EVM Application #4

Generating a PWM Signal Modulated by an Analog Input Using the TMS320F240 EVM

APPLICATION REPORT: SPRA413

David Figoli

Digital Signal Processing Solutions
January 1999
IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty, or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated
TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.
CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320
US TMS320 FAX (281) 274-2324
US TMS320 BBS (281) 274-2323
US TMS320 email dsph@ti.com
EVM Application #4

Generating a PWM Signal Modulated by an Analog Input Using the TMS320F240 EVM

Abstract

This EVM application converts an input value with the analog-to-digital converter (ADC) module of the Texas Instruments (TI™) TMS320F240 Evaluation Module (EVM) and outputs a pulse width modulated (PWM) signal corresponding to the digital conversion of the analog input.
Product Support

World Wide Web

Our World Wide Web site at www.ti.com contains the most up to date product information, revisions, and additions. Users registering with TI&ME can build custom information pages and receive new product updates automatically via email.

Email

For technical issues or clarification on TI products, please send a detailed email to dsph@ti.com. Questions receive prompt attention and are usually answered within one business day.
Overview

This application converts an input value with the analog-to-digital converter (ADC) module of the TI TMS320F240 EVM and outputs a pulse width modulated (PWM) signal corresponding to the digital conversion of the analog input. In other words, the pulse width of the PWM signal will be proportional to the input value and represents an equivalent analog output signal. The PWM signal will be created asymmetrically. This application is implemented using C2xx Assembly code. The algorithm described in this application report was implemented using the TMS320F240 EVM.

Module(s) Used

- 10 bit Analog-to-Digital Converter
- Event Manager Module
- General Purpose Timer 1

Input

ADCIN0

Output

T1PWM / T1CMP
Background and Methodology

This application uses the ADC and the Event Manager Module to convert an input signal (with the ADC) and output a proportional pulse width signal (with a General Purpose Timer of the Event Manager). The setup of this program is similar to the setup for Application #2 (PWM1.ASM) except instead of going to a look-up table to find the next value for the compare register, the program uses the value that is located in the ADCFIFO register.

The initial setup of the PWM signal is similar to the setup that was done for Application #1 and #2. The PLL Module, Digital I/O Port, and the Event Manager Module need to be set up properly to set up the PWM signal. Similar to the Timer Module of the Event Manager Module, the ADC also shares some of its pins with the pins of the I/O Port. As a result, in the setup of the Digital I/O Port, the Event Manager Module and the ADC need to be configured so that their respective pins are TxPWM/TxCMP outputs and ADCINx inputs, rather than generic I/O pins.

Similar to Application #2 (PWM1.ASM), this application uses the General Purpose Timer’s period register to generate an interrupt that updates the compare register.
Analog-to-Digital Converter

Once the Event Manager registers are set up to generate a PWM signal, then the ADC needs to be set up. Since the ADC has a FIFO register that can store two converted values at a time, the ADC can be set up to convert continuously. By converting continuously, the ADC’s values will not be dependent on the interrupt service routine to be restarted. Because the ADC will be converting continuously, the value that is in the ADCFIFO register will be a recent conversion.

Because the ADC has a resolution of 10 bits and the registers of the timers are 16 bits, scaling has to be done so that the resulting pulse width can have a duty cycle of 0 to 100 percent of the PWM period. The ADC converts the input values and places them into the ADCFIFO register. The ADCFIFO register is 16 bits wide, yet the ADC only has a 10 bit resolution. As a result the converted value’s most significant bit occupies the most significant bit of the register, thereby always leaving the 6 least significant bits of the register filled with zeros.

If the values in the ADCFIFO register were used without modification, the pulse width would have a discontinuity as the input value went from 1/1024 of V_ref to 0V. This discontinuity would result because the compare register would switch from 40h to 00h during the transition from 1/1024 of V_ref to 0V. To avoid this discontinuity, the ADCFIFO register result is shifted to the right so that the least significant bit, which resided at bit 6, now resides at bit 0. By shifting ADCFIFO, the maximum values go from FFC0h to 3FFh, and the minimum value (above 0) goes from 40h to 1h. By shifting the ADCFIFO results, the period register can be set to a 10 bit maximum of 3FFh. Because the period register is set to the maximum value 3FFh, with the CPUCLK at 20MHz, the resulting PWM frequency will be 19.5kHz.

Like the previous applications, this application is interrupt driven, and once the registers are set up, the program can be ended. The PWM output continues to run because of the interrupt structure, but when the program is halted, the PWM signal stops.
.;***
.; File Name: adc0.asm
.; Originator: Digital Control systems Apps group - Houston
.; Target System: 'C24x Evaluation Board
.; Description: Uses the ADC and outputs the conversion to the
.; compare register of the Event Manager to modify
.; duty cycle of a PWM signal in proportion to the
.; input analog value.
.; Last Updated: 20 June 1997
.;***
.
.include f240regs.h

;--
; I/O Mapped EVM Registers
;--
DAC0.set 0000h ;Input data register for DAC0
DAC1.set 0001h ;Input data register for DAC1
DAC2.set 0002h ;Input data register for DAC2
DAC3.set 0003h ;Input data register for DAC3
DACUPDATE.set 0004h ;DAC Update Register

;--
; Variable Declarations for B2
;--
.bss GPR0,1 ;General Purpose Register
.bss DAC0VAL,1 ;DAC0 Channel Value
.bss DAC1VAL,1 ;DAC0 Channel Value
.bss DAC2VAL,1 ;DAC0 Channel Value
.bss DAC3VAL,1 ;DAC0 Channel Value

;--
; Vector address declarations
;--
.sect ".vectors"
RSVECT B START ; Reset Vector
INT1 B PHANTOM ; Interrupt Level 1
INT2 B CHG_CMPR ; Interrupt Level 2
INT3 B PHANTOM ; Interrupt Level 3
INT4 B PHANTOM ; Interrupt Level 4
INT5 B PHANTOM ; Interrupt Level 5
INT6 B PHANTOM ; Interrupt Level 6
RESERVED B PHANTOM ; Reserved
SW_INT8 B PHANTOM ; User S/W Interrupt
SW_INT9 B PHANTOM ; User S/W Interrupt
SW_INT10 B PHANTOM ; User S/W Interrupt
SW_INT11 B PHANTOM ; User S/W Interrupt
SW_INT12 B PHANTOM ; User S/W Interrupt
SW_INT13 B PHANTOM ; User S/W Interrupt
SW_INT14 B PHANTOM ; User S/W Interrupt
SW_INT15 B PHANTOM ; User S/W Interrupt
SW_INT16 B PHANTOM ; User S/W Interrupt
TRAP B PHANTOM ; Trap vector
NMINT B PHANTOM ; Non-maskable Interrupt
EMU_TRAP B PHANTOM ; Emulator Trap
SW_INT20 B PHANTOM ; User S/W Interrupt
SW_INT21 B PHANTOM ; User S/W Interrupt
SW_INT22 B PHANTOM ; User S/W Interrupt
SW_INT23 B PHANTOM ; User S/W Interrupt

; M A I N C O D E - starts here
;===
.text
NOP
START: SETC INTM ;Disable interrupts
SPLK #0002h,IMR ;Mask all interrupts except INT2
LACC IFR ;Read Interrupt flags
SACL IFR ;Clear all interrupt flags
CLRC SXM ;Clear Sign Extension Mode
CLRC OVM ;Reset Overflow Mode
CLRC CNF ;Config Block B0 to Data mem

; Set up PLL Module
;===
LDP #00E0h
;The following line is necessary if a previous program set the PLL
;to a different setting than the settings which the application
;uses. By disabling the PLL, the CKCR1 register can be modified so
;that the PLL can run at the new settings when it is re-enabled.
SPLK #0000000001000001b,CKCR0 ;CLKMD=PLL Disable
;SYSCLK=CPUCLK/2
; 5432109876543210
SPLK #0000000010111011b,CKCR1 ;CLKIN(OSC)=10MHz
;CPUCLK=20MHz

;CKCR1 - Clock Control Register 1
; Bits 7-4 (1011)CKINF(3)-CKINF(0) - Crystal or Clock-In
; Frequency
; Bit 3 (1) PLLDIV(2) - PLL divide by 2 bit
; Divide PLL input by 2
; Bits 2-0 (011) PLLFB(2)-PLLFB(0) - PLL multiplication ratio
; PLL Multiplication Ratio = 4
;
; 5432109876543210
SPLK #0000000011000011b,CKCR0 ;CLKMD=PLL Enable
;SYSCLK=CPUCLK/2

;CKCR0 - Clock Control Register 0
; Bits 7-6 (11) CLKMD(1),CLKMD(0) - Operational mode of Clock
; Module PLL Enabled
; Run on CLKIN on exiting low power mode
; Bits 5-4 (00) PLLLOCK(1),PLLLOCK(0) - PLL Status. READ ONLY
; Bits 3-2 (00) PLLPM(1),PLLPM(0) - Low Power Mode - LPM0
; Bit 1 (0) ACLKENA - 1MHz ACLK Enable
Generating a PWM Signal Modulated by an Analog Input Using the TMS320F240 EVM

; ACLK Enabled
; Bit 0 (1) PLLPS - System Clock Prescale Value
; \[f_{sysclk} = f_{cpuclk}/2 \]

; 5432109876543210
SPLK #0100000011000000b, SYSCR ; CLKOUT=CPUCLK

; SYSCR - System Control Register
; Bit 15-14 (01) RESET1,RESET0 - Software Reset Bits
; No Action
; Bits 13-8 (000000) Reserved
; Bit 7-6 (11) CLKSRC1, CLKSRC0 - CLKOUT-Pin Source Select
; CPUCCLK: CPU clock output mode
; Bit 5-0 (000000) Reserved

SPLK #006Fh, WDCR ; Disable WD if VCCP=5V
; (JP6 in pos. 2-3)
KICK_DOG ; Reset Watchdog

;-----------------------------------
; Set up Digital I/O Port
;-----------------------------------
LDP #225 ; DP=225, Data Page to Configure OCRA
; 5432109876543210
SPLK #0011100000001111b, OCRA

; OCRA - Output Control Register A
; Bit 15 (0) CRA.15 - IOPB7
; Bit 14 (0) CRA.14 - IOPB6
; Bit 13 (1) CRA.13 - T3PWM/T3CMP
; Bit 12 (1) CRA.12 - T2PWM/T2CMP
; Bit 11 (1) CRA.11 - T1PWM/T1CMP
; Bit 10 (0) CRA.10 - IOPB2
; Bit 9 (0) CRA.9 - IOPB1
; Bit 8 (0) CRA.8 - IOPB0
; Bits 7-4 (0000) Reserved
; Bit 3 (1) CRA.3 - ADCIN8
; Bit 2 (1) CRA.2 - ADCIN9
; Bit 1 (1) CRA.1 - ADCIN1
; Bit 0 (1) CRA.0 - ADCIN0

; Event Manager Module Reset
;
; This section resets all of the Event Manager Module
; Registers. This is necessary for silicon revision 1.1;
; but not necessary for silicon revisions 2.0 and later.
;
LDP #232 ; DP=232 Data Page for the Event Manager
SPLK #0000h, GPTCON ; Clear General Purpose Time Control
SPLK #0000h,T1CON ;Clear GP Timer 1 Control
SPLK #0000h,T2CON ;Clear GP Timer 2 Control
SPLK #0000h,T3CON ;Clear GP Timer 3 Control
SPLK #0000h,COMCON ;Clear Compare Control
SPLK #0000h,ACTR ;Clear Full Compare Action Control
; Register
SPLK #0000h,SACTR ;Clear Simple Compare Action Control Register
;
SPLK #0000h,DBTCON ;Clear Dead-Band Timer Control Register
;
SPLK #0000h,CAPCON ;Clear Capture Control
SPLK #0FFFFh,EVIFRA ;Clear Interrupt Flag Register A
SPLK #0FFFFh,EVIFRB ;Clear Interrupt Flag Register B
SPLK #0FFFFh,EVIFRC ;Clear Interrupt Flag Register C
SPLK #0000h,EVIMRA ;Clear Event Manager Mask Register A
SPLK #0000h,EVIMRB ;Clear Event Manager Mask Register B
SPLK #0000h,EVIMRC ;Clear Event Manager Mask Register C

;*-*
; End of RESET section for silicon revision 1.1
;*-*

Set up Event Manager Module

T1COMPARE .set 11111111b ;Value does not matter
T1PERIOD .set 1111111111b ;Maximum ADC Value

LDP #232 ;DP=232, Data Page for Event Manager Addresses
SPLK #T1COMPARE,T1CMPR ;Compare value for 50% duty cycle

2109876543210
SPLK #0000001010101b,GPTCON

;GPTCON - GP Timer Control Register
; Bit 15 (0) T3STAT - GP Timer 3 Status. READ ONLY
; Bit 14 (0) T2STAT - GP Timer 2 Status. READ ONLY
; Bit 13 (0) T1STAT - GP Timer 1 Status. READ ONLY
; Bits 12-11 (00) T3TOADC - ADC start by event of GP Timer 3
; No event starts ADC
; Bits 10-9 (00) T2TOADC - ADC start by event of GP Timer 2
; No event starts ADC
; Bits 8-7 (00) T1TOADC - ADC start by event of GP Timer 1
; No event starts ADC
; Bit 6 (1) TCOMPOE - Compare output enable
; Enable all three GP timer compare outputs

Generating a PWM Signal Modulated by an Analog Input Using the TMS320F240 EVM
; Bits 5-4 (01) T3PIN - Polarity of GP Timer 3 compare output, Active Low
; Bits 3-2 (01) T2PIN - Polarity of GP Timer 2 compare output, Active Low
; Bits 1-0 (01) T1PIN - Polarity of GP Timer 1 compare output, Active Low

SPLK #T1PERIOD,T1PR ;Period value for 20kHz signal
SPLK #0000h,T1CNT ;Clear GP Timer 1 Counter
SPLK #0000h,T2CNT ;Clear GP Timer 2 Counter
SPLK #0000h,T3CNT ;Clear GP Timer 3 Counter

; T1CON - GP Timer 1 Control Register
; Bits 15-14 (00) FREE,SOFT - Emulation Control Bits
; Stop immediately on emulation suspend
; Bits 13-11 (010) TMODE2-TMDE0 - Count Mode Selection
; Continuous-Up Count Mode
; Bits 10-8 (000) TPS2-TPS0 - Input Clock Prescaler
; Divide by 1
; Bit 7 (0) Reserved
; Bit 6 (0) TENABLE - Timer Enable
; Disable timer operations
; Bits 5-4 (00) TCLKS1,TCLKS0 - Clock Source Select
; Internal Clock Source
; Bits 3-2 (10) TCLD1,TCLD0 - Timer Compare Register
; Reload Condition Immediately
; Bit 1 (1) TECMPR - Timer compare enable
; Enable timer compare operation
; Bit 0 (0) Reserved

; T2CON - GP Timer 2 Control Register
; Bits 15-14 (00) FREE,SOFT - Emulation Control Bits
; Stop immediately on emulation suspend
; Bits 13-11 (000) TMODE2-TMDE0 - Count Mode Selection
; Stop/Hold
; Bits 10-8 (000) TPS2-TPS0 - Input Clock Prescaler
; Divide by 1
; Bit 7 (0) TSWT1 - GP Timer 1 timer enable bit
; Use own TENABLE bit
; Bit 6 (0) TENABLE - Timer Enable
; Disable timer operations
; Bits 5-4 (00) TCLKS1,TCLKS0 - Clock Source Select
; Internal Clock Source
; Bits 3-2 (00) TCLD1,TCLD0 - Timer Compare Register
Generating a PWM Signal Modulated by an Analog Input Using the TMS320F240 EVM

Reload Condition
When counter is 0

Bit 1 (0) TECMPR - Timer compare enable
 Disable timer compare operation

Bit 0 (0) SELT1PR - Period Register select
 Use own period register

SPLK #0000000000000000b,T3CON
;GP Timer 3 - Not Used

T3CON - GP Timer 3 Control Register

Bits 15-14 (00) FREE,SOFT - Emulation Control Bits
 Stop immediately on emulation suspend

Bits 13-11 (000) TMODE2-TMODE0 - Count Mode Selection
 Stop/Hold

Bits 10-8 (000) TPS2-TPS0 - Input Clock Prescaler
 Divide by 1

Bit 7 (0) TSWT1 - GP Timer 1 timer enable bit
 Use own TENABLE bit

Bit 6 (0) TENABLE - Timer Enable
 Disable timer operations

Bits 5-4 (00) TCLKS1,TCLKS0 - Clock Source Select
 Internal Clock Source

Bits 3-2 (00) TCLD1,TCLD0 - Timer Compare Register
 Reload Condition
 When counter is 0

Bit 1 (0) TECMPR - Timer compare enable
 Disable timer compare operation

Bit 0 (0) SELT1PR - Period Register select
 Use own period register

SPLK #0000000000000000b,ADCTRL1
;Enables the T1PINT

; Set up ADC Module

LDP #224 ;DP = 224 Data Page for ADC Registers

SPLK #1000110100000000b,ADCTRL1

;ADCTRL1 - ADC Control Register 1

Bit 15 (1) Suspend-SOFT -
 Complete Conversion before halting emulator

Bit 14 (0) Suspend-FREE -
 Operations is determined by Suspend-SOFT

Bit 13 (0) ADCIMSTART - ADC start converting immediately
 Immediate Start of Conversion

Bit 12 (0) ADC2EN - Enable/Disable ADC2
 Disable ADC2

Bit 11 (1) ADC1EN - Enable/Disable ADC1
 Enable ADC1
Generating a PWM Signal Modulated by an Analog Input Using the TMS320F240 EVM

Bit 10 (1) ADCCONRUN - ADC Continuous Conversion Mode
 Continuous Conversion
Bit 9 (1) ADCINTEN - Enable ADC Interrupt
 Request Interrupt when ADCINTFLAG is set
Bit 8 (1) ADCINTFLAG - ADC Interrupt Flag
 Clear Interrupt Flab Bit
Bit 7 (0) ADCEOC - End of Conversion Bit READ ONLY
Bits 6-4 (000) ADC2CHSEL - ADC2 Channel Select
 Channel 8
Bits 3-1 (000) ADC1CHSEL - ADC1 Channel Select
 Channel 0
Bit 0 (0) ADCSOC - ADC Start of conversion bit
 No Action

5432109876543210
SPLK #0000000000000101b,ADCTRL2

;ADCTRL2 - ADC Control Register 2
; Bits 15-11 (00000)Reserved
; Bit 10 (0) ADCEVSOC - Event Manager SOC mask bit
; Mask ADCEVSOC
; Bit 9 (0) ADCEXTSOC - External SOC mask bit
; Mask ADCEXTSOC
; Bit 8 (0) Reserved
; Bits 7-6 (00) ADCFIFO1 - Data Register FIFO1 Status
; READ ONLY
; Bit 5 (0) Reserved
; Bits 4-3 (00) ADCFIFO2 - Data Register FIFO2 Status
; READ ONLY
; Bits 2-0 (101) ADCPSCALE - ADC Input Clock Prescaler
 Prescale Value 16
 SYSCLK Period = 0.1usec
 0.1usec x 16 x 6 = 9.6 usec >= 6usec

;--------------------------
; Set up EVM DAC Module
;--------------------------
;This section lets you use the DAC as an input into the ADC if
; there is not an easily available source (a waveform generator).

LDP #0
SPLK #4h,GPR0 ;The DAC requires that
OUT GPR0,WSGR ;I/O accesses require 1WS

SPLK #03FFh,DAC0VAL
SPLK #07FFh,DAC1VAL
SPLK #0BFFh,DAC2VAL
SPLK #0FFh,DAC3VAL

OUT DAC0VAL,DAC0 ;DACOUT0 = 1.25V
OUT DAC1VAL,DAC1 ;DACOUT1 = 2.50V
OUT DAC2VAL,DAC2 ;DACOUT2 = 3.75V
OUT DAC3VAL,DAC3 ;DACOUT3 = 5.00V
OUT DAC3VAL,DACUPDATE ;Output the values on the DAC pins

LDP #232
SBIT1 T1CON,B6_MSK ;Sets Bit 6 of T1CON

; T1CON - GP Timer 1 Control Register
; Bit 6 (1) TENABLE - Timer Enable
; Enable Timer Operations

LDP #224
SBIT1 ADCTRL1,B0_MSK ;Sets Bit 0 of ADCTRL1

CLRC INTM ;Enable Interrupts

END

;---
;Interrupt Service Routine that Changes the Compare Register
;---

CHG_CMPR LDP #224 ;DP = 224 Data Page for ADC Registers
LACC ADCTRL1 ;ACC = ADCTRL1 \ Clears the ADC Int
SACL ADCTRL1 ;ADCTRL1 = ACC / flag if set

LACC ADCFIFO1 ;Load the converted value
RPT #5 ;Shift the value to the right 6 times
SFR ;since 6 LSBs are always 0

LDP #232 ;DP = 232 Data Page for Event Manager Module
SACL T1CMPR ;Store ADC Value into T1CMPR

LACC EVIFRA ;ACC = EVIFRA \ Clears the EVIFR Int
SACL EVIFRA ;EVIFRA = ACC / Flags if set

CLRC INTM ;Enable Interrupts
RET

;---
; ISR - PHANTOM
;
; Description: Dummy ISR, used to trap spurious interrupts.
;
; Modifies: Nothing
;
; Last Update: 16 June 95
;---
PHANTOM KICK_DOG ;Resets WD counter
B PHANTOM