

Before the third and rest of the log2N stages, the input data is scaled by some factor of two that
allows for two bits of growth, i.e. the maximum datum must stay between 1/8(4096 in Q.15)  and
�(8192 in Q.15) to prevent overflow yet maximize the dynamic range.

5.3 The Block Exponent

A record is kept of the scaling factors from each stage so that the block exponent of the output
magnitude can be recovered. Following the final stage, the total number of shifts, i.e. the block
common exponent, is returned to allow the proper output magnitude to be recovered.

Figure 6 illustrates the computational flow of the BFT FFT algorithm.
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Input data to
block floating-

point FFT
Find max value
(real or imag.) 1
4 � |Max| � 1
2?

Shift data to
occupy all but
the two MSBs

Stage 1

Find max value
(real or imag.)

1
4 � |Max| � 1
2?

Stage 2

Find max value
(real or imag.)

1
8 � |Max| � 1
4?

Stage 3
log2 N

(one stage
per loop)

Last stage?

Return exponent
in total scaling

factor (2 x)

Shift data to
occupy all but
the two MSBs

Shift data to
occupy all but
the three MSBs

no

no

no

yes

yes

yes

yes

no

Figure 6. Block Diagram of the BFP FFT Implementation
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6 BFP FFT Precision

To test the precision savings of the block floating-point FFT, the results were compared with two
known good result sets – those of the floating-point MATLAB environment and of the pure
fixed-point DSP environment. An integer formatted signal consisting of rail-to-rail complex
random noise was generated in the MATLAB environment and input to each of the following
FFTs.

• 16-Bit, Fixed-Point FFT with Binary Scaling  – The output is converted to floating-point
format and then scaled by 2 ^ (log2N) = a power of two determined by the number of FFT
stages.

• 16-Bit, Fixed-Point FFT with Block Floating-Point Scaling  – The output is converted to
floating-point format and then scaled by 2 ^ (−returned exponent) = a power of two
determined by the returned exponent.

• 32-Bit, Fixed-Point FFT with Binary Scaling  – The input consists of the same Q.15
integers scaled to occupy the upper 16-bits of each memory location. The output is
converted to floating-point format and then scaled by 2 ^ (log2N) = a power of two
determined by the number of FFT stages

• 32-Bit, Floating-Point FFT (Reference)  – The input consists of the same integers passed
into the above FFTs but in floating point format. The output is used as a reference for
computing the SNR of the FFTs computed in the fixed-point environment.

6.1 Computing the SNR

The signal-to-noise ratio (SNR) was computed as follows:

SNR(db) � 10 * log�total_signal_power
total_noise_power



Given two complex signals, A and B, where signal A is the reference signal (MATLAB) and
signal B is the signal that is corrupted by noise (BFP and fixed-point), the total signal power is
found by

�(AR)2
��(AIm)2

The total noise power is found by

�(AR � BR)2
��(AIm � BIm)2

SNR(db) � 10 * log
�(AR)2 ��(AIm)2

�(AR � BR)2 ��(AIm � BIm)2

To eliminate the dependency of precision on the characteristics of the signal, complex random
noise generated in MATLAB is used for the input signal. The following figure illustrates the
dependency of precision (SNR) on input magnitude by varying the input signal scaling factor by
powers of 2 across the Q.15 spectrum.
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Figure 7. SNR vs. Scaling Factor for a 256-point FFT

Quantization error (noise) in this case is caused by extensive multiply-accumulates (MACs). The
fixed-point FFT suffers greatly from MAC rounding since most of the dynamic range of the
processor is generally not used for small input magnitudes, whereas the block floating-point
does not suffer as much since most significant bits are relocated to the MSBs preceding each
stage. From the above figure, it is clear that the block floating-point FFT is superior in precision
to the 16-bit fixed-point FFT for all magnitudes of input data. In general, the block floating-point
SNR shows more consistency but tends to decrease with increasing input magnitude. This is
caused by reduced precision with increasing input magnitudes – a common feature of
floating-point representations. The SNR of both the 16-bit and 32-bit fixed-point FFTs increases
with increasing input magnitude since the MAC quantization error stays relatively constant as
the input signal magnitude increases.

7 BFP FFT Benchmarks

Since the block floating-point FFT scales only when it is essential to prevent overflow, it has the
advantage of increased precision. However, this advantage comes at the price of cycle intensive
search and scale routines. The following table shows how the 16-bit BFP FFT algorithm
compares with the 16-bit fixed-point FFT and 32-bit fixed-point in cycle performance.
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Table 1. N-Point FFT Benchmarks (Fixed-Point vs. Block Floating-Point)

Number of Cycles

Number of Points (N) cfft_scale (16-bit) cfft_bfp (16-bit) cfft32_scale (32-Bit)

16 356 914 723

32 621 1706 1693

64 1206 3442 3971

128 2511 7306 9217

256 5416 15906 21103

512 11841 34938 47677

1024 25946 76754 106443

Since scaling is performed only when necessary to prevent overflow in the next stage, some
stage output data might not be modified, depending on the characteristics of the data. This
effectively reduces the total number of cycles relative to a similar length FFT that requires
scaling before every stage. The BFP FFT data in the table above assumes worst case cycle
performance, i.e. bit-growth in every stage.

It is clear that the 16-bit block floating-point FFT produces SNRs rivaling that of a floating-point
FFT. Though some precision can be gained by using a 32-bit, fixed-point FFT, the block
floating-point FFT requires half the memory to store the input data and uses fewer cycles in
most cases while offering a competitive SNR.

8 Conclusion

The benefits of the block floating-point algorithm are apparent. From the results of the
experiments, it is clear that the BFP FFT implementation produces improved quantization error
over the 16-bit fixed-point FFT implementation.

The separate common exponent is the key characteristic of the block floating-point
implementation. It increases the dynamic range of data elements of a fixed-point implementation
by providing a dynamic range similar to that of a floating-point implementation. By using a
separate memory word for the common exponent, the precision of the mantissa quantities is
preserved as that of a fixed-point processor. By the same token, the block floating-point
algorithm is more economical than a conventional floating-point implementation.

The majority of applications are best suited for fixed-point processors. For those that require
extended dynamic range but do not warrant the cost of a floating-point chip readily provides a
cost-effective solution.
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