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ABSTRACT

The G.726 is a voice-compression algorithm standard defined by the International
Telecommunication Union (ITU). It can be used in many applications such as digital cordeless
telephones, radio/wireless local loop, and pair-gain. The software package described in this
application report is plug and play compliant with the multichannel framework using the
TMS320C54x DSP.

Note: To license the code presented on this application note, please contact “MESI: Miller
Engineering Services, Inc.  http://www.mesi.net/
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Table 23. Map Quantizer Output for 16 Kbps ADPCM 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 24. Quantizer Scale Factor Multipliers W|I| for 40 Kbps ADPCM 45. . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 25. Quantizer Scale Factor Multipliers W|I| for 32 Kbps ADPCM 45. . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 26. Quantizer Scale Factor Multipliers W|I| for 24 Kbps ADPCM 45. . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 27. Quantizer Scale Factor Multipliers W|I| for 16 Kbps ADPCM 45. . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 28. Encoder Sequence (578–605 Cycles)  46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 29. Decoder Sequence (606–633 Cycles)  47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Table 30. Internal Processing Variables  50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1 Introduction

Adaptive differential pulse code modulation (ADPCM) is a very efficient digital coding of
waveforms. In telecommunication, the main field application is speech compression because it
makes it possible to reduce the bit flow, while maintaining an acceptable quality. However, this
technique applies for all waveforms, high-quality audio, image, and modem data. That is why it’s
different from vocoders (voice encoders CELP, VSELP, etc.), that use properties of the human
voice to reconstruct a waveform that appears very similar when it reaches the human ear, even
though it is quite different from the original speech signal.

Consider a signal which you may wish to transform, to reduce the amount of information that it is
necessary to code. You must be able to reconstruct the original signal as faithfully as possible.
The principle of ADPCM is to use your knowledge of the signal in the past time to predict it in the
future, the resulting signal being the error of this prediction. Applications of this principle are all
based on digital transcoding after converting and coding analog signal to digital using pulse
code modulation (PCM).

PCM is the most direct way to code analog signals to digital. The codeword in PCM is simply the
quantized representation of the amplitude from the sampled signal. This word is given directly by
an electronic A/D converter from the analog voltage which comprises the original signal.

You must perform PCM before ADPCM to decrease the number of bits for coding by passing
through a PCM process before transforming to an ADPCM sample. In the G.726
recommendation, which currently includes G.721 and G.723 recommendations of the
International Telegraph and Telephone Consultative Committee (CCITT), it is specified that an
8-bit PCM word should be reduced to a 4-bit ADPCM word, correspondingly reducing the bit flow
by a factor of two.

Be aware, however, that an ADPCM word represents the prediction error of the signal, and has
no significance itself.. It must be decoded (reverse transformation) to reconstruct the meaningful
original waveform. For equal bit number coding, the difference between original and
reconstructed signal is smaller in ADPCM than in PCM.
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1.1 Introducing the Software Application

As previously stated, ADPCM is a complete digital transcoding process. According to the CCITT
standard, if the PCM input bit flow is 64 kilobits per second (Kbps) (8 kHz sampling x 8-bit PCM
word), you must process in real time, to produce a 40-, 32-, 24-, or 16-Kbps (8 kHz * 5, 4, 3, or
2-bit ADPCM word) output flow. A fixed-point digital signal processor (DSP) has an architecture
which is capable of doing this. In particular, the new and very efficient TMS320C54x  enables
very rapid processing.

1.2 Software Features

• 16-, 24-, 32-, or 40-Kbps G.726 ADPCM (including G.721/G.723) in one single executable
code, allowing rate switching during execution

• 14-bit linear PCM allowed, in addition to A-law and �-law PCM input/output

• Possibility to implement several channels simultaneously in real-time processing (with time
division sampling). This capability is possible during execution due to dynamic allocation of
memory.

• 8.3–10 millions of instructions per second (MIPS) requirement (encoder + decoder),
depending on program configurations (rate/PCM law choice at reset or at each sample,
linear PCM or log-PCM). As a comparison, G.721 (only 32 Kbps, while 40 Kbps requires
additional instructions) ADPCM on C50x requires 10.5 – 12.5 MIPS

• About 1500 words of read-only memory (ROM) requirement (program: 680, data: 850)

• Less than a data page of random-access memory (RAM) per channel (less than 100 words)

• Independent code with memory mapping

• Viable software (all CCITT test sequences successfully verified)

• Clear program organization allows configuration and optimization for a specific application
and portability

2 CCITT ADPCM Standard: Recommendation G.726

This section is a reproduction of the G.7261 Recommendation, section 1–3, developed by the
International Telegraph and Telephone Consultative Committee (CCITT). The CCITT is a
permanent organization of the International Telecommunication Union (ITU).

This section provides the principles and functional descriptions of the ADPCM encoding and
decoding algorithms.

Two modifications have been made relating to the printed text of the recommendation. First, one
detail concerning the 32-Kbps quantizer that takes one of 15 non-zero values (see section
2.4.3). Secondly, the transition detector equation has been corrected. In fact, the sampling index

TMS320C54x is a trademark of Texas Instruments.
1 This recommendation completely replaces the text of Recommendation G.721 and G.723 published in Volume III.4 of the Blue Book. It should
be noted that systems designed in accordance with the present recommendation will be compatible with systems designed in accordance with
the Blue Book version.
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seems to be (k–1), instead of (k) for yl and a2 (see section 2.4.12) 2.

2.1 ADPCM Principle

The characteristics below are recommended for the conversion of a 64 Kbps A-law or �-law
pulse code modulation (PCM) channel to and from a 40-, 32-, 24- or 16-Kbps channel. The
conversion is applied to the PCM bit stream using an ADPCM transcoding technique. The
relationship between the voice frequency signals and the PCM encoding/decoding laws is fully
specified in Recommendation G.711.

The principal application of 24- and 16-Kbps channels is for overload channels carrying voice in
digital circuit equipment (DCME).

The principal application of 40-Kbps channels is to carry data modem signals in DCME,
especially for modems operating at greater than 4800 Kbps.

Simplified block diagrams of both the ADPCM encoder and decoder are shown in Figure 1.

–
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+

+ADPCM
Input

Signal
Estimate

64 kbits/s
PCM
Output

–
Inverse

Adaptive
Quantizer

Convert to PCM

Adaptive
Predictor

Synchronous
Coding

Adjustment

b) Decoder

Convert to
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Figure 1. ADPCM Encoder and Decoder

2 While reporting printing errors, specification of IMAG in the COMPRES sub-block (G.726/section 4, not reproduced here), probably contains
an error. In the case of LAW = 1 and IS = 1, IMAG = (IM –1) >> 1, and not (IM+1) >> 1.
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2.2 ADPCM Encoder

Subsequent to the conversion of the A-law or �-law, PCM input signal to uniform PCM, a
difference signal is obtained by subtracting an estimate of the input signal from the input signal
itself.

An adaptive 31-, 15-, 7-, or 4-level quantizer is used to assign five, four, three, or two binary
digits, respectively, to the value of the difference signal for transmission to the decoder. An
inverse quantizer produces a quantized difference signal from these same five, four, three or two
binary digits, respectively. The signal estimate is added to this quantized difference signal to
produce the reconstructed version of the input signal. Both the reconstructed signal and the
quantized difference signal are operated upon by an adaptive predictor, which produces the
estimate of the input signal, thereby completing the feedback loop.

2.3 ADPCM Decoder

The decoder includes a structure identical to the feedback portion of the encoder, together with a
uniform PCM to A-law or �-law conversion and a synchronous coding adjustment.

The synchronous coding adjustment prevents cumulative distortion occurring on synchronous
tandem coding (ADPCM, PCM, ADPCM, etc., digital connections) under certain conditions (see
sectoin 2.5.7). The synchronous coding adjustment is achieved by adjusting the PCM output
codes in a manner which attempts to eliminate quantizing distortion in the next ADPCM
encoding stage.

2.4 Encoder Description

Figure 2 shows a block schematic for the encoder. For each variable to be described, k is the
sampling index, and samples are taken at 125-�s intervals. A fundamental description of each
block is given below in sections 2.4.1 through 2.4.12.

sl(k)s(k) d(k) I(k)

y(k)

al(k)

tr(k)

td(k)

dq(k)

a2(k)

se(k)

ADPCM
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input Input PCM

Format
Conversion

Difference
Signal

Computation

Adaptive
Quantizer

Quantizer
Scale factor
Adaptation

Adaptation
Speed
Control

Inverse
Adaptive
Quantizer

Adaptive
Predictor

Reconstructed
Signal

Calculator

Tone and
Transition
detection

sr(k)

Figure 2. Encoder Block Schematic
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2.4.1 Input PCM Format Conversion

This block converts the input signal s(k) from A-law or �-law PCM to a uniform PCM signal, sl(k),
if required.

2.4.2 Difference Computation

This block calculates the difference signal d(k) from the uniform PCM signal sl(k) and the signal
estimate se(k):

d(k) � sl(k) � se(k)

2.4.3 Adaptive Quantizer

A 31-, 15-, 7-, or 4-level non-uniform adaptive quantizer is used to quantize the difference signal
d(k) for operating at 40, 32, 24 or 16 Kbps, respectively. Prior to quantization, d(k) is converted
to a base 2 logarithmic representation and scaled by y(k), which is computed by the scale factor
adaptation block:

dln(k) � log2
�dl (k)� � y(k)

The normalized input/output characteristic (infinite precision values) of the quantizer is given in
Table 1 through Table 4.

2.4.4 Operation at 40 Kbps

Five binary digits are used to specify the quantized level representing dln(k) (four for the
magnitude, and one for the sign in 2’s complement format). The 5-bit quantizer output I(k) forms
the 40-Kbps output signal. I(k) takes on one of 31 non-zero values. I(k) is also fed to the inverse
adaptive quantizer, the adaptation speed control and the quantizer scale factor adaptation
blocks that operate on a 5-bit I(k), having one of 32 possible values. I(k) = 00000 is a legitimate
input to these blocks when used in the decoder, due to transmission errors.

Table 1. Quantizer Normalized Input/Output Characteristic for 40 Kbps Operation

Normalized Quantizer Input Range dln(k) |I(k)| Normalized Quantizer Output dqln(k)

[4.31, +�) 15 4.42

[4.12, 4.31) 14 4.21

[3.91, 4.12) 13 4.02

[3.70, 3.91) 12 3.81

[3.47, 3.70) 11 3.59

[3.22, 3.47) 10 3.35

[2.95, 3.22) 9 3.09

[2.64, 2.95) 8 2.80

[2.32, 2.64) 7 2.48

NOTE: In Table 1 through Table 4,  “[“ indicates that the endpoint value is included in the range, and “(“ or “)” indicates that the endpoint value
is excluded from the range.

(1)

(2)
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Normalized Quantizer Input Range dln(k) Normalized Quantizer Output dqln(k)|I(k)|

[1.95, 2.32) 6 2.14

[1.54, 1.95) 5 1.75

[1.08, 1.54) 4 1.32

[0.52, 1.08) 3 0.81

[–0.13, 0.52) 2 0.22

[–0.96, –0.13) 1 –0.52

(–�, –0.96) 0 –�

NOTE: In Table 1 through Table 4,  “[“ indicates that the endpoint value is included in the range, and “(“ or “)” indicates that the endpoint value
is excluded from the range.

2.4.5 Operation at 32 Kbps

Four binary digits are used to specify the quantized level representing dln(k) (three for the
magnitude, and one for the sign in 2’s complement format). The 4-bit quantizer output, I(k ,
forms the 32-Kbps output signal. I(k) takes on one of 15 non-zero values. I(k) is also fed to the
inverse adaptive quantizer, the adaptation speed control and the quantizer scale factor
adaptation blocks that operate on a 4-bit I(k), having one of 16 possible values. I(k) = 0000 is a
legitimate input to these blocks when used in the decoder, due to transmission errors.

Table 2. Quantizer Normalized Input/Output Characteristic for 32 Kbps Operation

Normalized Quantizer Input Range dln(k) |I(k)| Normalized Quantizer Output dqln(k)

[3.12, +�) 7 3.32

[2.72, 3.12) 6 2.91

[2.34, 2.72) 5 2.52

[1.91, 2.34) 4 2.13

[1.38, 1.91) 3 1.66

[0.62, 1.38) 2 1.05

[–0.98, 0.62) 1 0.031

(–�, –0.98) 0 –�

2.4.6 Operation at 24 Kbps

Three binary digits are used to specify the quantized level representing dln(k) (two for the
magnitude, and one for the sign in 2’s complement format). The 3-bit quantizer output I(k) forms
the 24 Kbps output signal. I(k) takes on one of 7 non-zero values. I(k) is also fed to the inverse
adaptive quantizer, the adaptation speed contro,l and the quantizer scale factor adaptation
blocks that operate on a 3-bit I(k), having one of 8 possible values. I(k) = 000 is a legitimate
input to these blocks when used in the decoder, due to transmission errors.
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Table 3. Quantizer Normalized Input/Output Characteristic for 24 Kbps Operation

Normalized Quantizer Input Range dln(k) |I(k)| Normalized Quantizer Output dqln(k)

[2.58, +�) 3 2.91

[1.70, 2.13) 2 2.13

[–0.06, 1.05) 1 1.05

(–�, –0.06) 0 –�

2.4.7 Operation at 16 Kbps

Two binary digits are used to specify the quantized level representing dln(k) (one for the
magnitude, and one for the sign in 2’s complement format). The 2-bit quantizer output I(k) forms
the 16 Kbps output signal. I(k) is also fed to the inverse adaptive quantizer, the adaptation speed
control, and the quantizer scale factor adaptation blocks.

Table 4. Quantizer Normalized Input/Output Characteristic for 16 Kbps Operation

Normalized Quantizer Input Range dln(k) |I(k)| Normalized Quantizer Output dqln(k)

[2.04, +�) 1 2.85

[–�, –2.04) 0 0.91

2.4.8 Inverse Adaptive Quantizer

A quantized version dq(k) of the difference signal is produced by scaling, using y(k). Specific
values selected from the normalized quantizing characteristic are given in Table 1 through
Table 4, transforming the result from the logarithmic domain:

dq (k) � 2dq ln (k)�y (k)

2.4.9 Quantizer Scale Factor Adaptation

This block computes y(k), the scaling factor for the quantizer and the inverse quantizer. The
inputs are the 5-bit, 4-bit, 3-bit, 2-bit quantizer output, I(k), and the adaptation speed control
paramete,r al(k).

The basic principle used in scaling the quantizer is bimodal adaptation:

• Fast for signals (that is, speech), that produce difference signals with large fluctuations;

• Slow for signals (that is, voiceband data tones), that produce difference signals with small
fluctuations

The speed of adaptation is controlled by a combination of fast and slow scale factors.

The fast (unlocked) scale factor, yu(k), is recursively computed in the base 2 logarithmic domain
from the resultant logarithmic scale factor, y(k):

yu(k) � �1 � 2�5� y(k) � 2�5 W�I(k)�

(3)

(4)
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where yu(k) is limited by:

1.06 � yu(k) � 10.00

For 40-Kbps ADPCM, the discrete function, W(I), is defined as follows (infinite precision values):

|I(k)| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W|I(k)| 43.50 33.06 27.50 22.38 17.50 13.69 11.19 8.81 6.25 3.63 2.56 2.50 2.44 1.50 0.88 0.88

For 32-Kbps ADPCM, the discrete function, W(I), is defined as follows (infinite precision values):

|I(k)| 7 6 5 4 3 2 1 0

W|I(k)| 70.13 22.19 12.38 7.00 4.00 2.56 1.13 –0.75

For 24-Kbps ADPCM, the discrete function, W(I), is defined as follows (infinite precision values):

|I(k)| 3 2 1 0

W|I(k)| 36.38 8.56 1.88 –0.25

For 16-Kbps ADPCM, the discrete function, W(I), is defined as follows (infinite precision values):

|I(k)| 1 0

W|I(k)| 27.44 –1.38

The factor (1–2–5) introduces finite memory into the adaptive process so that the states of the
encoder and the decoder converge following transmission errors.

The slow (locked) scale factor, yl(k), is derived from yu(k), with a low pass-filter operation:

yl(k) � �1 � 2�6� yl(k � 1) � 2�6 yu(k)

The fast and slow scale factors are then combined to form the resultant scale factor:

y(k) � al (k) yu (k � 1) � �1 � al (k)� yl (k � 1)

Where

0 � al(k) � 1

2.4.10 Adaptation Speed Control

The controlling parameter, al(k), can assume values in the range [0, 1]. It tends towards unity for
speech signals, and towards zero for voiceband data signals. It is derived from a measure of the
rate-of-change of the difference signal values.

Two measures of the average magnitude of I(k) are computed:

dms (k) � �1 � 2�5�dms(k � 1) � 2�5 F � I(k)�

and

dml (k) � �1 � 2�7�dml(k � 1) � 2�7 F � I(k)�

(5)

(6)

(7)

(8)

(9)

(10)
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For 40-Kbps ADPCM, F|I(k)| is defined by:

|I(k)| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F|I(k)| 6 6 5 4 3 2 1 1 1 1 1 0 0 0 0 0

For 32-Kbps ADPCM, F|I(k)| is defined by:

|I(k)| 7 6 5 4 3 2 1 0

F|I(k)| 7 3 1 1 1 0 0 0

For 24-Kbps ADPCM, F|I(k)| is defined by:

|I(k)| 3 2 1 0

F|I(k)| 7 2 1 0

For 16-Kbps ADPCM, F|I(k)| is defined by:

|I(k)| 1 0

F|I(k)| 7 0

Thus, dms(k) is a relatively short-term average of F|I(k)|, and dml(k) is a relatively long-term
average of F|I(k)|.

Using these two averages, the variable ap(k) is defined:

ap (k) �

		

		



�

�

�1 � 2�4ap (k � 1) � 2�3, if � dms (k) � dml (k) �  2�3 dml (k)

�1 � 2�4ap (k � 1) � 2�3, if y (k) � 3

�1 � 2�4ap (k � 1) � 2�3, if td (k) � 1

1, if tr (k) � 1
�1 � 2�4�ap (k � 1), otherwise

Thus, ap(k) tends towards the value 2 if the difference signal between dms(k) and dml(k) is large
(average magnitude of I(k) changing), and ap(k) tends towards the value 0 if the difference is
small (average magnitude of I(k) relatively constant). ap(k) also tends towards 2 for idle channel
(indicated by y(k) � 3) or partial band signals (indicated by td(k) = 1 as described in section
2.4.12). Note that ap(k) is set to 1 upon detection of a partial band signal transition (indicated by
tr(k) = 1, see section 2.4.12 ).

ap(k) is then limited to yield al(k) used in equation (7) above:

al (k) � � 1, ap (k � 1) � 1

ap (k � 1) ap (k � 1) � 1

(11)

(12)
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This asymmetrical limiting has the effect of delaying the start of a fast-to-slow state transition,
until the absolute value of I(k) remains constant for some time. This tends to eliminate premature
transitions for pulsed input signals, such as switched carrier voiceband data.

2.4.11 Adaptive Predictor and Reconstructed Signal Calculator

The primary function of the adaptive predictor is to compute the signal estimate, se(k), from the
quantized difference signal, dq(k). Two adaptive predictor structures are used, a sixth order
section that models zeros, and a second order section that models poles in the input signal. This
dual structure effectively caters for the variety of input signals which might be encountered.

The signal estimate is computed by:

Se (k) � �2
i � 1

ai (k � 1) Sr (k � i) � Sez (k),

Where

sez(k) ��6
i�1

bi(k � 1)dq(k � i),

and the reconstructed signal is defined as:

Sr(k � i) � se(k � i) � dq(k � i)

Both sets of predictor coefficients are updated using a simplified gradient algorithm for the
second-order predictor:

al (k) � �1 � 2�8�al (k � 1) � 3.2�8 sgn[p(k)]sgn[p(k � 1)],

a2(k) � (1 � 2�7)a2(k � 1) � 2�7�sgn�p(k � 2)� � f[a1(k � 1)�sgn[p(k)sgn[p(k � 1)]},

Where

p(k) � dq(k) � sez(k),

f(a1) �	
	

�

�

4a1, |a1| � 1
2

2sgn(a1), |a1| � 1
2

and sgn[0] = 1, except sgn[p(k–i)] is defined to be 0 only if p(k–i) = 0 and i = 0, with the stability
constraints:

|a2(k)| � 0.75 and |a1(k) � 1 � 2�4 � a2(k)

If tr(k) = 1 (see section 2.4.12), then a1(k) = a2(k) = 0.

For the sixth-order predictor:

bl (k) � �1 � 2�8�bl (k � 1) � 2�7 sgn�dq (k)�sgn�dq (k � i)�,

for i = 1, 2, ..., 6.

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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For 40-Kbps coding, the adaptive predictor is changed to decrease the leak factor used for zeros
coefficient operation. In this case, the previous equation becomes:

bl (k) � �1 � 2�9�bl (k � 1) � 2�7 sgn�dq (k)�sgn�dq (k � i)�,

If tr(k) = 1 (see section 2.4.12), then b1(k) = b2(k) = ... = b6(k) = 0.

As stated above, sgn[0] = 1, except sgn[dq(k–i)] is defined to be 0 only if dq(k–i) = 0 and i = 0.
Note that bi(k) is implicitly limited to � 2.

2.4.12 Tone and Transition Detector

To improve performance for signals originating from frequency shift keying (FSK) modems
operating in the character mode, a two-step detection process is defined. First, partial band
signal (that is, tone) detection is invoked so that the quantizer can be driven into the fast mode
of adaptation:

td (k) � �1, a2 (k) � � 0.71875
0, otherwise

In addition, a transition from a partial band signal is defined so that the predictor coefficients can
be set to zero, and the quantizer can be forced into the fast mode of adaptation:

tr (k) � �1, a2 (k � 1) � � 0.71875 and � dq (k) � � 24.2yl(k�1)

0, otherwise

2.5 Decoder Description

Figure 3 is a block schematic of the decoder. A functional description of each block is given in
section 2.5.1 through section 2.5.7.

(21)

(22)

(23)
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Figure 3. Decoder Block Schematic

2.5.1 Inverse Adaptive Quantizer

The function of this block is described in section 2.4.8.

2.5.2 Quantizer Scale Factor Adaptation

The function of this block is described in section 2.4.9.

2.5.3 Adaptation Speed Control

The function of this block is described in section 2.4.10.

2.5.4 Adaptive Predictor and Reconstructed Signal Calculator

The function of this block is described in section 2.4.11.

2.5.5 Tone and Transition Detector

The function of this block is described in section 2.4.12.

2.5.6 Output PCM Format Conversion

This block converts the reconstructed uniform PCM signal, sr(k , into an A-law or �-law PCM
signa,l sp(k), as required.

2.5.7 Synchronous Coding Adjustment

The synchronous coding adjustment prevents cumulative distortion occurring on synchronous
tandem codings (ADPCM, PCM, ADPCM, etc. digital connections), when:
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1. The transmission of the ADPCM and the intermediate 64 Kbps PCM signals is error free,
and,

2. The ADPCM and intermediate 64-Kbps PCM bit streams are not disturbed by digital signal
processing devices.

If the encoder and decoder have different initial conditions (as may occur after switching, for
example), then the synchronous tandeming may take time to establish. Furthermore, if this
property is disturbed, or not acquired initially, then it may be recovered for those signals of
sufficient level with spectra that occupy the majority of the 200 Hz to 3400 Hz band (that is,
speech, 4800-bit/s voiceband data).

When a decoder is synchronously connected to an encoder, the synchronous coding adjustment
block estimates quantization in the encoder. If all state variables in both the decoder and the
encoder have identical values, and there are no transmission errors, the forced equivalence of
both 4-bit quantizer output sequences for all values of k ensures the property of
non-accumulation of distortion.

This is accomplished by first converting the A-law or �-law signal, sp(k), to a uniform PCM
signal, slx(k), and then computing a difference signal, dx(k):

dx (k) � slx (k) � se (k) ,

The difference signal, dx(k), is then compared to the ADPCM quantizer decision interval,
determined by I(k) and y(k). the signal sd(k) is then defined as follows:

sd (k) �
	
	

�

�

s p

�
(k), dx (k) � lower interval boundary

s p

�
(k), dx (k)  upper interval boundary

sp (k) , otherwise

Where

sd(k) is the output PCM codeword of the decoder

� ��
�
���� is the PCM codeword that represents the next, more positive, PCM output level. When

sp(k) represents the most positive output level, then � ��
�
���� is constrained to be the value sp(k).

� ��
�
���� is the PCM codeword that represents the next, more negative, PCM output level. When

sp(k) represents the most negative output level, then � ��
�
���� is constrained to be the value sp(k).

3 Useful Features of the C54x for G.726 ADPCM

The typical application for the C54x is for vocoders that deal with a large number of samples at
the same time. Application-oriented instructions, such as LMS, FIRS, SQUR, CMPS, or
instruction with parallel load/store, do not take place naturally in the ADPCM algorithm. On the
other hand, instructions, such as EXP, NORM, MIN, MAX, are often very useful for this purpose.
More generally, the ADPCM algorithms benefit from the enhanced architecture of the C54x,
which also provides advantages in general purpose applications. The following list sums up the

(24)

(25)
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principal features of the C54x  used for the CCITT ADPCM algorithm:

• The two accumulators often make it possible to perform parallel treatments and decrease
the number of memory accesses (for temporary storage).

• The eight auxiliary registers, which are all simultaneously active, simplify the use of indirect
addressing.

• The 40-bit ALU makes it possible to avoid overflow when shifting the accumulator (used in
floating-point multiplication when scaling the result).

• Dual data-memory access, using the two or three data buses, makes some calculations
faster (used in quantization routine). Also, dual data-memory operand (when used in indirect
addressing) allows some instructions to have a one-word length instead of two (in particular
load, store, add, sub with left shift), which makes them one-cycle instructions.

• Circular addressing is easy to use. In fact, circular addressing is specified in the instruction
word. Moreover, the corresponding buffer is automatically determined (using its memory
location), simply by specifying its size (value of the BK register). Two circular buffers would
be implemented for the delayed variables dq(k-i) and sr(k-i).

• Long-word arithmetic capability will be used for the variable yl(k) (that requires more
precision). It will be used as dual 16-bit operand, when two adjacent variables are calculated
(for example, initialization of predictor coefficients, if a transition is detected).

• On-chip data-ROM capability, allows the storage of large tables of constant values, giving
the possibility of data addressing.

• The integrated compare unit provides two particularly useful instructions, MIN and MAX.
These instructions allow the limitation of the different coefficients, with a minimum of cycles.

• The EXP instruction makes it unnecessary to perform a iterative search for the most
significant bit. It is used for floating-point conversion (G.726 ADPCM requires floating-point
multiplication for the predictor filters), as well as for log-conversion (before quantizing, and
for log-PCM compression). The NORM instruction is often associated with EXP to normalize
a variable.

Now, you will see modules whose implementation on the C54x requires some comment.

3.1 Input/Output PCM Format Conversions

The ADPCM algorithm works with actual linear PCM inputs/outputs, while the standard format
for digital telephony is either A or �-law, which are logarithmic laws of quantization. The CCITT
gives these conversion laws in the G.711 recommendation.  However, linear/logarithmic PCM
conversions are included in the CCITT ADPCM recommendation (G.726) to make the PCM
inputs/outputs consistent with the algorithm. There are two reasons for this:

First, a word converted from A-law PCM has only 13 bits, while one word produced from �-law is
a 14-bit word. The ADPCM algorithm works with a resolution of 14 bits for PCM input words. To
avoid the loss of precision, PCM words coming from A-law are also scaled into 14-bit words.

C54x is a trademark of Texas Instruments.
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Secondly, a synchronous coding adjustment module is included at the output of the decoder. It
finds its origin in the non-reciprocity between linear PCM word (14 bits) and logarithmic PCM
word (8 bits). The problem, for the decoder, is to choose a log-PCM output word, SD, that is
actually representative of the ADPCM input word I. This means that if you give SD as the input
encoder, you also have to find I as output. This feature is already ensured for the linear PCM
output word, because of the feedback of the ADPCM quantization error in signal estimation (the
encoder also includes a decoding module). However, this property is no longer ensured after
converting linear PCM into log-PCM, due to the error of this logarithmic quantization. The
synchronous coding adjustment module ensures that this feature is maintained. This allows
multiple encoding-decoding-encoding without adding distortion.

As shown below, these format conversions and corrections are implemented in the C54x for
both G.726 and G.711 recommendations. The routines are valid for either A-law or �-law. Tables
and specific variables make the distinction between the two.

3.1.1 Log-PCM Companding

This module converts a linear PCM word into the logarithmic domain. As you saw, a word
coming from A-law has been one bit left-shifted, to get the maximum resolution in the ADPCM
algorithm. Now you have to do the reverse transformation before converting it to A-law. This
transformation includes rounding for negative words by subtracting one from the magnitude
before right-shifting. When considering that for small signals (� 64) a linear quantization is
required for A-law simply by dividing sample magnitude by two, the total right shift to apply for
A-law is thus 2 bits. For A-law large signals, this 2-bit right shift is also applied, and then
compensated further.

Use the variable LAWBIAS (= 33 for �-law, = 0 for A-law). Added to the linear PCM word, this
variable allows you to use powers of two as quantizer decision values. For �-law also, it avoids
the need to branch to linear quantization, which is required for magnitudes smaller than 32.

The logarithm calculation is quickly performed using the EXP and NORM instructions. See §  ()
for the method. The first difference is that normalization is done in Q4 format instead of Q7. As
you compute logarithmically only for large magnitudes ( 32), you decrease the dynamic by
storing only the segment of the word. This segment is defined by:

segment = (exponent – 1) – segment offset,
where exponent is defined in section 3.2.1 or in section 3.43

This makes it possible to code it with only three bits instead of four. The variable LAWSEG
allows us to complete the logarithm transformation, including the segment offset (4 for A-law, 5
for �-law) and the compensation left shift for A-law (see above).

Restore the sign to the magnitude by adding 128 for positive PCM words. Lastly, invert bits (only
even bits for A-law), to satisfy transmission practices; this is done by means of the variable
LAWMASK (0x55 for A-law, 0x7F for �-law).

The companding routine is shown below, with the section of code added specifically to meet the
requirements of G.726 highlighted in bold characters. The rest is sufficient for G.711. When code
shown in italic characters is suppressed, the routine performs �-law compression in only 13
cycles.
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***********************************************************************************

* Converts signal from uniform PCM to a A-law or Mu-law PCM signal with format    *

* correction                                                                      *

*                                                                                 *

*      INPUT:                                                                     *

* A          = SR(k) Reconstructed signal                                         *

* LAW        = LAW (0 for Mu-law, 1 for A-law)                                    *

* LAWBIAS    = Bias constant (=0 for A-law, =33 for Mu-law)                       *

* LAWSEG     = Constant in order to compute the segment of the PCM word           *

* LAWMASK    = Magnitude mask for A-law or Mu-law PCM word                        *

*                                                                                 *

*     OUTPUT:                                                                     *

* SD = A     = SP(k) A-law or Mu-law PCM reconstructed signal                     *

*                                                                                 *

*     CYCLES:             Min: 20, Max: 26                                        *

*                         only G711: 21                                           *

*                         only �-law: 13                                          *

***********************************************************************************

SYNC  STH   A, *AR5       ; Store sign of SR

      BIT   *AR5, 0       ; TC = 0 if SR positive

      LD    LAW, B        ; If LAW = 1: A-law

      ABS   A             ; A = |SR| = IM

      AND   C32767, A     ; If RATE = 40, SR = 8000 can occur: overflow

      XC    1, ALT        ;

      SUB   LAW, A        ; If SR < 0, subtract 1 to IM for A-law

      ABS   A             ; Ensures A positive (case SR = 8000)

      XC    1, BNEQ       ; A-law: one shift for 12-bit unsigned word,

      SFTA  A, -2         ; and one shift for linear quantization (SFTA A, -1 for G.711)

      ADD   LAWBIAS, A    ; Add Bias

      SUB   C32, A, B     ;

      BC    ECOMP, BLT    ; Linear quantization for A-law if IMAG < 32

      EXP   A             ; TREG = 31 – EXP

      LD    LAWSEG, B     ; LAWSEG =24*2^4 for Mu-law and TREG latency

      NORM  A             ; A = (SR << (15-EXP)) << 16

      SFTA  A, –10        ; A = (SR << (4–(EXP–1))) << 16

      MAS   C16, B        ; B = 24*2^4 – (TREG*2^4) = (EXP–7) << 4

      ADD   A, –16, B ; B = |SP|

      LD    C127, A       ; Load SPmax

      MIN   A             ; Saturate if |SR| out of range

ECOMP XC    1, NTC        ; Test if SR positive
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      ADD   C128, A       ; Add bit sign if positive

      XOR   LAWMASK, A    ; Apply law mask

      STL   A, SD         ; SD = SP = A-law or Mu-law PCM word

Note that in logarithmic calculation, you use (exponent – 1), instead of segment (see section 3.4).

3.1.2 Linear PCM Expanding

This module converts a PCM word from logarithmic domain to linear domain.

To reduce the clock cycles timing, tables are used for this PCM expansion. As outputs levels are
symmetrical relative to zero, use the magnitude of the log-PCM word as an offset table. This
property limits the table to 128 words. One table is used for the A-law PCM (ALAW), and
another is used for �-law PCM (MULAW). As you saw above, the A-law table directly gives the
magnitude of the linear PCM word multiplied by two, making it a 13-bit unsigned number as
required.

The original sign is then introduced, so that these samples are now in 14-bit, two-complement
format.

The routine shown here executes in 13 cycles; two of these cycles can be used to execute
initialization instructions for the following blocks. For example, if you perform G.726 ADPCM
without linear capability, this routine is always performed, so you can, for example, replace the
NOP instructions by the initialization of the block repeat counter BRC, used for the ADPCM
quantization (see section 3.5).

***************************************************************************************

*Converts signal from A-law or Mu-law PCM to uniform PCM signal with format correction*

*                                                                                     *

*     INPUT:                                                                          *

* A          = S(k) input signal (encoding)                                           *

*            = SP(k) A-law or Mu-law reconstructed signal (decoding)                  *

* LAWMASK    = Magnitude mask for A-law or Mu-law PCM word                            *

* ADLAW      = Law table address in Data-ROM                                          *

* xLAW (*AR2)= Law inverse quantizing table (x = MU or A)                             *

*                                                                                     *

*     OUTPUT:                                                                         *

* A          = SL(k) linear input signal (encoding)                                   *

*            = SLX(k) linear output signal (decoding)                                 *

*                                                                                     *

*     CYCLES: 13(actually 11 if replacing NOP latency by instructions of other blocks)*

***********************************************************************************

EXPAN XOR    LAWMASK, A   ; Invert even bits if A-law

      SFTA   A, –7, B     ; B = 1 if SP positive, 0 if SP negative

      AND    C127, A      ; A = unsigned magnitude

      ADDS   ADLAW, A     ; ADLAW = address of inverse log quantizer

      STLMA, AR2          ; AR2 = address of linear PCM word
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      NOP                 ; AR2 update latency. If this routine is always performed,

      NOP                 ; replace NOP by instructions of other blocks

                          ; (e.g: initializations)

      LD *AR2, A          ; A = linear PCM magnitude

      RETD                ;

      XC 1, BEQ           ; Convert A in two-complement,

      NEG A               ; depending on original sign of A

3.1.3 Synchronous Coding Adjustment

The synchronous coding adjustment is performed at the end of the decoder module by
re-encoding the output PCM word SP and comparing the new code ID with the original ADPCM
word I.

This re-encoding is performed by using the same code routines as those used for the encoder
(PCM expanding, difference signal calculation, logarithm conversion, adding quantizer scale
factor, then quantization). I format is two-complement, but only with the assigned bits for it (2, 3,
4, or 5), and without sign extension along the 16 bits of the processor. So this format is changed,
by using a table, to make the comparison with ID possible.

• If ID � I, then SP is overestimated, so choose SP – 1 as new value of SP.

• If ID � I, then SP is underestimated, so choose SP +  1 as new value of SP.

• Otherwise, SP is correctly estimated, and keeps its value.

Note that SP is a signed magnitude, and not two-complement. This does not allow you to
perform normal arithmetic. For instance, SP + 1 when SP is negative and is obtained with 
SP – 1.

Another point is that log-PCM format includes two different values of zero: positive 0 (0+), and
negative zero (0–). As a consequence, SP – 1 for SP = 0+ is 0–, and SP + 1 when SP = 0– is 0+.
That is only true for A-law; for �-law, SP – 1 for SP = 0+ is –1, and SP + 1 when SP = 0– is +1. 4

Lastly, overflows must be avoided. This means that if SP = 0x7F, then SP + 1 is 0x7F, too. The
following code shows a solution for this module (at the time when ID is already calculated).

***********************************************************************************

*      Perform reconstructed signal adjustment                                    *

*                                                                                 *

*      INPUT:                                                                     *

* B             = ID(k) ADPCM code from re-encoded output PCM sample              *

* IQUAxx (*AR1) = Inverse quantizer table, gives here the magnitude of I (IM)     *

* AR1           = Address of IM in IQUAxx table                                   *

* SD            = SP(k) A-law or Mu-law PCM reconstructed signal                  *

* LAWMASK       = Magnitude mask for A-law or Mu-law PCM word                     *

*                                                                                 *

*     OUTPUT:                                                                     *
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* A             = SD(k) Decoder PCM output word                                   *

*                                                                                 *

*     CYCLES: Min: 6 (usual), Max: 25                                             *

***********************************************************************************

      SUB    *AR1, B       ; B = ID – IM

      RCD    BEQ           ; If IM = ID, SD = SP and do not change SD

      LD     SD, A         ; Load output PCM word

      STH    A, 9, *AR5    ; *AR5 = sign variable = 1 if SP positive, 0 else

      XOR    LAWMASK, A    ; Apply law mask to obtain magnitude of SP

      AND    C127, A       ; A = unsigned magnitude of SP (C127 = 127)

      BC     SP0, AEQ      ; |SP| = 0 is a special case: go to SP0

      BIT    *AR5, 15      ; Test original sign of SP

      LD     #1, B         ; Load gain to prepare SP adjustment

      XC     1, BGT        ; If ID > IM, case SD = SP–

      NEG    B             ; In this case, negate the gain

      ADD    B, A          ; Add the gain if SP positive

      XC     1, NTC        ; TC = 0 if SP negative

      SUB    B, 1, A       ; In this case, subtract the gain

      LD     C127, B       ; A = |SD| is compared to |SDmax|

      MIN    A             ; Saturate the result if |SD| > 127

      RETD                 ; Return from subprogram with A = SD

      ADD    *AR5, 7, A    ; Add sign extension

      XOR    LAWMASK, A    ; Invert bits depending on the law

SP0   LD     SIGN, A       ; Case |SP| = 0

      AND    LAW, A        ; If Mu-Law, LSB of SP is 0

      XOR    C1, A         ; SP–(0+) = –1 for Mu-law, 0– else; and

      XOR    LAWMASK, A    ; SP–(0–) = –1 for both laws

      LD     C128, B       ; Load positive sign for SP+ case

      XC     2, BLT        ; case SD = SP+: LSB = 1, only if SIGN = 0

      ADD    LAW, B        ; SP+(0–) = +1 for Mu-law, 0+ else; and

      XOR    B, A          ; SP+(0+) = +1 for both laws

      RET                  ; A = SD, NB: B = ID – IM < 0 for SD = SP+

This subtlety is explained in 0.

3.2 Floating-Point Features: Conversion, Storage, and Multiplication

The floating-point module concerns the predictor that computes an estimation of the signal by
applying adaptive filters to delayed variables. Coefficients of the predictor filters (a1, a2, bi for
i = 1, ..., 6), are between –2 and 2 in Q14 format, while variables (delayed reconstructed
signals sr(k–i) and delayed quantized difference dq(k–i)) are between –32768 and 32767 in Q0
format. All of these variables use a maximum resolution of 16 bits; however, there is a large
difference of scale between coefficients and variables.
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A fixed-point multiplication would be inadequate (too much precision for high levels, not enough
for low levels). The floating-point format permits better management of the dynamic gaps. Here,
the resolution is limited to 6 bits (6 bits mantissa), but the dynamic is greater (0 is coded as 32
(1/2) for mantissa and 0 for exponent). As a consequence, if a variable has a zero value, the
floating-point product with the corresponding coefficient would not always be zero, which is
always the case with a fixed-point multiplication.

It is described now how floating-point format can be challenged by the C54x for the G.726
recommendation.

3.2.1 Floating-Point Format Storage

Floating-point number characteristics are as follows: sign, exponent, mantissa. These features
are defined by:

|number| = denormalized mantissa * 2exponent, and sign(number) = sign

If number  =  0, this equality is not verified (0 value is coded in floating-point format, as it was
actually �). The following inequalities are verified:

� � denormalized mantissa � 1. Mantissa is normalized with 6 bits representation, so:

32 � mantissa � 64, where mantissa represents the 6 most significant bits of the fixed-point
number, except for zero. As for exponent, you have:

2exponent – 1 � |number| � 2exponent. In practice, the number of the most significant bit plus one
(when LSB number is zero).

To make the access faster, use three (successive) words, instead of one, to code a floating-point
number: one word for the exponent (Q0 with 4 significant bits), one word for the mantissa (Q6
with 6 significant bits), and one more for the sign (Q0 with 0 significant bits). The sign is coded as
an arithmetic sign, and is 0 for positive and null values, –1 for negative values (see section 3.10).

3.2.2 Floating-Point Conversion

When loaded into the accumulator, the sign of a word (as defined in section 3.10 ) is the value of
the high part of accumulator. The sign is thus extracted, due to the STH instruction. Then,
compute the magnitude with the ABS instruction. Now the instructions EXP and NORM are
useful for computing exponent and mantissa. EXP calculates the number of non-significant bits
relative to the first 32 bits of the accumulator, and stores the result in the temporary register
TREG. The wanted value of exponent is thus:

exponent  =  31 – TREG for a word different from zero.

When associated with DSUBT that subtracts TREG from a variable that is here set to 31, you
directly obtain the value of the exponent (note that DSUBT actually uses a long-word; the high
part of this word must be at an even address, while the low part is set to 31).

This method does not apply if the input word to convert is 0. EXP set TREG to zero in this case.

Note also that DSUBT needs one cycle latency to use the TREG value computed by EXP. This
feature has been underlined with the evaluation module; however, this latency was unnecessary
for the simulator.
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Mantissa is calculated by means of the NORM instruction that uses the TREG value (31 –
exponent) to normalize the word in accumulator (TREG value left-shift). Then, a 9-bit right-shift
gives the wanted 6-bit mantissa in the high part of the accumulator (bits 16 to 21).

The following code gives the floating-point conversion for the reconstructed signal sr(k). It takes
12 cycles to execute. One instruction (in bold characters) has been added to satisfy 40 Kbps
(possibility of overflow on SR).

***********************************************************************************

*     Convert fixed-point number to floating-point format                         *

*                                                                                 *

*     INPUT:                                                                      *

* SD         = SR(k): Reconstructed signal in two-complement format               *

* AR6        = Address of SR(k–2) sign                                            *

*                                                                                 *

*                         OUTPUT:                                                 *

* SRFLOAT (*AR6)= SR((k+1)–1) exponent, mantissa and sign                         *

*                                                                                 *

*     CYCLES: 13                                                                  *

***********************************************************************************

      LD      SD, B          ; Load reconstructed signal

      ABS     B, A           ; A = |SR|

      AND     C32767, A      ; exp <=15, for RATE=40, SR=8000 is overflow

      EXP     A              ; TREG = 31 – EXP(|SR|)

      STH     B, *AR6–       ; Store sign of SR (0 if >= 0, –1 if negative)

      NORM    A              ; A = (|SR| mantissa) << 9

      DSUBT   C31–1, B       ; BL = 31 – TREG = EXP(|SR|)

      XC      2, AEQ         ; if SR = 0

      LD      C16384, 16, A  ; then normalize A to obtain mantissa(SR)=32

      LD      #0, B          ; and set B to zero to obtain EXP(|SR|) = 0

      STH     A, –9, *AR6–   ; Store |SR| mantissa (6 bits)

      STL     B, *AR6+0%     ; Stores EXP of |SR| (4 bits)

3.2.3 Floating-Point Multiplication

This routine has a crucial importance in CCITT ADPCM timing. The sixth-order FIR filter and the
second-order IIR filter are concerned so that eight floating-point multiplications have to be
performed. With 25 clock cycles per routine, it totals 200 clock cycles, equivalent to one-third of
the global coding process.

The routine also includes floating-point conversion of predictor coefficients (truncated in Q12
format). The principle of this conversion is the same as explained above. Mantissas of the two
operands (Q6 format) are multiplied to form the product mantissa (Q12), which is then truncated
in Q8 format. Exponents of the two operands are added to form the exponent of the product.
The result is immediately converted into two-complement format, including an 11-bit right-shift,
for scaling it in Q1 format, and sign calculation. In fact, accumulation of these products is
executed in fixed-point format.
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Each partial product is limited to 16 bits, which means that the contribution of each one to
forming the signal estimate is limited to half of the greatest possible value for the reconstructed
signal sr(k). This property is also true for the global signal estimate. However, signal estimate
value could reach twice the greatest input PCM value.

The code bellow shows one of the eight floating-point multiplications.

***********************************************************************************

* Compute a2(k) * sr(k–2) in floating-point format                                *

*                                                                                 *

*     INPUT:                                                                      *

* SRFLOAT (*AR6)         = SR(k–2) exponent, mantissa and sign                    *

* A2                     = A2(k–1)                                                *

* AR6                    = SR(k–2) address                                        *

*                                                                                 *

*                        OUTPUT:                                                  *

* B                      = WA2(k) = A2(k) * SR(k–2)                               *

* AR6                    = SR(k–1) address                                        *

*                                                                                 *

*     CYCLES: 24                                                                  *

***********************************************************************************

      LD      A2, –2, B     ; truncate A2 (Q12 2’comp: S,0,...–12)

      ABS     B, A          ; A = |A2|, (|A2>>2| in fact)

      EXP     A             ; If A > 0, TREG = 31 – EXP(|A2|)

      STH     B, SIGN       ; SIGN = sign(A2) (0 if >= 0, –1 if negative)

      DSUBT   C15–1, B      ; BL = 15 – TREG = EXP(|An|) – 16

      NORM    A             ; AH =(|A2| mantissa) << 9

      XC      2, AEQ        ; If A = 0, TREG = 0 and AH = 0 then

      LD      C16384, 16, A ; normalize A mantissa = 32 << 9 for A = 0

      LD      M16, B        ; and set B to –16, to obtain B = EXP – 16

      ADD     *AR6+, B      ; B = EXP(SR2) + EXP(A2) – 16 = WA2EXP – 16,

      STL     B, *AR3       ; save WA2EXP – 16 in *AR3

      SFTA    A, –9         ; AH = A2MANT = mantissa of A2 (6 bits)

      MPYA    *AR6+         ; B = A2MANT*SR2MANT (SR2MANT = SR2 mantissa)

      ADD     C48, B        ; Add 48 for preparing rounding

      LD      *AR3, T       ; T  = WA2EXP – 16

      LDU     *AR6+%, A     ; A = sign(SR2)

      XOR     SIGN, A       ; A = sign(SR2) * * sign(A2)

      SFTA    B, –4         ; B = mantissa of product = WA2MANT (Q8)

      NORM    B             ; WA2MANT<<(EXP–16)=WA2 magnitude (WA2MAG)<<3

      SFTA    B, –3         ; Complete scaling (–8 –3 = –11) for WA2MAG

      AND     C32767, B     ; Avoid 16- or 17-bit results for WA2EXP > 26
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      XC      1, ANEQ       ; Introduce sign of product

      NEG     B             ; B = WA2 = A2 * SR2 (Q1 2’comp:S,13,...,–1)

3.3 Delayed Variables Management, Use of Circular Buffers

Among the variables that have to be delayed, the partial product estimate p(k), the floating-point
versions of the quantized difference dq(k), and the reconstructed signal sr(k) have to be delayed
several times. So, one location in memory is insufficient for all these variables. p(k) has to be
delayed twice, so choose two successive locations for it. The instruction DELAY of the C54x
immediately delays p(k–1) to p(k–2). Sr(k) has also to be delayed twice but, as you saw, 3
successive locations memory are used for one sample, as well as for dq(k), which has to be
delayed six times.

Two circular buffers are therefore used for these two variables: SRFLOAT for sr(k), and
DQFLOAT for dq(k).

SRFLOAT has a 6-word length, while DQFLOAT has an 18-word length. These values have to
be stored in BK (circular buffer size) before using these buffers. After that, the access of the
buffer is executed using circular addressing (noted *ARx%). In this addressing mode, it is only
necessary to note the location of the new (or the oldest) delayed variable; physical limits of the
buffer are automatically managed. For this, the CPU assumes the physical buffer begins on a
k-bit boundary (that is, the k LSB bits of the address are 0, with k verifying 2k � BK), inside
[ARx% – (BK–1), ARx%] address interval.

For this purpose, DQFLOAT must be implemented in an address whose 5 LSB are 0, and
SRFLOAT must be implemented in an address whose 3 LSB are 0. In the floating-point
multiplication routine (see the code above), you saw an example of circular addressing in the
last indirect addressing access.

3.4 Logarithmic Conversion

The logarithm conversion is applied to the difference signal (that is, input signal minus signal
estimate), before scaling it by the quantizer scale factor. Going to logarithmic domain makes it
possible to reduce the signal dynamic, favoring low levels, and it has to obtain a more uniform
signal-to-noise ratio in the quantization. It also means that you subtract the scale factor from the
difference signal.

Note that the logarithm signal gives only a level of the difference signal magnitude, for further
quantization. The sign of the difference signal must be saved to obtain the signed ADPCM code.

To convert a number to logarithm, use the same characteristic as floating-point format (see
section 3.2.2)

|number| = [(denormalized mantissa) * 2] * 2exponent–1

If number  = 0, this equality is not verified: log2(0) is defined here to be 0, so the following
method does not apply for 0.

The following inequalities are verified:

� � denormalized mantissa � 1 ⇒  1 � (denormalized mantissa) * 2 � 2

and 2exponent – 1 � |number| � 2exponent
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When you take the base two logarithm, you have:

logg(|number|) = (exponent – 1) + log2[(denormalized mantissa) * 2]

Using linear approximation of the logarithm in the vicinity of 1 (log2(1+x) � x), you obtain

logg(|number|) = (exponent – 2) + [(denormalized mantissa) * 2]

(denormalized mantissa * 2) is normalized with 8 bits representation (Q7 format), so:

128 � mantissa � 256, and mantissa represents the 8 most significant bits of the fixed-point
number.

Addition of the two words is performed by scaling (exponent – 2) in Q7 format, to form a 11-bit
word (Q7).

Computing implementation of this logarithmic conversion uses the instructions EXP and NORM
(as for floating-point conversion). Moreover, the instruction MAS allows the completion of the
exponent calculation, while scaling it (by multiplication of powers of two). The program code
below shows that this procedure is short and executes quickly (10 cycles max).

***********************************************************************************

*     Convert difference signal to logarithmic domain for further quantization:   *

*                                                                                 *

*     INPUT:                                                                      *

* A          = D(k) linear input PCM signal (Encoder)                             *

*            = DX(k) Quantized reconstructed signal (Decoder)                     *

*                                                                                 *

*     OUTPUT:                                                                     *

* B          = DL(k) logarithmic difference signal                                *

*                                                                                 *

*     CYCLES: Min: 5, Max: 10 (usual)                                             *

***********************************************************************************

      BC      SUBTB, AEQ  ; If A = 0, DL = 0

      ABS     A, B        ; B = magnitude of D = DQM

      EXP     B           ; TREG = 31 – EXP

      LD      C3712, A    ; C3712 =29*2^7 for EXP computing and scaling

      NORM    B           ; BH = DQM << (14–(EXP–1))

      SFTA    B, –7       ; BH = 2*MANT (Q7 format)

      MAS     C128, A     ; A = 29*2^7 – (TREG*2^7) = (EXP–2) << 7

      ADD     B, –16, A   ; Add scaled(EXP–2) to 2*MANT to form DL

3.5 3-, 4-, or 5-Bit Quantizer

An iterative search is used for the quantizer, where the difference signal (quantizer input) is
compared to the low levels of decision corresponding to a quantized level (ADPCM code). Use
the block repeat capability to limit the number of cycles used for this loop function.

This quantizer is valid for 16-, 24-, 32-, or 40-Kbps coding to yield ADPCM code, as it is for
synchronous coding adjustment function in the decoder. For this, it uses several variables and
tables.
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First, the table ITBLxx provides low levels of decisions values, depending on the chosen rate
(xx = 16, 24, 32, or 40 to designate 16-, 24-, 32-, or 40-Kbps coding).

The table QUANxx provides ADPCM code for the encoder, while the table SYNCxx provides ID
(see section 3.1.3) code for the synchronous coding adjustment in the decoder (xx also
designates the coding rate).

As for the variables, N, which is the number of |I| levels, is use to initialize the research interval.
In fact, there are actually N levels of decision values that correspond to 2 * N quantization levels
when you consider the sign of difference signal. The other variable is RPTQUA; this is the
number of repeats for the iterative search block. As N is an even value, it ensures that this
number is constant for a given rate; that is, the number of loops is 1, 2, 3, or 4, respectively, for
16-, 24-, 32-, or 40-Kbps. So, 16-Kbps ADPCM encoding is faster than 40-Kbps encoding. This
constant number of loops makes it possible to avoid the usual test of algorithm termination.

The instruction SACCD allows the storage of the current middle level of quantization, while
comparing the corresponding decision value with the difference signal. The instructions SUB
and ADD, used with dual data-memory access, allow addition and subtraction on two memory
operands to be performed in one clock cycle. Details of this routine are shown in the program
code below, where loop block for iterative search is in bold characters.

***********************************************************************************

*  16, 24, 32, or 40Kbit/s ADPCM quantizer                                        *

*                                                                                 *

*     INPUT:                                                                      *

* A   = DLN(k): Log2(Difference signal) with quantizer scale factor normalization *

* SIGN       = sign(D): Difference signal sign (=0 if positive, =–1 else)         *

* N          = Number of |I| levels                                               *

* ADQUAN     = DROM address of quantizer QUANxx                                   *

* QUANxx (*AR2)           = Quantizer table (xx = 16, 24, 32, or 40)              *

* ADITBL                  = DROM address of |I| table ITBLxx                      *

* ITBLxx (*AR2)           = QSi: quantizer levels (xx = 16, 24, 32, or 40)        *

*                                                                                 *

*     OUTPUT:                                                                     *

* A          = I(k) ADPCM code *

*                                                                                 *

*     CYCLES:                                                                     *

* 32 (16 Kbit/s)                                                                  *

* 41 (24 Kbit/s)                                                                  *

* 50 (32 Kbit/s)                                                                  *

* 59 (40 Kbit/s)                                                                  *

***********************************************************************************

      STL     A, *AR4+     ; DQ = DLN

      LD      #0, A        ;

      STL     A, *AR4–     ; Initialize a = lower step of quantization

      LD      N, 16, A     ;
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      STH     A, *AR3      ; Initialize b = upper step of quantization

      SFTA    A, –15, B    ;

      MVDK    RPTQUA, BRC  ; Initialize block repeat counter

      RPTB    EQUAN        ; Repeat loop for iterative search

      ADDS    ADITBL, B    ; Add origin address of quantization table

      STLM    B, AR2       ; AR2 = address of QS[M]

      SFTA    A, –1        ; A = M = middle step of quantization

      LD      #0, ASM      ; ASM = 0 for SACCD and AR2 update latency

      SUB     *AR4+, *AR2, B ; A = (D-QS[M]) << 16

      SACCD   A, *AR4, BGEQ ; a = M if D >= QS[M]

      SACCD   A, *AR3, BLT ; b = M if D < QS[M]

      ADD     *AR3, *AR4–, A ; A = b+a << 16  = 2*M << 16

EQUAN SFTA    A, –15, B    ; B = offset table (4*M)

      LD      SIGN, A      ; Load sign of difference signal

      SFTA    B, –2        ; B = M = level of quantization

      ADDS    ADQUAN, B    ; Add table quantization address

      XC      1, ANEQ      ;

      ADD     N, B         ; Add offset if D was negative

      STLM    B, AR2       ; *AR2 = address of ADPCM code

      RETD                 ;

      LD      *AR2, B      ;

      LD      *AR2, A      ; A = ADPCM code (or = ID for SYNC routine)

3.6 Inverse Quantizer

From an ADPCM word, the inverse quantizer gives the quantized difference signal,to reconstruct
the original signal. It is, of course, the basis function of the decoder. However, it is also used for
the encoder to estimate the next sample signal, which means that quantization error is
re-introduced into the proper input signal. At the level of the encoding process, the difference
signal is calculated between input PCM sample and a signal estimate that would be the same as
that calculated by the decoder. Thus, the decoding process does not diverge relative to the
encoding process. In other words, there is no accumulation of quantization error.

From the inverse quantizer, there begins a whole process of algorithm adaptation that is
common to the encoder and decoder. It includes quantizer scale-factor adaptation, speed control
parameter adaptation, and predictor adaptation, as well as tone and transition detection.

To allow these adaptations, the inverse quantizer provides:

• Quantized difference signal: dqln(I) (normalized and in logarithmic domain)

• The functions F(I) (rate of change weighting function), and W(I) (scale-factor multipliers)

• Sign of I (ADPCM code), which was the difference signal sign, and which will be the
quantized difference signal sign.

• IM: Magnitude of I in the sense where IM positive but order relation in I is kept for IM. This
value is useful for the synchronous adjustment module, in decoder.
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These values are given via the table IQUAxx (xx = 16, 24, 32, 40 for 16, 24, 32, 40 Kbps
coding). In fact, as dqln(I), F(I), and W(I) only depends on |I| value, this table gives the address
where these functions are located, depending only on |I|. This makes it possible to save
memory.

3.7 Transition Detector and Trigger Process

This implementation of the ADPCM algorithm has been conceived to follow a linear progress
with a minimum of branch instructions for a maximum of clarity, and with regard to the G.726
recommendation. However, this module constitutes an exception. When a transition is detected,
predictor coefficients and tone-detection variables take their reset value (0), while the speed
control parameter is set to one, to go into fast adaptation mode. When a transition is detected,
the chosen solution is to reset the variables concerned, then to skip the adaptation process
where they are implied. In the opposite case, it avoids testing a transition variable at the end of
the adaptation process.

The reset of the coefficients is performed using long-word instructions, to set two variables with
one-cycle instruction, as shown below. The constraint for this capability is the alignment of the
long words on even boundaries.

***********************************************************************************

*     Reset of ai(k), bi(k), td(k), ap(k) (to one) in case of transition detect    *

*
*

*           CYCLES: 9                                                             *

***********************************************************************************

      LD    C256, 16, A      ; Load 0100 0000 in A

      DST     A, AP          ; AP(k) = 256 (1) and TD(k) is set to 0

      LD      #0, A          ; Reset of all predictor coefficients

      DST     A, A1          ; A1(k) = A2(k) = 0

      DST     A, B1          ; B1(k) = B2(k) = 0,

      BD      ADAPTY         ; then go directly to routine ADAPTY: skip

                             ; adaptation process

      DST     A, B3          ; B3(k) = B4(k) = 0

      DST     A, B5          ; B5(k) = B6(k) = 0

3.8 Double Precision/Dual 16-Bit Arithmetic Use

The TMS320C54x DSP is a 16-bit processor, but its two read data buses allow it to perform dual
data-memory access. Some long-word (32-bits) instructions are thus available, making possible
32-bit arithmetic. For these instructions, the long-word operand has to be aligned on an even
word address in memory.

The first utilization of this feature is the double-precision requirement. In G.726 recommendation,
all variables can be implemented on 16-bit words, except the locked quantizer scale factor, yl(k),
that needs a 19-bit resolution in Q15 format. The chosen solution is to implement it in a
long-word as Q25 format with 29-bit resolution. That makes the format of the high-word
compatible with the format of the other scale factors (yu(k) and y(k) in Q9 format). To respect the
required resolution, the 10 LSB of the low word must have been set to zero. The code below
illustrates the possibility of using yl(k), depending on the required format:
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**** Quantizer scale factor y(k) calculation: single-word yl(k–1) use (Q9 format) ****

      STLM B, T           ; T = AL for multiplication

      LD YU, A            ;

      SUB  YL, A          ; Here, YL = YL(high word) = (Q9)

      ABS  A, B           ; A = YU – YL

      STL  B, TEMP        ; B = |YU – YL|

      MPY  TEMP, B        ; Multiply unsigned magnitudes: |YU–YL| * AL

      SFTA B, –6          ; Scale the result to obtain (Q9)

      XC 1, ALT           ; Convert magnitude to two’s complement

      NEG  B              ; Negate if YU – YL was negative

      RETD                ;

      ADD  YL, B          ; B = YL + AL * (YU–YL)

      STL  B, Y           ; Store Y(k) (Q9)

(...)

** Locked quantizer scale factor yl(k) updating: double-word yl(k–1) use (Q25 format,

** actually Q15) **

      LD YU, 16, A        ; Scale YU with YL

      DSUB YL, A          ; A = YU – YL = 19-bit word

      STH  A, *AR3        ; Truncate the 6 LSB of –YL to limit to Q15

      DLD  YL, B          ; B = YL

      ADD  *AR3, 10, B    ; B = YL + (YU–YL) >> 6 (Q15 format)

      DST B, YL           ; Store long-word YL

Another possibility of doubleword arithmetic is to consider a long-word as two different variables
for which a double access would be possible. You have already seen an example with the
trigger process (see section 3.7). Another case is for the variable p(k), that is the partial signal
reconstructed signal (sum of partial signal estimate sez(k) and quantized difference dq(k)). The
physical long-word associated is the PK0 variable. High-word is the sign of p(k) (in definition of
section 3.10), and low-word is p(k) itself. The following code shows how long-word PK0 can be
used, depending on the required information:

**** partial signal reconstructed calculation ****

**** works only for 16, 24, 32 Kbps coding (dq coded with 15 bits) ****

**** so another solution was finally chosen to satisfy 40 Kbps coding also ****

      ADD    SEZ, A       ;

      DST    A, PK0       ; PK0high = sign(DQ+SEZ), PK0low = DQ + SEZ = P(k)

(...)

**** predictor coefficient a1(k) updating ****

      LDU    PK1, A ; A = PK1

      XOR    PK0, A ; A = PK0 ** PK1 (signs): single word access for PK0

      LD     C192, B      ; 192 = 3 * 2^–8 in Ai scale

      DLD    PK0, A ; test P(k) = 0 : double-word access for PK0

      XC     1, ANEQ      ; Test PK0 ** PK1 sign
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      NEG    B               ; B = 3 * 2^–8 * PK0 * PK1

      XC 1,  AEQ             ;

      LD     #0, B           ; If P(k) = 0, then sign(P(k))= 0, so B is 0

      LD     A1, A           ;

      SUB    A, –8           ; A = A1 – A1 >> 8

      ADD    B, A            ; A = A1 – A1 >> 8 + 3 * (PK0 * PK1) >> 8

Lastly, special instructions for dual 16-bit arithmetic are available. Dual 16-bit arithmetic can be
chosen by setting the C16 bit of ST1.

In this case, the ALU considers the long-word as two separates 16-bit words. However, when
using only the low-word for these special instructions, this bit need not be set. For instance, for
the instruction DSUBT, subtract TREG from the long-word. For your purpose, this makes it
possible to directly compute the exponent, in floating-point conversion (see section 3.2.2).

3.9 Limitation of Coefficients Using Compare Unit

To ensure that the filters do no diverge, some variables and adapted coefficients are limited.
That is the case for yu(k), al(k), a1(k), a2(k), while the others are implicitly limited.

For these limitations, the MIN and MAX instructions of the C54x are very useful. Shown here is a
typical example of coefficient limitation:

**** Limit predictor coefficient a2(k) **** 5 cycles

      LD     C12288, B       ; B = 12288 (0.75) = upper limit of A2

      MIN    A               ; A = A2 <= 12288

      NEG    B               ; B = –12288 (–0.75) = lower limit

      MAX    A               ; –12288 <= A <= 12288

      STL    A, A2           ; Store A2(k)

3.10 Sign Representation

Sign of a word is normally defined as:

sign(x) = +1 if x  0, else sign(x) = –1

This definition allows to use the property:

x � | x | * sign (x)

This sign representation is not very significant in computing arithmetic when using he two’s
complement format. In this format, sign bits are non-significant leading bits: zero for a positive
number, one for negative numbers. As a consequence, when loading 16-bit data in the 40-bit
accumulator of the C54x, the high part of accumulator contains 16 sign bits of the data. These
can be easily stored in memory due to the STH instruction. This representation is chosen for its
sign distinction. So, this sign has the value:

sign = 0x0000 = 0 for positive data

sign = 0xFFFF = –1 for negative data

(26)
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The temporary variable, SIGN, is often used to store these signs. Note that G.726
recommendation defines computing sign with only one bit, that is 0 for positive values, 1 for
negative values. In fact, it is similar, when considering that you always use sign extension
(arithmetical approach), while they do not (logical approach).

Such a representation of sign allows easy sign calculation, storage, and test. But equality (1) is
no longer valid. For instance equation (2–11) cannot be implemented with simple sign
multiplication.

In fact, you have the following equivalence:

sign(x) * sign(y) ⇔ sign(x) ** sign(y) in computing arithmetic,

Where ** designates logical XOR. You will see how to implement this feature with predictor
coefficient a2(k) adaptation (sign arithmetic in bold characters):

***********************************************************************************

* Update a2(k) predictor coefficients:                                            *

* A2 = (1–2^–7)*A2 + 2^–7*[PK0*PK2–F(A1)*PK0*PK1] where PK0 is 0 if P(k) = 0      *

*                                                                                 *

*                               INPUT:                                            *

* A2         = A1(k–1), A2(k–1): 2nd order IIR filter coefficients                *

* PK0 (high) = sgn(P(k))                                                          *

* PK0 (low)  = DQSEZ = P(k) = DQ(k) + SEZ(k): Partial reconstructed signal        *

* PK1, PK2   = sgn(P(k–1)), sgn(P(k–2))                                           *

*                                                                                 *

*                               OUTPUT:                                           *

* A2         = unlimited A2(k)                                                    *

*                                                                                 *

*                               CYCLES: 23                                        *

***********************************************************************************

      LDU    PK1, A       ; A = PK1

      XOR    PK0, A       ; A = PK0 ** PK1

      LD     A1, B        ; B = A1

      XOR    B, –16, A    ; AL = PK0 ** PK1 ** sign(A1)

      STL    A, *AR5      ; *AR5 = PK0 ** PK1 ** sign(A1)

      ABS    B            ; B = |A1|

      BIT    *AR5+, 0     ; Test sign of PK0 ** PK1 ** sign(A1)

      LD     C8191, A     ; Perform f(A1): compare |A1| with 1/2

      MIN    B            ; and saturate if |A1| > 1/2

      SFTA   B, 2         ; |f(A1)| = 4 * |A1|

      XC     1, NTC       ; B = |f(A1)|

      NEG    B            ; B = –f(A1)*PK0*PK1

      LDU    PK0, A       ; A = PK0

      XOR    PK2, A       ; A = PK0 ** PK2
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      SUB    C16384, B    ; B = –f(A1)*PK0*PK1 – |PK0*PK2|

      DLD    PK0, A       ; Test P(k) = 0

      XC     1, AEQ       ; Test PK0 ** PK2 sign

      ADDS   C32768, B    ; B = –f(A1)*PK0*PK1 + PK0*PK2

      XC     1, AEQ       ;

      LD     #0, B        ; If P(k) = 0, then sign(P(k))= 0, so B is 0

      LD     A2, A        ;

      SUB    A, –7        ; A = A2 – A2 >> 7

      ADD    B, –7, A     ; A = A2 – A2>>7 +(–f(A1)*PK0*PK1+PK0*PK2)>>7

3.11 Coder Rate and PCM Laws Selection

The decision of coder rate (16, 24, 32, or 40 Kbps) and PCM law (A-law, �-law, or linear PCM) is
performed during the execution of the program. The choice is made by the main program, or
calling program, by setting some variables (RATE, LAW), and is then managed by the SELECT
routine. This routine is currently called by both the encoder and decoder so that the choice is
estimated at each new sample.

Ten variables (see Table 9) allow a distinction to be made between the coder rates and the PCM
laws. These variables are set according to the values of the global variables RATE and LAW. To
estimate these variables more quickly, two initializations tables are used, thereby avoiding
multiple tests. These tables directly give the correct values of the ten relevant variables; for this,
the MVDD instruction is used. It allows data memory transfer in one clock cycle. Also, auxiliary
registers are initialized using MVMM (memory-mapped register transfer).

3.12 Channel Selection

Several channels can be simultaneously dealt with; each channel has its own data memory
space (context), and runs independently. This is made possible by direct addressing, using
data-memory address (DMA). In this mode, the absolute address is obtained with the DMA
address (7 bits used as address LSB), and the value of the data-page pointer (DP), 9 bits used
as address MSB). DMA is also used as an address relative to the beginning of a page. You
allocate a data-page per channel for memory space, so, when using DMA addressing mode, the
value of DP determines which channel you want to access. To enable this, the context memory
allocated for a channel does not exceed one page (that is, 128 words).

A channel also uses data-memory constants in program space. These data are used by each
channel and are held at a precise location, depending on program linking. They are accessed by
indirect addressing, and do not cause problems because these locations have constant
addresses.

When you access the channel context (dataP) via indirect addressing, the address contained in
the auxiliary register must be correctly set. This is an actual absolute address, and cannot be set
using the absolute address of the label used with direct addressing. In fact, each variable is
allocated only one time, at a precise address when linking. The label continues to designate this
location, even if you also use the label to designate the same variable, but for another channel
(and so for another address), as explained above. The only way to proceed is to extract DP
value, to calculate the absolute address of the concerned variable. This is done in the
initialization routine when implementing a channel, for a specific variable. The initialization
routine (shown below) uses this address to initialize the context (data) space of the channel
(using a program table). Also, this address value is kept in the context channel, and is used later
to initialize auxiliary registers (for example, in the SELECT routine). See section 3.11.
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4 Data Memory Organization

Table 5 through Table 8 display the map of the required RAM space for a G.726 channel.

The tables includes these different fields:

• “Address” is the relative address (in decimal format) relating the beginning of a data page.

• “Name” is the label of the variable address. When the label designates a location of several
words as for DQFLOAT, YL, and SRFLOAT, the index in the bracket is for the number of the
word for this location. For example, DQFLOAT(5) designates the fifth word from DQFLOAT
location.

• “Access and routine” is for the addressing mode. When indicated ARx, it means that the
indirect addressing mode is used with the auxiliary register number x. “DMA” means that the
direct-addressing mode is used. The numbers of the routines (see Table 28) that use the
variable are between brackets.

• “Reset value” gives the assigned value of the variable by the reset routine,
_G726ENC_TI_reset or _G726DEC_TI_reset.

• “Description” gives a short description of the variable.
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Table 5. Internal Processing Delayed Variables  

Address Name Access and Routine
Reset
Values Description

0 DQFLOAT(1) AR7 (1, 34) 0 Designates either DQ1†, ..., or DQ6† exponent

1 DQFLOAT(2) AR7 (1, 34) 32 Designates either DQ1†, ..., or DQ6† mantissa

2 DQFLOAT(3) AR7 (1, 25, 34) 0 Designates either DQ1†, ..., or DQ6† sign

... ... (4*3 variables) ... ... ...

15 DQFLOAT(16) AR7 (1, 34) 0 Designates either DQ1†, ..., or DQ6† exponent

16 DQFLOAT(17) AR7 (1, 34) 32 Designates either DQ1†, ..., or DQ6† mantissa

17 DQFLOAT(18) AR7 (1, 25, 34) 0 Designates either DQ1†, ..., or DQ6† sign

18 YL(high word) DMA (4, 18, 33) 544 Designates YL† format with 10

19 YL(low word) DMA (33) 0 LSB set to 0 making it an actual Q15 format)

20 AP DMA (3, 19, 29) 0 Designates AP†

21 TD DMA (18, 20, 28) 0 Designates TD†

22 PK1 DMA (21, 36) 0 Designates PK1†

23 PK2 DMA (23, 36) 0 Designates PK2†

24 SRFLOAT(1) AR6 (1, 35) 0 Designates either SR1† or SR2† exponent

25 SRFLOAT(2) AR6 (1, 35) 0 Designates either SR1† or SR2† mantissa

26 SRFLOAT(3) AR6 (1, 35) 0 Designates either SR1† or SR2† sign

27 SRFLOAT(4) AR6 (1, 35) 0 Designates either SR1† or SR2† exponent

28 SRFLOAT(5) AR6 (1, 35) 0 Designates either SR1† or SR2† mantissa

29 SRFLOAT(6) AR6 (1, 35) 0 Designates either SR1† or SR2v sign

30 A1 DMA (1, 20, 23, 24) 0 Designates A1†

31 A2 DMA (1, 20, 21, 22) 0 Designates A2†

32 B1 DMA (1, 20, 26) 0 Designates B1†

33 B2 DMA (1, 20, 26) 0 Designates B2†

34 B3 DMA (1, 20, 26) 0 Designates B3†

35 B4 DMA (1, 20, 26) 0 Designates B4†

36 B5 DMA (1, 20, 26) 0 Designates B5†

37 B6 DMA (1, 20, 26) 0 Designates B6†

38 DMS DMA (16, 28) 0 Designates DMS†

39 DML DMA (17, 28) 0 Designates DML†
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Table 5. Internal Processing Delayed Variables (Continued)

Address Description
Reset
ValuesAccess and RoutineName

40 YU DMA (4, 32) 544 Designates YU†

† See the description of this variable in Table 30.

Table 6. Constants

Address Name Access Reset Value Description

41 C1 DMA 1 Constant value C1 = 1

... ... (24 variables) ... ... ... (Constant value Cx = x)

64 C32768 DMA 32768 Constant value C32767 = 32768 (used as unsigned word)

65 M16 DMA –16 Constant value M16 = –16

66 M11776 DMA –11776 Constant value M11776 = –11776

67 ADSECOD DMA SECOD – 16 Address of rate coder selection table (constant = SECOD –16)

68 ADSELAW DMA SELAW Address of law–PCM selection table (constant = SELAW)

Table 7. Address Variables

Address Name Access Reset Value Description

69 ADDQ6 DMA Address of DQFLOAT(1) Exponent Address of 6 times delayed quantized difference

70 ADSR2 DMA Address of SRFLOAT(1) Exponent Address of 2 times delayed reconstructed signal

71 ADTEMP DMA Address of N Address of variable N (constant once initialized)

72 ADY DMA Address of Y

Table 8. Global Variables: G.726 Commands, Input and Output Signals

Address Name Access and Routine Format Description

73 _LAW DMA (0, 37) Possible values: 0, 1, or 2 PCM law select:
0 for �-law,
1 for A-law,
2 for linear PCM

74 S DMA (7 + S) bits, Q0 SM (log-PCM)
(13 + S) bits, Q0 TC (linear-PCM)

PCM input word for encoder

75 I DMA 2 bits (LSB) for 16 Kbps coding
3 bits (LSB) for 24 Kbps coding
4 bits (LSB) for 32 Kbps coding
5 bits (LSB) for 40 Kbps coding

ADPCM word (output for
encoder, input for decoder)

76 SD DMA (13, 35, 37, 38) (7 + S) bits, Q0 SM (log-PCM)
(13 + S) bits, Q0 TC (linear-PCM)

PCM output word for decoder
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Table 9. Coder Rate and PCM-Law Selection

Address Name Access Description

77 N DMA (9)/AR3 (0) Current number of |I| levels (N = 2, 4, 8,16)

78 RPTQUA DMA (9)/AR3 (0) Current block repeat number for quantization loop
(RPTQUA = 0,1,2,3)

79 SHIFT DMA (10)/AR3 (0) Current shift value for Bi update

80 ADITBL DMA (9)/AR3 (0) Current |I| table address

81 ADIQUA DMA (10)/AR3 (0) Current inverse quantizer table address

82 ADQUAN DMA (9)/AR3 (0) Current quantizer table address

83 ADLAW DMA (5)/AR3 (0) Current PCM inverse quantizer table address

84 LAWMASK DMA (5, 37, 38)/AR3 (0) Current log-PCM magnitude mask

85 LAWBIAS DMA (37)/AR3 (0) Current bias for log-PCM quantizer

86 LAWSEG DMA (37)/AR3 (0) Current constant for segment calculation in PCM quantizer

Table 10. Temporary Internal Processing Variables

Address Name Access Description

87 Y DMA (4, 8, 11, 28, 31) Designates Y†

88 SEZ DMA (2, 14)/AR5 (2) Designates SEZ†

89 SIGN DMA (...)/AR5 (...) Designates DS†, DSX†, or DQS

90 SE DMA (2, 6, 13)/AR4 (2) Designates SE†

91 DQ DMA (12, 18, 25, 34)/AR4 (9) Designates DQ†, or D†

92 PK0 DMA (14, 21, 23)/AR4 (9) Designates PK0†, or lower interval limit of iterative search in (9)

† See description of the variable in Table 30.

Table 11. Temporary Variables

Address Name Access Description

93 TEMP AR3 (...) General use temporary variable for intermediate calculation

94 ADQUAND DMA Holds ADQUAN at reset

95 RATE DMA Compression rate

96 LAW DMA PCM data format

97 FRLEN DMA Processing frame length
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4.1 Algorithm Tables (Program Space)

This section has 849 words and contains six tables. The variables of the involved variables have
their format described in Table 30. These tables are:

1. RAM initialization table, INIRAM. This table contains reset values of internal processing
variables, and constant values that are transferred in RAM when applying the coder reset
routine, _G726ENC_TI_reset or _G726DEC_TI_reset.

2. |I| tables for all rates. Each table contains successively:
a. The lowest level of input quantizer interval, QS|I| (first value of column two, Table 12

through Table 15).
b. The output level of the inverse quantizer, DQLN|I| (column three, Table 16 through

Table 19).
c. The rate-of-change weighting function, F|I|, (Table 20 through Table 23).
d. The scale-factor multipliers, W|I| (Table 24 through Table 27).

3. Quantizer tables for all rates. Each table gives the output word that corresponds to a
certain level of quantization. For the encoder, it gives the ADPCM word I (in two’s
complement, column three of Table 12 through Table 15), and for the decoder (in
re-encoding routine for synchronous adjustment), it gives the word ID (in absolute value,
column four of Table 12 through Table 15), which has to be compared with the original
ADPCM code.

4. Inverse quantizer tables for all rates. Each table gives, from a I ADPCM code, the output
level of the quantizer which corresponds to the quantized difference signal (normalized
and in logarithmic format, column three, Table 16 through Table 19). It also gives the sign
of this quantized difference (column two, Table 16 through Table 19). This sign, which is
also the sign of I, is the sign of the original difference signal before being normalized and
going into logarithmic domain. Lastly, it gives the word the magnitude of I (column four of
Table 16 through Table 19), which has to be compared with ID (see Table 12 through
Table 15).

5. A-law and �-law tables for PCM expanding. This inverse quantizer table gives the linear
PCM level corresponding to a logarithmic PCM code (see section 3.1.2).

6. PCM laws and coder rate selection tables. These tables permit the initialization of the
coder, based on linear PCM, A-law PCM, or �-law PCM choice, and 16, 24, 32, or 40
Kbps coding choice. The relevant variables are those of Table 9.

Table 12. Quantizer Definition for 40-Kbps ADPCM  

DS/DSX DLN/DLNX I ID

0 553, ..., 2047 01111 31

0 528, ..., 552 01110 30

0 502, ..., 527 01101 29

0 475, ..., 501 01100 28

0 445, ..., 474 01011 27

NOTE: The I values are transmitted with bit 1.
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Table 12. Quantizer Definition for 40-Kbps ADPCM (Continued)

DS/DSX IDIDLN/DLNX

0 413, ..., 444 01010 26

0 378, ..., 412 01001 25

0 339, ..., 377 01000 24

0 298, ..., 338 00111 23

0 250, ..., 297 00110 22

0 198, ..., 249 00101 21

0 139, ..., 197 00100 20

0 68, ..., 138 00011 19

0 –16, ..., 67 00010 18

0 –22, ..., –17 00001 17

0 –2048, ..., –23 11111 15

1 –2048, ..., –23 11111 15

1 –22, ..., –17 11110 14

1 –16, ..., 67 11101 13

1 68, ..., 138 11100 12

1 139, ..., 197 11011 11

1 198, ..., 249 11010 10

1 250, ..., 297 11001 9

1 298, ..., 338 11000 8

1 339, ..., 377 10111 7

1 378, ..., 412 10110 6

1 413, ..., 444 10101 5

1 445, ..., 474 10100 4

1 475, ..., 501 10011 3

1 502, ..., 527 10010 2

1 528, ..., 552 10001 1

1 553, ..., 2047 10000 0

NOTE: The I values are transmitted with bit 1.
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Table 13. Quantizer Definition for 32-Kbps ADPCM  

DS/DSX DLN/DLNX I ID

0 400, ..., 2047 0111 15

0 349, ..., 399 0110 14

0 300, ..., 348 0101 13

0 246, ..., 299 0100 12

0 178, ..., 245 0011 11

0 80, ..., 177 0010 10

0 –124, ..., 79 0001 9

0 –2048, ..., –125 1111 7

1 –2048, ..., –125 1111 7

1 –124, ..., 79 1110 6

1 80, ..., 177 1101 5

1 178, ..., 245 1100 4

1 246, ..., 299 1011 3

1 300, ..., 348 1010 2

1 349, ..., 399 1001 1

1 400, ..., 2047 1000 0

NOTE: The I values are transmitted with bit 1.

Table 14. Quantizer Definition for 24-Kbps ADPCM

DS/DSX DLN/DLNX I ID

0 331, ..., 2047 011 7

0 218, ..., 330 010 6

0 8, ..., 217 001 5

0 –2048, ..., 7 111 3

1 –2048, ..., 7 111 3

1 8, ..., 217 110 2

1 218, ..., 330 101 1

1 331, ..., 2047 100 0

NOTE: The I values are transmitted with bit 1.
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Table 15. Quantizer Definition for 16-Kbps ADPCM

DS/DSX DLN/DLNX I ID

0 261, ..., 2047 01 3

0 –2048, ..., 260 00 2

1 –2048, ..., 260 11 1

1 261, ..., 2047 10 0

NOTE: The I values are transmitted with bit 1.

Table 16. Quantizer Output Levels for 40-Kbps ADPCM  

I DQS DQLN IM

01111 0 566 31

01110 0 539 30

01101 0 514 29

01100 0 488 28

01011 0 459 27

01010 0 429 26

01001 0 395 25

01000 0 358 24

00111 0 318 23

00110 0 274 22

00101 0 224 21

00100 0 169 20

00011 0 104 19

00010 0 28 18

00001 0 –66 17

00000 0 –2048 16

11111 1 –2048 15

11110 1 –66 14

11101 1 28 13

11100 1 104 12

11011 1 169 11

NOTES: 1. The I values are received, starting with bit 1.
2. It is possible for the decoder to receive the codeword 00000 because of transmission disturbances

(e.g., line bit errors).
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Table 16. Quantizer Output Levels for 40-Kbps ADPCM (Continued)

I IMDQLNDQS

11010 1 224 10

11001 1 274 9

11000 1 318 8

10111 1 358 7

10110 1 395 6

10101 1 429 5

10100 1 459 4

10011 1 488 3

10010 1 514 2

10001 1 539 1

10000 1 566 0

NOTES: 1. The I values are received, starting with bit 1.
2. It is possible for the decoder to receive the codeword 00000 because of transmission disturbances

(e.g., line bit errors).

Table 17. Quantizer Output Levels for 32-Kbps ADPCM

I DQS DQLN IM

0111 0 425 15

0110 0 373 14

0101 0 323 13

0100 0 273 12

0011 0 213 11

0010 0 135 10

0001 0 4 9

0000 0 –2048 8

1111 1 –2048 7

1110 1 4 6

1101 1 135 5

1100 1 213 4

1011 1 273 3

NOTES: 1. The I values are received, starting with bit 1.
2. It is possible for the decoder to receive the codeword 00000 because of transmission disturbances

(e.g., line bit errors).
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I IMDQLNDQS

1010 1 323 2

1001 1 373 1

1000 1 425 0

NOTES: 1. The I values are received, starting with bit 1.
2. It is possible for the decoder to receive the codeword 00000 because of transmission disturbances

(e.g., line bit errors).

Table 18. Quantizer Output Levels for 24-Kbps ADPCM  

I DQS DQLN IM

011 0 373 7

010 0 273 6

001 0 135 5

000 0 –2048 4

111 1 –2048 3

110 1 135 2

101 1 273 1

100 1 373 0

NOTES: 1. The I values are received, starting with bit 1.
2. It is possible for the decoder to receive the codeword 000 because of transmission disturbances (e.g.,

line bit errors).

Table 19. Quantizer Output Levels for 16-Kbps ADPCM

I DQS DQLN IM

01 0 365 3

00 0 116 2

11 1 116 1

10 1 365 0

NOTE: The I values are received, starting with bit 1.

Table 20. Map Quantizer Output F|I| for 40-Kbps ADPCM

|I(k)| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F|I(k)| 6 6 5 4 3 2 1 1 1 1 1 0 0 0 0 0

Table 21. Map Quantizer Output F|I| for 32 Kbps ADPCM

|I(k)| 7 6 5 4 3 2 1 0

F|I(k)| 7 3 1 1 1 0 0 0



SPRA118

45 G.726 Adaptive Differential Pulse Code Modulation (ADPCM) on the TMS320C54x DSP

Table 22. Map Quantizer Output for 24 Kbps ADPCM

|I(k)| 3 2 1 0

F|I(k)| 7 2 1 0

Table 23. Map Quantizer Output for 16 Kbps ADPCM

|I(k)| 1 0

F|I(k)| 7 0

Table 24. Quantizer Scale Factor Multipliers W|I| for 40 Kbps ADPCM

|I| 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W|I| 696 529 440 358 280 219 179 141 100 58 41 40 39 24 14 14

Table 25. Quantizer Scale Factor Multipliers W|I| for 32 Kbps ADPCM

|I| 7 6 5 4 3 2 1 0

W|I| 1122 355 198 112 64 41 18 –12

Table 26. Quantizer Scale Factor Multipliers W|I| for 24 Kbps ADPCM

|I| 3 2 1 0

W|I| 582 137 30 –4

Table 27. Quantizer Scale Factor Multipliers W|I| for 16 Kbps ADPCM

|I| 1 0

W|I| 439 –22
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5 Program Organization
Numbers of routines refer to the numbers they are attributed in Table 28.

5.1 Channel Initialization Routine: _G726ENC_TI_reset / _G726DEC_TL_reset

The sequence of the initialization routine is to:

• Initialize status registers

• Compute absolute address of channel to initialize address variables for indirect addressing
mode (see section 3.12)

• Transfer reset values and constants into channel RAM space

5.2 Encoder Routine: G726COD

The sequence of the encoder routine is summarized in Table 28:

Table 28. Encoder Sequence (578–605 Cycles)  

No. Function Description Routines Cycles

1 Select PCM law and encoder
flow rate

Initialize tables, address, and variables for selecting either A-law,
�-law, or linear PCM, and for choosing either 16-, 24-, 32-, or
40-Kbps flow rate.

0 34

2 Compute signal estimate Calculate the signal estimate se(k) from the previous quantized
difference samples dq(k–i) (i = 1, ..., 6), and reconstructed
samples sr(k–i) (i = 1, 2) with filters using floating-point
multiplication.

1, 2 230

3 Compute quantizer scale
factor

Calculate speed control parameter al(k) and, using it, calculate
the quantizer scale factor y(k).

3, 4 18

4 Load input PCM word Read the input PCM sample s(k). 2

5 Convert log-PCM word to
linear PCM

Linearize 8-bit log-PCM sample s(k) to a 14-bit two’s complement
sample sl(k).

5 20

6 Compute difference signal
and convert it into logarithmic
domain

Calculate the difference signal d(k) between signal estimate se(k)
and current sample sl(k). Calculate the logarithm dln(k) of this
difference signal.

6, 7 12

7 Adaptive quantizing of the
difference signal

Scale the difference signal dln(k) using quantizer scale factor y(k),
and quantize the result to form the ADPCM output I(k).

8, 9 32–59

8 Store output ADPCM word Write the ADPCM output I(k). 1

9 Adaptive inverse quantizing
of the ADPCM word

Yield the output of the inverse quantizer dqln(k). Scale it, using
y(k), to form dql(k), and convert it from logarithmic domain, to
linear domain to obtain the quantized difference sample dq(k).

10–12 29

10 Reconstruct the PCM signal Calculate the reconstructed signal sr(k) from quantized difference
dq(k) and signal estimate se(k).

13, 14 4

11 Speed control parameter
adaptation

Adapt short-term dms(k) and long-term dml(k) average magnitude
of |I(k)|.

15–17 10

12 Transition detection and
trigger process

Detect possible transition tr(k). If so, reset the predictor, set
quantizer into the fast mode of adaptation, and bypass functions
(12) to (14).

18–20 6
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Table 28. Encoder Sequence (578–605 Cycles) (Continued)

No. CyclesRoutinesDescriptionFunction

13 Predictor adaptation Calculate the update for the coefficients bi(k) (k = 1, ..., 6) of the
FIR filter, and for the coefficients ai(k) (k = 1, 2) of the IIR filter.

21–26 102

14 Tone detection Detect possible partial band signal (e.g. tone) td(k). 27 3

15 Speed control parameter
update

Update unlimited speed control parameter ap(k), using td(k),
dms(k), dml(k).

28–29 23

16 Quantizer scale factor
adaptation

Update slow yl(k) and fast yu(k) quantizer scale factors. 30–33 15

17 Floating-point conversion and
delays preparation

Convert quantized difference dq(k) and reconstructed signal sr(k)
into floating-point, and store them in the filter buffer.

34–36 37

5.3 Decoder Routine: g726_decode1

The sequence of the decoder routine is summarized in Table 29:

Table 29. Decoder Sequence (606–633 Cycles)  

No. Function Description Routines Cycles

1 Select PCM law and encoder
flow rate

Initialize tables address and variables for selecting either A-law,
�-law, or linear PCM, and for choosing either 16-, 24-, 32-, or
40-Kbps flow rate.

0 34

2 Compute signal estimate Calculate the signal estimate se(k) from the previous quantized
difference samples, dq(k–i) (i = 1, ..., 6), and reconstructed
samples, sr(k–i) (i = 1, 2), with filters using floating-point
multiplication.

1, 2 230

3 Compute quantizer scale
factor

Calculate speed control parameter al(k) and, using it, calculate the
quantizer scale factor y(k).

3, 4 18

4 Load input ADPCM word Read the input ADPCM sample I(k). 1

5 Adaptive inverse quantizing
of the ADPCM word

Yield the output of the inverse quantizer dqln(k). Scale it, using
y(k), to form dql(k), and convert it from logarithmic domain to linear
domain, to obtain the quantized difference sample dq(k).

10–12 29

6 Reconstruct the PCM signal Calculate the reconstructed signal sr(k) from quantized difference
dq(k) and signal estimate se(k).

13, 14 4

7 Speed control parameter
adaptation

Adapt short-term dms(k) and long-term dml(k) average magnitude
of |I(k)|.

15–17 10

8 Transition detection and
trigger process

Detect possible transition tr(k), if so, reset the predictor, set
quantizer into the fast mode of adaptation, and bypass functions
(12) to (14).

18–20 6

9 Predictor adaptation Calculate the update for the coefficients bi(k) (k = 1, ..., 6) of the
FIR filter, and for the coefficients ai(k) (k = 1, 2) of the IIR filter.

21–26 102

10 Tone detection Detect possible partial band signal (e.g. tone) td(k). 27 3

11 Speed control parameter
update

Update unlimited speed control parameter ap(k), using td(k),
dms(k), dml(k).

28–29 23
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Table 29. Decoder Sequence (606–633 Cycles) (Continued)

No. CyclesRoutinesDescriptionFunction

12 Quantizer scale factor
adaptation

Update slow yl(k) and fast yu(k) quantizer scale factors. 30–33 15

13 Floating-point conversion
and delays preparation

Convert quantized difference dq(k) and reconstructed signal sr(k)
into floating-point, and store them in the filter buffer.

34–36 37

14 Convert linear PCM word to
log-PCM

Convert the reconstructed linear PCM signal sr(k) to a log-PCM
signal sp(k)

37 32

15 Synchronous coding
adjustment

Calculate an ADPCM signal Id(k) from sp(k), and adjust sp(k) to
create sd(k) if Id(k) differs from I(k)

5–9, 38 56–83

16 Store output PCM word Write the PCM output sample sd(k) 6
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5.4 Brief Functional Description of Each Sub-Block

The notations used in the sub-block descriptions are follows:

<< n denotes an n-bit left-shift operation (zero fill).

>> n denotes an n-bit arithmetical shift right operation (with sign shift).

& denotes the logical “and” operation.

+ denotes arithmetic addition.

– denotes arithmetic subtraction.

* denotes arithmetic multiplication.

** denotes the logical “exclusive or” operation.

A denotes the accumulator A.

B denotes the accumulator B.

TEMP denotes the temporary variable (see RAM space).

ARn denotes the auxiliary register n.

For each routine to be described, a formal description of the function realized is indicated,
corresponding to the specification of the G.721 recommendation of part one (1.4). The input and
output variables are given by their real place in the C54x (that may be the Accumulator A for
example) and into brackets, the formal name of the specification, whose description is given in
Table 30. Also indicated are the number of cycles of the routine. A short note will comment on
some specific details of the routine.

The following table describes the internal processing variables. It includes these fields:

• “Name” is the formal name corresponding to G.726 recommendation.

• “Bits” gives the number of significant bits among the sixteen bits of the word, and indicates if
the word is signed with the “S” information.

• “Format” gives the weight of the bits. A QX number has X fractional bits, whose weights are
2–1, ..., 2–x. TC denotes two’s complement, SM denotes signed magnitude, and UM denotes
unsigned magnitude.

• “Memory” indicates the physical location of the variable, which could be the accumulator (A
or B). It is possible that this location does not exist, in the case where the formal variable is
replaced by a branch. However, these are described because they are used in the notes.

• “Description” gives a short description of the variable.
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Table 30. Internal Processing Variables  

Name Bits Format Memory Description

A1†,A2† 15 + S Q14 TC A1, A2 Delayed second-order predictor coefficients

A1P, A2P 15 + S Q14 TC A1, A2 Second-order predictor coefficients

A1R, A2R 15 + S Q14 TC None (branch) Triggered second-order predictor coefficients

A1T 15 + S Q14 TC Accumulator Unlimited a1 coefficient

A2T 15 + S Q14 TC Accumulator Unlimited a2 coefficient

AL 7 Q6 UM Accumulator Limited speed control parameter

APa) 10 Q8 UM AP Delayed speed control parameter

APP 10 Q8 UM AP Unlimited speed control parameter

APR 10 Q8 UM None (branch) Triggered unlimited speed control parameter

AX 1 Q0 UM Accumulator Speed control parameter update

B1†, ..., B6† 15 + S Q14 TC B1, ..., B6 Delayed sixth order predictor coefficients

B1P, ..., B6P 15 + S Q14 TC B1, ..., B6 Sixth order predictor coefficients

B1R,   ., B6R 15 + S Q14 TC none (branch) Triggered sixth order predictor coefficients

D 15 + S Q0 TC Accumulator Difference signal, only in encoder

DL 11 Q7 UM Accumulator Log2 (difference signal), only in encoder

DLN 11 + S Q7 TC DQ Log2 (normalized difference), only in encoder

DLNX 11 + S Q7 TC DQ Log2 (normalized difference), only in decoder

DLX 11 Q7 UM Accumulator Log2 (difference signal), only in decoder

DML† 14 Q11 UM DML Delayed long term average of F(I) sequence

DMLP 14 Q11 UM DML Long term average of F(I) sequence

DMS† 12 Q9 UM DMS Delayed short term average of F(I) sequence

DMSP 12 Q9 UM DMS Short term average of F(I) sequence

DQ 15 + S Q0 TC DQ Quantized difference signal

DQ0, DQ1†,..., DQ6† exponents 4 Q0 UM DQFLOAT Quantized difference signal exponent with delays 
0 to 6

DQ0, DQ1†,..., DQ6† mantissas 6 Q6 UM DQFLOAT Quantized difference signal mantissa with delays 
0 to 6

DQ0, DQ1†,..., DQ6† signs S Q0 TC DQFLOAT Quantized difference signal sign with delays 0 to 6

DQL 11 + S Q7 TC Accumulator Log2 (quantized difference signal)

† Indicates variables that are set to specific values by the optional reset. When reset is invoked (by running G726RST), these variables are set
to their reset value (see these values in Table 5.
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Table 30. Internal Processing Variables (Continued)

Name DescriptionMemoryFormatBits

DQLN 11 + S Q7 TC Accumulator Log2 (normalized quantized difference signal)

DQS S Q0 TC SIGN Sign bit of quantized difference signal

DS S Q0 TC SIGN Sign bit of difference signal, only in encoder

DSX S Q0 TC SIGN Sign bit of difference signal, only in decoder

DX 15 + S Q0 TC Accumulator Difference signal, only in decoder

FI 3 Q0 UM DROM table Output of F(I)

PK0 S Q0 TC PK0 Sign of DQ +SEZ with delay 0

PK1†, PK2† S Q0 TC PK1, PK2 Sign of DQ +SEZ with delays 1 and 2

PK 15 + S Q0 TC TEMP DQ + SEZ

SE 14 + S Q0 TC SE Signal estimate

SEZ 14 + S Q0 TC SEZ Sixth-order predictor partial signal estimate

SL 13 + S Q0 TC Accumulator Linear input signal, only in encoder

SLX 13 + S Q0 TC Accumulator Quantized reconstructed signal, only in decoder

SP 7 + S Q4 SM SD PCM reconstructed signal, only in decoder

SR 15 + S Q0 TC SD Reconstructed signal

SR0, SR1†, SR2† exponents 4 Q0 UM SRFLOAT Reconstructed signal exponent with delays 0 to 2

SR0, SR1†, SR2† mantissas 6 Q6 UM SRFLOAT Reconstructed signal mantissa with delays 0 to 2

SR0, SR1†, SR2† signs S Q0 TC SRFLOAT Reconstructed signal sign with delays 0 to 2

TDa) S Q0 TC TD Delayed tone detect

TDP S Q0 TC TD Tone detect

TDR S Q0 TC None (branch) Triggered tone detect

TR S Q0 TC None (branch) Transition detect

U1, ..., U6 S Q0 TC Accumulator Sixth-order predictor coefficient update sign bit

WA1, WA2 15 + S Q1 TC SE Partial product of signal estimate

WB1, ..., WB6 15 + S Q1 TC SEZ Partial product of partial signal estimate

WI 11 + S Q4 TC DROM table Quantizer multiplier

Y 13 Q9 UM Y Quantizer scale factor

YL† 19 Q15 UM YL Delayed slow quantized scale factor

† Indicates variables that are set to specific values by the optional reset. When reset is invoked (by running G726RST), these variables are set
to their reset value (see these values in Table 5.
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Table 30. Internal Processing Variables (Continued)

Name DescriptionMemoryFormatBits

YLP 19 Q15 UM YL Slow quantized scale factor

YU† 13 Q9 UM YU Delayed fast quantizer scale factor

YUP 13 Q9 UM YU Fast quantizer scale factor

YUT 13 Q9 UM Accumulator Unlimited quantizer scale factor

† Indicates variables that are set to specific values by the optional reset. When reset is invoked (by running G726RST), these variables are set
to their reset value (see these values in Table 5.

5.4.1 FMULT

Function: Multiply predictor coefficients with corresponding quantized difference signal or
reconstructed signal. wbi(k) = bi(k–1) * dq(k–i) for i = 1, ..., 6; and wai(k) = ai (k–1)* sr(k–i) for i = 1, 2.

Input: Ai and SRi, or Bi and DQi, AR6 or AR7 (points to SRi or DQi exponent)

Output: B (WAi or WBi), AR6 or AR7 (points to DQi–1 or SRi–1 exponent, except for SR1 and
DQ1 inputs: points respectively to SR2 and DQ6 sign)

Cycles: 206

NOTE: The multiplication is performed in floating-point format. It implies, for the fixed-point
processor, of the C54x, that you multiply the mantissas, add the exponents and compute the
result sign. First, divide Ai or Bi by 4 to truncate it, making it a Q12 format. Then, it is converted
into floating-point (see FLOATA (34) for the method). The multiplication is performed by using
floating-point values of SRi or DQi in the table SRFLOAT or DQFLOAT (see FLOATA (34) and
FLOATB (35)). Then, the result (WAi or WBi) is converted in 2’s complement. You also have to
scale the result (11 right-shift) because of the different scales between Ai (or Bi) and SRi (or
DQi), making it a Q1 format. Because of the eight coefficients of the filters, this routine is
performed 8 times.

5.4.2 ACCUM

Function: Addition of predictor outputs to form the partial signal estimate (from the sixth order
predictor) and the signal estimate. sez(k) = wb1(k) + wb2(k) + wb3(k) + wb4(k) + wb5(k) + wb6(k),
se(k) = sez(k) + wa1(k) + wa2(k)

Input: B (WAi, WBi), then for the next executions, use also the partial outputs as inputs: SE
(partial addition of WAi), SEZ (partial addition of WBi)

Output: SE, SEZ

Cycles: 20

NOTE: This routine is partially executed after each call of FMULT (1) to avoid using extra
variables for WBi and Wai. Also, it allows overflows to occur as specified in G.726, so that the
accumulation is automatically limited to a 16-bit signed word in Q1 format. The results, SE and
SEZ, are divided by two, making them a Q0 format like DQ (quantized difference). This routine is
performed 8 times.



SPRA118

53 G.726 Adaptive Differential Pulse Code Modulation (ADPCM) on the TMS320C54x DSP

5.4.3 LIMA

Function: Limit speed control parameter. al(k) = ap(k–1) if ap(k–1) � 1, al(k) = 1, otherwise

Input: AP

Output: B (AL)

Cycles: 4

NOTE: AP is truncated of 2 bits (format Q6) before to be limited. So the limit for AL is 64 (=1).

5.4.4 MIX

Function: Form linear combination of fast and slow quantizer scale factors 
y(k) = al(k).yu(k–1) + (1–al(k)).yl(k–1)

Inputs: YU, YL (high word), B (AL)

Output: Y

Cycles: 14

NOTE: YL is 6-bit truncated at format Q9 automatically by the use of the variable YL (high
word) that represents the 13 MSB of YL. The product AL*(YU–YL) is performed in absolute
value, then it is scaled, and only after the sign is introduced.

5.4.5 EXPAND

Function: Convert either A-law or �-law PCM to uniform PCM. s(k) → sl(k)

Input: A (S or SP in decoder)

Output: A (SL or SLX in decoder)

Cycles: 13

NOTE: A table (ALAW for the A-law or MULAW for the �-law) is used to perform this inverse
quantization. For A-law, the signal is multiplied by two to obtain a 14-bit 2’s complement word
(Q0 format) for both A and �-law. See description of these logarithmic quantization laws in (),
and of the table in ().

5.4.6 SUBTA

Function: Compute the difference between input linear PCM value and signal estimate. 
d(k) = sl(k) – se(k)

Inputs: A (SL), SE

Output: A (D)

Cycles: 1

NOTE: SL format is a 14-bit word, while SE format is a 15-bit word, making for D a 16-bit word
(Q0 format).
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5.4.7 LOG

Function: Convert difference signal from the linear to the logarithm domain. 
d(k) → {dl(k) = log2(|d(k)|), sign[d(k)]}

Input: A (D or DX in decoder)

Outputs: DS (DSX in decoder), B (DL or DLX in decoder)

Cycles: Min: 6, Max: 11

NOTE: for this calculation, use properties of exponent EXP and mantissa MANT of |d| such as
|d| = 2 * MANT * 2EXP–1, where 1 � 2 * MANT � 2 and 2EXP–1 � |d| � 2EXP. Note that this
EXP corresponds to the actual exponent and does not have the same definition as the one
defined in G.726. The word (2*MANT) has a Q7 format with 8 bits, and EXP has a Q0 format
with 4 bits. Then, use linear approximation of log2(|d|) for the mantissa: log2(|d|) = EXP–1 +
(2*MANT–1) = (EXP–2) + (2*MANT). After scaling (EXP–2), both are added to form a Q7 word
of 11 bits. Note that this method doesn’t apply for d = 0, where log2(|d|) is defined to be 0.

5.4.8 SUBTB

Function: Scale logarithmic version of difference signal by subtracting scale factor. 
dln(k) = dl(k) – y(k)

Input: A (DL), Y

Outputs: A (DLN)

Cycles: 2

NOTE: Y is 2-bit truncated in order to have the same format as DL (Q7).

5.4.9 QUAN

Function: Quantize difference signal in logarithm domain. {dln(k), sign[d(k)]} → I(k)

Input: A (DLN), SIGN (DS)

Output: A (I)

Cycles: Min: 35 (16 Kbps), 52 (24 Kbps), 67 (32 Kbps), Max: 82 (40 Kbps)

NOTE: The level of quantization is determined by a iterative research where DL is compared
with low limits of quantization levels QSi. The values of QSi are stored in the tables ITBLxx. A
quantization table (QUANxx for the encoder or SYNCxx for the decoder) is then used to give the
output code (I for encoder, ID for decoder). See () for details about these tables.

5.4.10 RECONST

Function: Reconstruction of quantized difference signal in the logarithmic domain. 
I(k) → {dqln(|I(k)|, sign[dq(k)]}

Input: A (I)
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Outputs: SIGN (DQS), B (DQLN)

Cycles: 10

NOTE: Two data tables are used for this function. First, a table (IQUAxx) gives the address of
the second table (ITBLxx) depending on the value |I|, and also gives the sign of the original
difference signal. The second table, which is pointed by AR2, gives directly DQLN(|I|), and
further, will give F(|I|) and W(|I|).

5.4.11 ADDA

Function: Addition of scale factor to logarithmic version of quantized difference signal.
dql(k) = dqln(k) + y(k)

Inputs: B (DQLN), Y

Output: B (DQL)

Cycles: 2

NOTE: Y is 2-bit truncated in order to have the same format as DQL (Q7).

5.4.12 ANTILOG

Function: Convert quantized difference signal from the logarithm to the linear domain, 
in two-complement. dq(k) = 2dql(k) *sign[dq(k)]

Input: B (DQL), SIGN (DQS)

Output: DQ in two-complement format, A (DQ)

Cycles: Min: 6, Max: 13

NOTE: Computation of 2DQL using decomposition 2EXP–1 +MANT and linear approximation of
2MANT = 1 + MANT, where MANT is the mantissa of DQL, and EXP is the exponent of DQL (see
routine LOG (7)). Then DQ = (1+ MANT) * 2EXP–1. The sign of DQ, which is given directly by
SIGN, allows the completion of the conversion in 2’s complement. This method does not apply
for DQL � 0, In this case, DQ is zero. According to G.726 recommendation, DQ must be a
signed-magnitude word. Here it is represented in 2’s complement format to make the
calculations easier, with an extra variable for the sign (SIGN = DQS = sign(DQ)). The
recommendation also indicates that DQ can be coded with 15 bits (for 16-, 24-, or 32-Kbps
operation), or with 16 bits (for 16-, 24-, 32-, or 40-Kbps operation). For these purposes (all rates
simultaneously available), a 16-bit word must be chosen; however, with 2’s complement format,
it makes no difference.

5.4.13 ADDB

Function: Addition of quantized difference signal and signal estimate to form reconstructed
signal. sr(k) = se(k) + dq(k)

Inputs: A (DQ), *AR4 (SE)

Output: SD (SR)
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Cycles: 2

NOTE: DQ format is a 16-bit word (Q0), and SE format is a 14-bit word (Q0). Overflow is
always avoided in 32, 24, or 16 Kbps coding where DQ � 214. Nevertheless, in 40-Kbps coding,
SR is limited to be a 16-bit word (Q0 format).

5.4.14 ADDC

Function: Obtain sign of addition of quantized difference signal and partial signal estimate. p(k) =
dq(k) + sez(k), sign[p(k)] = sign(dq(k) +sez(k))

Input: A(DQ), SEZ

Output: PK0high (PK0 = sgn(p(k)), PK0low (p(K) that gives information about real p(k) sign)

Cycles: 2

NOTE: PK0 gives computing sign (0 for positive, –1 for negative), and the real sign is given by
p(k) (variable PK0low = V1). The real sign is worth 1 if p(k) positive, –1 if p(k) is negative, and is
defined to be 0 if p(k) = 0 (but, once delayed it is worth 1; see ()). In this special case, the
adaptation of A1 and A2 are different.

5.4.15 FUNCTF

Function: Map quantizer output into the F(I) function. I(k) → F[|I(k)|]

Input: AR2 (points to F[|I|])

Output: A (F[|I|] << 9)

Cycles: 1

NOTE: Load F[|I|] << 9 to scale it with DMS (Q9 format) for routine FILTA (16). Values of F|I|
are included in the |I| table, pointed by AR2.

5.4.16 FILTA

Function: Update of short-term average of F(I). dms(k) = (1 – 2–5)dms(k–1) + 2–5 F[|I(k)|]

Inputs: A (F[|I|] << 9), DMS

Output: DMS

Cycles: 4

5.4.17 FILTB

Function: Update of long-term average of F(I). dml(k) = (1 – 2–7)dml(k–1) + 2–7 F[|I(k)|]

Inputs: AR2 (points to F[|I|]), DML

Output: DML, AR2 (points to W[|I|])

Cycles: 5
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NOTE: You load F[|I|] << 11 to scale it with DML (Q11 format).

5.4.18 TRANS

Function: Transition detector. tr(k) = 1 ⇔ td(k–1) = 1 and |dq(k)| � 24 * 2yl(k–1)

Inputs: TD, YL (high word), DQ

Output: branch to UPA2 () (TR = 0), branch to TRIGB (TR = 1)

Cycles: Min: 6 (usual), Max: 25

NOTE: At the end of this routine, either perform TRIGA and TRIGB, or continue the program
normally. Note that G.726 recommendation indicates in the text td(k) instead of td(k–1), and yl(k)
instead of yl(k–1), but it is in contradiction with the further block description.

5.4.19 TRIGA

Function: Speed control trigger block. ap(k) = ap(k–1) if tr(k) = 0, ap(k) = 1 if tr(k) = 1

Inputs: B (B � 0⇔ tr = 1)

Outputs: AP

Cycles: Min: 0 (usual), Max: 2

NOTE: By using long-word instruction, td(k) is initialized at the same time as ap(k), performing
by this way a part of TRIGB (20).

5.4.20 TRIGB

Function: Predictor trigger block. If tr(k) = 1, ai(k) = 0 for i = 1, 2; bi(k) = 0 for i = 1, ..., 6; and
td(k) = 0

Input: none

Output: A1, A2, B1, ..., B6, TD, and branch to FUNCTW() if performed

Cycles: Min: 0 (usual), Max: 7

NOTE: This routine (just as TRIGA) is executed in function of the precedent “conditional
branch” at the end of the routine, TRANS (18). See TRIGA (19) for execution conditions. If tr(k)
= 1 (transition is detected), TRIGB is performed: A1, A2, B1, ..., B6 are set to 0, then routines
(21) to (29) are skipped to avoid Ai and Bi adaptation. Otherwise,  (transition not detected),
TRIGB is not performed: Ai, Bi, and TD keep their value, and are then adapted (for Ai, Bi:
routines (21–23) and (25–26)), or calculated (for TD). Note that TD is initialized at the same time
as AP (see TRIGA (19)).

5.4.21 UPA2

Function: Update a2 coefficient of second order predictor. a2(k) = (1 – 2–7)a2(k–1) + 2–7{sgn[p(k)]
sgn[p(k–2)] – f[a1(k–1)] sgn[p(k)] sgn[p(k–1)]}

Inputs: PK0high (PK0 = sgn(p(k)), PK0low (P(k)), PK1, PK2, A1, A2
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Outputs: A (unlimited A2)

Cycles: Min: 0, Max: 25 (usual)

NOTE: PK0low makes it possible to give the real sign of p(k). In fact, it is worth 0 if p(k) = 0.
Otherwise,  it is given by PK0 (0/–1) and is worth +/– 1. This routine is not performed if tr(k) = 1.

5.4.22 LIMC

Function: Limits on a2 coefficient of second order predictor. |a2(k)| � 0.75

Input: A (unlimited A2)

Output: A2

Cycles: Min: 0, Max: 6 (usual)

NOTE: Computing value for 0.75 is 12288 (Q14 format). This routine is not performed if
tr(k) = 1.

5.4.23 UPA1

Function: Update a1 coefficient of second order predictor. a1(k) = (1 – 2–8)a1(k–1) + 3.2–8

sgn[p(k)] sgn[p(k–1)]

Inputs: PK0high (PK0 = sgn(p(k)), PK0low (P(k)), PK1, A1

Outputs: A (A1T)

Cycles: Min: 6, Max: 12 (usual)

NOTE: PK0low permits, to give the real sign of p(k). It is 0 if p(k) = 0, otherwise, it is given by
PK0 (0/–1) and is worth +/–1. This routine is not performed if tr(k) = 1.

5.4.24 LIMD

Function: Limits on a1 coefficient of second order predictor. |a1(k)| � 1 – 2–4 – a2(k)

Input: A (A1T), A2 (A2P)

Output: A1 (A1P)

Cycles: Min: 0, Max: 7 (usual)

NOTE: Computing value for 1 – 2–4 is 15360 (Q14 format). This routine is not performed if
tr(k) = 1.

5.4.25 XOR

Function: “Exclusive or” of sign of difference signal and sign of delayed difference signal. 
Ui(k) = sign (dq(k)) ** sign (dq(k–i))

Inputs: DQ1 sign, ..., DQ6 sign, SIGN (DQS), AR7 (points to DQ6 sign)
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Output: B (Ui)

Cycles: Min: 0, Max: 12 (usual)

NOTE: DQi sign is pointed by AR7 in table DQFLOAT. This routine is partially executed before
each UPBi (26). This routine is not performed if tr(k) = 1.

5.4.26 UPB

Function: Update for coefficients of sixth-order predictor. bi(k) = (1–2–8)bi(k–1) + 2–7 Ui(k) for
16-, 24-, 32-Kbps coding; bi(k) = (1–2–9)bi(k–1) + 2–7 Ui(k) for 40 Kbps coding

Inputs: B (Ui), Bi, DQ, SHIFT

Outputs: B1 (B1P), ..., B6 (B6P)

Cycles: Min: 0, Max: 40 (usual)

NOTE: If DQ = 0, then Ui is forced to be 0. SHIFT is –8 for 16, 24, 32 Kbps, and is –9 for 40
Kbps coding. It corresponds to the term 2–8 or 2–9 for Bi adaptation. This routine is not
performed if tr(k) = 1.

5.4.27 TONE

Function: Partial band-signal detection. td(k) = 1 if a2(k) � –0.71875, td(k) = 0. Otherwise:

Input: A2 (A2P)

Output: TD (TDP)

Cycles: Min: 0, Max: 3

NOTE: Computing value for –0.71875 is –11776 (Q14 format). This routine is not performed if
tr(k) = 1.

5.4.28 SUBTC

Function: Compute magnitude of the difference of short- and long-term functions of quantizer
output sequence, and then perform threshold comparison for quantizing speed control
parameter. Ax =  0 if y(k)  3 and |dms(k–1) – dml(k–1)|  2–3 dml(k–1) and td(k–1) = 0, Ax =  1.
Otherwise:

Inputs: DMS, DML, TD (TDP), Y

Output: A (AX << 9)

Cycles: Min: 0 (rare), Med: 6, Max: 21

NOTE: If td(k) =  1 (TD =  –1), the routine is limited to 6 execution cycles, else if |dms(k–1) –
dml(k–1)|   2–3 dml(k–1), the routine is limited to 19 cycles. Otherwise,  the cycle number is
21. If tr(k) =  1, the routine is not performed.

5.4.29 FILTC

Function: Low-pass filter of speed control parameter. ap(k) = (1– 2–4)ap(k–1) + 2–3 Ax
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Inputs: A (AX << 9), AP

Output: AP (APP)

Cycles: Min: 0, Max: 4 (usual)

NOTE: This routine is not performed if tr(k) = 1. AX << 9 is either 29 or 0. It corresponds to 2 for
AP scale (Q8 format). The difference between AX << 9 and AP is computed before dividing the
result by 16.

5.4.30 FUNCTW

Function: Map quantizer output into logarithmic. I(k) → W[|I(k)|]

Input: AR2 (points to W[|I|])

Output: A (W[|I|] << 5

Cycles: 1

NOTE: You load W[|I|] << 5 to scale it with DMS (Q9 format) for routine FILTD (31). Values of
W|I| are included in the |I| table pointed by AR2.

5.4.31 FILTD

Function: Update of fast quantizer scale factor. yu(k) =  (1 – 2–5).y(k) + 2–5.W[|I(k)|]

Inputs: A(W[|I|] << 5), Y

Output: BH (YUT)

Cycles: 3

NOTE: To prepare FILTE (33), operations are carried out using the high part of the
accumulator.

5.4.32 LIMB

Function: Limit quantizer scale factor. 1.06 � y(k) � 10

Input: BH (YUT)

Output: YU (YUP), AH (YUP)

Cycles: 5

NOTE: Computing value for 1.06 is 544, and 5120 for 10 (Q9 format).

5.4.33 FILTE

Function: Update of slow quantizer scale factor. yl =  (1 – 2–6).yl(k–1) +  2–6.yu(k)

Inputs: YL, AH (YUP)

Outputs: YL (YLP)
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Cycles: 5

NOTE: YL must be calculated before applying the 2–6 factor. As the theoretical format of YL is
Q25, (–YL) is truncated to obtain Q15 format, as specified in G.726 recommendation.

5.4.34 FLOATA

Function: Convert 16-bit 2’s complement to floating-point. DQ → (DQ0 mantissa, DQ0 exponent,
DQ0 sign)

Input: DQ, SIGN (DQS), AR7 (points to DQ6 exponent)

Output: DQ0 exponent, DQ0 mantissa, DQ0 sign (in DQFLOAT buffer), AR7 (points to DQ5
exponent)

Cycles: 13

NOTE: Exponent EXP of DQ is defined by: 2EXP–1 � |DQ|  2EXP . Mantissa MANT of DQ is
obtained with the 6 most significant bits (MSB) of DQ. MANT has the following limits: 0 � MANT
� 1, which implies that MANT format is Q6. Sign of DQ is 0 if DQ positive, –1 if DQ negative. If
DQ � 0, find the exponent of DQ by means of the EXP and DSUBT instructions, and MANT via
the NORM instruction. If DQ = 0, EXP is 0 and MANT is defined to be 1/2 (= 32).For this
particular case, the sign is given by the variable SIGN (DQS = sign of DQ given by the inverse
quantizer). Note that DQ = 0 does not imply that DQS = 0.

5.4.35 FLOATB

Function: Convert 16-bit 2’s complement to floating point. SR → (SR0 mantissa, SR0 exponent,
SR0 sign)

Input: SD (SR), AR6 (points to SR2 sign)

Output: SR0, AR5 (points to SR1 exponent)

Cycles: 14

NOTE: See FLOATA for definitions of exponent, mantissa, and sign; but contrary to DQ, SR = 0
always implies that the sign of SR is also 0 (this means that, in this case, SR is positive).

5.4.36 DELAY

Function: Memory block. For the input x, the output is given by y(k) = x(k–1).

Input: x

Output: y

Cycles: 10

NOTE: This routine applies for all delayed variables. For the one-time delayed variables such
as DMS, DML, AP, Ai, Bi, TD, YL, YU, x(k + 1) has the same memory location as x(k). So, the
delay was applied at the time these variables were updated. Thus, this routine really applies to
the variables that are delayed several times, such as Pki, SRi, DQi. As for PKi, PK2 location just
follows the PK1 location, so the instruction DELAY automatically realizes the PK2 update. In the
case of Sri and Sri, these variables are automatically delayed, due to the use of two circular
buffers (DQFLOAT for DQi and SRFLOAT for SRi). Only the addresses of the next DQ6 and the
next SR2 must be saved (ADDQ6 and ADSR2).
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5.4.37 COMPRESS (decoder only)

Function: Convert from uniform PCM to either A-law or �-law PCM. sr(k) → sp(k)

Input: A (SR), LAW, LAWBIAS, LAWSEG, LAWMASK

Output: A (SP)

Cycles: Min: 20, Max: 26

NOTE: This generic routine is used for both A-law and �-law, due to the use of the variables,
LAWxxxx, which make the discrimination between laws for this quantization. First, the A-law
PCM word is re-converted into 13-bit signed word by dividing it by two. It is actually divided by
four to perform linear quantization directly, but in the case of logarithmic quantization, this
right-shift is then compensated. For negative A-law PCM word, subtract one from it before
dividing, to perform a correct truncation. Note that G.726 recommendation indicates adding one
to it, but it seems to be a printing error. The principle of the logarithm calculation is the same as
in LOG (7). See () for more details about PCM companding.

5.4.38 SYNC (decoder only)

Function: Re-encode output PCM sample in decoder for synchronous tandem coding. 
sp(k) → sd(k)

Input: B (ID), *AR1 (IM), SD (SP), LAWMASK

Output: A (SD)

Cycles: Min: 6 (usual), Med: 21, Max: 25

NOTE: After using the routines EXPAND (), SUBTA (), LOG (), SUBTB () again to perform this
synchronous adjustment, the routine QUAN () is also used to re-encode the PCM output word.
The new coded word is ID, and is compared with the magnitude (given by *AR1) of the original I
ADPCM word. In the case where ID = IM, which is the usual case, the routine takes only six
clock cycles.
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