
1 

 

Application Report 
SLAA198 – April 2004 

 
 

TSC2100 WinCE Generic Drivers 
Wendy X. Fang DAP Group 

 
ABSTRACT 

 
This application report develops and presents the TSC2100 touchscreen and audio 
WinCE drivers. These generic drivers can be used on or adapted to different processors 
or processor platforms. The associated driver code was tested with the Intel™ Lubbock 
and MainStone platforms. The sample code described in this application report can be 
downloaded from http://www.ti.com/lit/zip/SLAA198. 

 
 

Introduction 
The TS2100 programmable touchscreen controller, one of the Texas Instruments (TI™) high- 
performance touchscreen devices, includes a touchscreen controller and a mono input and 
stereo output audio codec. For detailed specification of the TSC2100 device, see the relevant 
data sheet (Reference [1]) or the product folder at the following TI Web location: 

http://focus.ti.com/docs/prod/folders/print/tsc2100.html 

To review other TI touchscreen controllers, browse the analog product tree at the following TI 
Web location: 

http://focus.ti.com/analog/docs/analogprodhome.tsp?templateId=4&familyId=82 

To assist TI customers in using the TSC2100 device in their application, this application report 
developed the Microsoft™ Windows CE™ (WinCE) drivers on its touchscreen and audio 
functions. The TSC2100 drivers can be implemented on any processor; the drivers are built and 
arranged in such a way that the processor-related code is separated out and put on a processor- 
dependent layer (PDL). By changing only the PDL, these WinCE drivers can be easily reused 
and adapted to different host processors. Because of this, the TSC2100 WinCE drivers are 
considered generic. 

If users wish to do no coding with the drivers, additional consultation and service on integrating 
and interfacing these and other TI TSC drivers to many different processors are available 
through TI’s third party contractors by searching the following URL: 

http://www.ti.com/analog3p 

The TSC2100 drivers discussed in this application report were tested on Intel XScale™ 
processors with the Lubbock (WinCE 4.0 and the Intel PXA250 microprocessor) and the 
MainStone (WinCE 4.2 and Intel’s Bulverde microprocessor) platforms. To obtain the driver 
code, contact TI data acquisition application support at: 

dataconvapps@list.ti.com 
 
 
 

Intel and XScale are trademarks of the Intel Corporation. 
Microsoft and Windows CE are trademarks of the Microsoft Corporation 
TI is a trademark of Texas Instruments Incorporated. 

http://www.ti.com/lit/zip/SLAA198
http://focus.ti.com/docs/prod/folders/print/tsc2100.html
http://focus.ti.com/analog/docs/analogprodhome.tsp?templateId=4&amp;familyId=82
http://www.ti.com/analog3p
mailto:dataconvapps@list.ti.com


 SLAA198  

2 TSC2100 WinCE Generic Drivers 

 

 

 

Principles 
Two TSC2100 WinCE drivers have been developed, the touchscreen driver and the audio 
driver. In the Windows CE device driver model, the two TSC2100 drivers fit into: 

• TouchP: a standard touch panel/screen driver for the touchscreen feature 

• WaveDev: a standard audio driver for the audio feature. 

The touchscreen driver is a typical built-in or native device driver; the audio driver can be 
classified as a hybrid (both native and stream) driver. Both the touchscreen and audio drivers 
have a layered model structure (see Figure 1). 

To GWES or DEVIC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To Other HW TSC2100 

Figure 1. Layered TSC2100 WinCE Driver 
 

Basically, the layered driver development requests changes only at its platform-dependent- 
device (PDD) layer. For more details on WinCE driver structure, model, and classification, see 
Reference [2] or related documentation from Microsoft. 

Note that when compared with the standard WinCE driver structure, Figure 1 shows an 
additional lower or sub-layer below the PDD, called the processor-dependent layer (PDL). The 
purpose of the PDL is to make the adaptation of the drivers to various platforms or processors 
easy. Adapting the TSC2100 drivers to a new and different platform requires modifying only the 
code in the PDL. 

Thus, developing the WinCE drivers for the TSC2100 requires the following tasks: 

• Development of a common library that implements all the SPI exchange with the TSC2100 

• Development of the PDD (and the PDL) layer of the TSC2100 touchscreen driver (native 
driver mounted by GWES) 

• Development of the PDD (and the PDL) layer of the TSC2100 audio driver (hybrid driver 
mounted by DEVICE) 

PDL 

To Processor 

PDD 

DDSI 
Functions 

MDD 

DDI or 
Stream 

Functions 



SLAA198 

TSC2100 WinCE Generic Drivers 3 

 

 

 
 

SPI Interface 
The SPI bus on the TSC2100 device is the most important hardware interface to the host 
processor. Because the host processor controls and accesses the TSC2100 registers through 
the SPI interface, the SPI driver is the most important software interface between the host 
processor and the TSC2100. 

 
Hardware Interface 

A standard SPI hardware interface consists of 4 pins/lines, typically named SCK (clock), SS 
(slave select), MOSI (master-out, slave-in data), and MISO (master-in, slave-out data). As an 
example, Table 1 lists the SPI connections between the Intel PXA250 processor and the TI 
TSC2100. 

 
Table 1. PXA250 and TSC2100 SPI HW Interface 

 

 Host Processor Pin Name TSC2100 Pin Name 
SPI Clock GPIO 23/SSP_SCLK (Pin F9) SCLK (QFN Pin 4 or TSSOP Pin 8) 
SPI Slave Select GPIO 24/SSP_SFRM (Pin E9) /SS (QFN Pin 7 or TQFP Pin 11) 
SPI MOSI Data GPIO 25/SSP_TXD (Pin D9) MOSI (QFN Pin 6 or TQFP Pin 10) 
SPI MISO Data GPIO 26/SSP_RXD (Pin A9) MISO (QFN Pin 5 or TQFP Pin 9) 

Note: For the TSC2100 SPI driver, the PXA250 processor’s GPIO 23, 25, and 26 were 
programmed as SSP function pins, but the GPIO 24 should be used as a GPO pin, so as to 
interface the 16-bit SPI protocol in the TSC2100 device. 

In the SPI interface, the TSC2100 is always the slave device; the host processor is the master. 
 

TSC2100 Control Registers 

A series of registers reside in the three memory pages of the TSC2100 device, containing the 
device’s data, status, all programmable controls, variables, and parameters. These TSC2100 
registers are accessible or controllable by the host processor through the SPI interface. 

 

For the definition of the registers and the assignment of the register bits, see the TSC2100 data 
sheet, Reference [1]. 

 

For users’ convenience, the definitions and assignments of the TSC2100 registers have been 
coded in a header file: TSC2100Regs.H. This file has been associated with this application 
report and can be downloaded from TI Web site. 



 SLAA198  

4 TSC2100 WinCE Generic Drivers 

 

 

 

SPI Driver 

The TSC2100 SPI driver establishes the software interface between the processor and 
TSC2100, which contains 4 files: TSC2100SPI.C, TSC2100SPI.H, XXXXXSPIComm.C and 
XXXXXSPIComm.H. The XXXXX stands for the name or type of the utilized processor. 
Therefore, the two files are processor-dependent and are located in the PDL. For example, for 
an XScale processor, the two processor-dependent files may be named as XScaleSPIComm.C 
and XScaleSPIComm.H. 

 

Among the many routines in the aforementioned four files, the fundamental routines for the SPI 
driver are summarized in Table 2. The processor-related or the PDL routines in Table 2 were 
named with the HW in the first two letters of its name. As previously noted, different processors 
require different routines in the PDL layer. 

 
 

Table 2. Fundamental Routines for SPI Driver 
 

 
Item 

 
Routine Name 

Involved Processor- 
Dependent Routines 

 
Function 

1 SetupSPIController( ) HWInitializeSPIDriver() 
HWSetupSPIController() 

Set up the host processor’s SPI port so 
as to be ready for interface 

2 StopSPIController( ) HWDeinitializeSPIDriver() 
HWStopSPIController( ) 

Stop the host processor’s SPI port and 
interface 

3 SPITransaction( )  Write/read one or more TSC2100 
registers 

HWStartFrame( ) /SS goes low to activate 
HWStopFrame( ) /SS goes high to de-activate 
HWSPIWriteWord( ) Write a word to MOSI 
HWSPIReadWord( ) Read a word from MISO 
HWSPITxBusy( ) Check if an SPI read has completed 
HWSPIRxBusy() Check if an SPI write has completed 
HWSPIFIFONotEmpty( ) Ensure the SPI FIFO has been properly 

read so that the read data are the latest 
4 TSC2100ReadReg( )  Read the content from a TSC2100 

register 
5 TSC2100WriteReg( )  Write a 16-bit value to a TSC2100 

register 
 
 

In Table 2, the routines in items 1, 2, and 3 are related to the processor and its SPI 
configuration. The routines in items 4 and 5 are the bridges for the host processor to access all 
control registers of the TSC2100. 



SLAA198 

TSC2100 WinCE Generic Drivers 5 

 

 

Start Touch Init 

Stop ADC Conversion 

Program All Other Related 
Registers on Page 1 as 
Desired, Such as {STATUS}, 
{REF} and {CFG} 

 
 

Done Touch Init 

Set {ADC} as Desired 

 
 

TSC2100 Touchscreen Driver 
The touchscreen driver handles and controls the TSC2100 touchscreen function, which is 
normally in the TouchP directory. The driver includes the file: TSC2100Touch.CPP, together 
with the PDL files XXXXXTouch.CPP and XXXXXTouch.H. Again, the XXXXX stands for the 
name of the processor used. 

The TSC2100 touchscreen driver was developed under the touch panel driver structure of the 
WinCE operating system (OS) by updating the standard DDSI functions. See Reference [2] or 
WinCE driver documentations for details of the standard touch DDSI functions or routines. 

 
Touch Initialization 

The TSC2100 touchscreen function initialization or setup is implemented by the subroutine 
InitTSC2100Touch( ), called in the WinCE touch DDSI routine DdsiTouchPanelEnable( ). Even 
though the TSC2100 does not require a strict programming order, the following sequence shown 
in Figure 2 is recommended. 

 
 

 
 

 

 

Figure 2. TSC2100 Touchscreen Driver Initialization - InitTSC2100Touch( ) 
 

In Figure 2, a TSC2100 register is denoted by {register name}. For example, the ADC register 
(at page 1 and address 0x00) is denoted by {ADC}; the configuration register (at page 1 and 
address 0x05) is denoted by {CFG}; and so on. 



 SLAA198  

6 TSC2100 WinCE Generic Drivers 

 

 

 
The following is an example of the TSC2100 touchscreen function initialization: 

 
TSC2100WriteReg( {ADC}, 0xC4FE); // Stop ADC 

TSC2100WriteReg( {STATUS}, 0x4000 ); // Set /DAV interrupt 

TSC2100WriteReg( {REF}, 0x0017); // Set Internal Reference 

TSC2100WriteReg( {CFG}, 0x000B); // Set pre-charge & sense times 

TSC2100WriteReg( {ADC}, 0x84E6); // Set to TSC & XY mode 
 
Touch Data Reading 

Under the preceding initialization example, the TSC2100 is in the touchscreen-controlled (vs. 
host-controlled) mode. The /PINTDAV pin is set as the /DAV (not the PENIRQ) hardware 
interrupt. The /DAV interrupt occurs (goes low) whenever the screen/panel is touched and the 
touch data has been sampled, converted, and is ready to be read. At this point, the driver reads 
back all the touch data, so as to reset the /DAV interrupt (goes high), and is ready for the next 
data acquisition. 

 

To read the touchscreen data from the TSC2100 touch data registers, the routine 
SampleTouchScreenTSC2100(*X, *Y) is called in the DDSI function 
DdsiTouchPanelGetPoint(). 

 
The above touch initialization and XY data reading code can be found in the file 
TSC2100Touch.CPP by looking into the DdsiTouchPanelEnable( ) and 
DdsiTouchPanelGetPoint() routines, respectively. 

 
TSC2100 Audio Driver 

The TSC2100 audio driver consists of the file TSC2100Audio.C and the header file 
TSC2100Audio.H, as well as the PDL files XXXXXAudio.C and XXXXXAudio.H. 

 

The TSC2100 audio driver was developed within the OS PDD layer, with no changes to the 
upper layers of the audio architecture. See Reference [2] or WinCE audio driver documentations 
for more details of the standard audio PDD functions. 

 

The PDD layer uses the SPI interface to control the TSC2100 audio functions by writing to the 
page 2 control registers of the TSC2100 and uses DMA to send and receive audio data from the 
I2S bus. 

 
Audio Initialization 

Audio initialization has three main tasks: (1) set up SPI interface, (2) set up TSC2100 audio 
control registers, and (3) set up the DMAC structure for audio data (I2S) transformations. The 
three tasks are performed in the audio DDSI routine PDD_AudioInitialize( ). 



SLAA198 

TSC2100 WinCE Generic Drivers 7 

 

 

 
 

 
 

The TSC2100 audio control registers are initialized in the TSC2100Audio( ) subroutine. The 
following is an example for initializing the TSC2100 audio function: 

TSC2100WriteReg( { AUDCTRL }, 0x0000 ); 

TSC2100WriteReg( { ADCVOL }, 0x8000 ); 

TSC2100WriteReg( { DACVOL }, 0x8080 ); 

TSC2100WriteReg( { BPVOL }, 0xC580 ); 

TSC2100WriteReg( { KEYCLICK}, 0x44F0 ); 

TSC2100WriteReg( {AUDCTRL3}, 0x3000 ); 

TSC2100WriteReg( {PLL1}, 0x1120 ); 

TSC2100WriteReg( {PLL2}, 0x0000 ); 

TSC2100WriteReg( {AUDCTRL4}, 0x0030 ); 

TSC2100WriteReg( {AUDCTRL5}, 0xFE00 ); 

TSC2100WriteReg( {AUDPD}, 0xBFC0 ); 

Audio Power-Up Sequence 

When the output of the audio codec is powered up, there is usually a weak but audible pop 
noise from the audio output, which is due to the slight change of the DAC and/or the driver 
output offset. In the TSC2100 device, the DAC converter and the output driver both feature the 
on-chip pop noise reduction schemes. 

Depending on the connection to the TSC2100 audio left and right channel outputs, HPL and 
HPR, the TSC2100 can be called either under the cap (capacitor) mode (if there are AC 
coupling capacitors in between) or under the capless mode (if the HPL and HPR are directly 
connected to a headphone and have no capacitor in between). Table 3 lists the power-up 
sequence under the cap and capless modes. 

 
Table 3. An Optimum Power-Up Sequence for TSC2100 

 

Step 1 If in cap mode, make sure that VGND has been powered down 
If in capless mode, make sure to power up the VGND first 

Step 2 Keep Driver Pop Reduction settings at the default (i.e., it is enabled with long duration) and power up 
headphone driver 

Step 3 Power up Side-Tone; but keep it muted 

Step 4 Enable DAC pop reduction features, and set it to slow and long options 

Step 5 Power up DAC and then un-mute both channels 



 SLAA198  

8 TSC2100 WinCE Generic Drivers 

 

 

 

Audio Data Transformation 

In the audio driver, the DMAC function of the processor moves the audio data on the I2S bus 
between the processor and the TSC2100. The processor DMA function should be initialized and 
set up, as previously noted, in the audio initialization PDD routine PDD_AudioInitialize( ). 

Also, another PDD routine PDD_AudioGetInterruptType( ) determines the cause of the audio 
interrupt and then tells the MDD layer the standard audio status: input or output playing, input or 
output recording, stopped, or other status. 

 
Audio Messages 

In WinCE audio device driver WaveDev structure, the two audio message-sending PDD routines 
are: the routine PDD_WavProc() that sends standard audio control messages from MDD layer to 
PDD layer, and the routine PDD_AudioMessage() that sends custom messages from the user 
applications to the PDD layer. The later can be used to set or update the TSC2100 control 
registers and can be accessed by a user application. 

 
Conclusion 

Table IV summarizes the TSC2100 drivers, together with the hardware requirement for a 
processor to implement the corresponding TSC2100 drivers and functions. 

 
Table 4. TSC2100 WinCE Drivers and Processor Requirements 

 

Function Touchscreen Audio 
SW Driver 
Required 

Touch Driver 
TSC2100Touch.CPP 
XXXXXTouch.CPP 
XXXXXTouch.H 

SPI Driver 
TSC2100SPI.C 
TSC2100SPI.H 
XXXXXSSPComm.C 
XXXXXSSPComm.H 
TSC2100REG.H 

Audio Driver 
TSC2100Audio.C 
TSC2100Audio.H 
XXXXXAudio.C 
XXXXXAudio.H 

SPI Driver 
TSC2100SPI.C 
TSC2100SPI.H 
XXXXXSSPComm.C 
XXXXXSSPComm.H 
TSC2100REG.H 

Processor HW 
Required 

An external HW Interrupt for /DAV 
SPI Port 

DMA 
I2S Port 
SPI Port 

To use the TSC2100 drivers, simply copy the corresponding driver into the proper directory on 
the applied processor’s WinCE development platform. As an example, the installation procedure 
for the TSC2100 drivers on the Lubbock platform follows. 

• To install the header files for TSC2100 control registers and SPI driver, copy files in 
\TSC2100Driver\Inc\ to C:\WINCE400\PLATFORM\XSC1BD\inc\ 

• To install the SPI driver, copy files in \TSC2100Driver\Drivers\SPILIB\ to 
C:\WINCE400\PLATFORM\XSC1BD\drivers\DRVLIB\ 



SLAA198 

TSC2100 WinCE Generic Drivers 9 

 

 

 
 

• To install the touchscreen driver, copy files in \TSC2100Driver\drivers\Touch\ to 
C:\WINCE400\PLATFORM\XSC1BD\drivers\TouchP\ 

• To install the audio driver, copy files in \TSC2100Driver\Drivers\Audio\ to 
C:\WINCE400\PLATFORM\XSC1BD\drivers\WAVEDEV\ 

• Additionally, to set up the interrupts for the touchscreen, including the /DAV hardware 
interrupt and a software timer interrupt, the files cfwxsc1.c and intxsc1.c in 
C:\WINCE400\PLATFORM\XSC1BD\KERNEL\ directory needs to be updated. 

• To set up the DMAC for the audio driver, the header files, dmac.h and dmacbits.h also 
need updating. 

 
References 

1. Programmable Touch Screen Controller with Integrated Stereo Audio 
CODEC and Headphone/Speaker Amplifier (SLAS378) 

2. TSC2301 WinCE Generic Drivers (SLAA187) 

3. Windows CE .Net Touch Screen, Keypad, and Audio Device Driver for the 
TSC2301 (SLAA169) 



IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Application Report
	ABSTRACT

	Introduction
	Principles
	Figure 1. Layered TSC2100 WinCE Driver

	SPI Interface
	Hardware Interface
	Table 1. PXA250 and TSC2100 SPI HW Interface

	TSC2100 Control Registers
	SPI Driver
	Table 2. Fundamental Routines for SPI Driver


	TSC2100 Touchscreen Driver
	Touch Initialization
	Touch Data Reading

	TSC2100 Audio Driver
	Audio Initialization
	Audio Power-Up Sequence
	Table 3. An Optimum Power-Up Sequence for TSC2100

	Audio Messages

	Conclusion
	Table 4. TSC2100 WinCE Drivers and Processor Requirements
	\TSC2100Driver\Inc\ to C:\WINCE400\PLATFORM\XSC1BD\inc\

	References
	1. Programmable Touch Screen Controller with Integrated Stereo Audio CODEC and Headphone/Speaker Amplifier (SLAS378)
	3. Windows CE .Net Touch Screen, Keypad, and Audio Device Driver for the TSC2301 (SLAA169)


