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Sensorless Control with Kalman Filter on Fixed-Point DSP

ABSTRACT

The importance of Digital Motor Control (DMC) has grown gradually. As Digital
Signal Processors have become cheaper, and their performance greater, it has
become possible to use them for controlling electrical drives as a cost effective
solution. Some relatively new methods such as speed sensorless field oriented
control utilize this enhanced processing capacity. This document discusses the
implementation of a sensorless field oriented control for induction motors using
the Kalman Filter. First the theory of field oriented methodology, with and
without speed sensor, is described. Then a simulation approach is given for
both cases. Finally the real-time implementation issues of a sensorless control
are discussed. The paper presents an evaluation of the results. The processing
capability of the processor is used to 50% at the current cycle times, the
memory requirement is approximately 6823 Word program, and 2564 Word data
space, of which 1024 Words are C-stack. The appendix contains full source
code of the sensorless control for the TMS320C50" DSP, which is source
compatible to the other members of the Fixed-Point DSP family like 'C1x, 'C2xx.

1. Notation and Symbols

In this chapter the notational conventions will be summarized, as used in this document.
Throughout this work notations used by [6] (University Paderborn), [7] (ASPACE) and [4]
(Beierke) will be followed. The internal variable notations of the programs will not be
discussed here. The meanings of the variables are documented in the corresponding
programs.

! In this document we will use the following abbreviations: C14 for TMS320C14, C50 for the TMS320C50 etc.

Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP 1



Table 1: Summary of Notational Conventions

Meaning

\ Notation

Electrical and Mechanical Torque m,,m
Fluxes® B
Flux Angle £ Or &
Flux Speed G OF Gpg
Inertia J
Leakage Factor g= K
LS
Stator and Rotor Leakage Factor Og, Og
Magnetic Pole Count z, 0rp
Magnetizing current [
Phase Currents farlple
Rotor, Stator and Main Inductances Le,Ls, Ly
Rotor and Stator Resistances Res Rs
Rotor and Stator Time Constants Te, T
Rotor Angle E OF &g
Rotor Currents Scalar Components irarirg
Rotor Speed G Of G
Stator and Rotor Currents igiig
Stator Currents in Field Coordinates g gy
Stator Currents Scalar Components soigs
Voltages® u

Note, that in most of the articles about field oriented control rotor flux is regarded simply
as “flux” and this document will follow this convention as well.

. The Hardware

This chapter will give a very short overview of the hardware used in this project. This
motor controller card (see Figure 1 on page 3) is based on a TMS320C50 DSP (Digital
Signal Processor) manufactured by Texas Instruments. Other main elements of the
system are a UART for serial communication with a PC or VT-100 terminal, an A/D
converter with an analog multiplexer, which can be used to input up to 8 channels of
analog signals in the range of 0-5V, a PWM generator, which is implemented inside an
FPGA of Texas Instruments, a GPIO unit, with an integrated incremental encoder
interface. All this features are now integrated in a new device called DSP-Controller
TMS320C240.

“Indices are just the same as for currents
®Indices are just the same as for currents
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To UART

To COM Port

PWM RS232 line drv
FPGA —
DMC Board p—
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P
GPIO C50 R XDS 510
(@]
FPGA D o
X
1
:_ Incremental Enc. 1 0 JTAG Port To XDS 510 Card
: Interface | To PWM FPGA
- 7 Tr--==== ]
- : GPIO FPGA
Optional : and A/D converter

Power Electronics
and
Asynchronous Motor

Figure 1: New Control Hardware System

3. The Field Oriented Control Method

In the case of an asynchronous 3 phase motor, sometimes regarded as an induction
cage motor, a very elegant control method, the field oriented control is available. The
main feature of this method is that all variables are converted to the coordinate system of
the magnetic field of the rotor, called the rotor flux. The flux is held constant using the
current component parallel to the rotor flux (isd), the torque is controlled by the other
current component (isq). This method is basically the same as controlling separately
excited DC motors. The control method is not very complicated, however the calculation
of the rotor flux and a conversion of the variables from the stator system to the flux
system requires high processor capacity, since a conversion between field coordinates
and stator coordinates is needed in both directions in each controlling cycle. The C14
DSP was completely capable of doing this job in real time. The motor and the controlling
hardware is relatively cheap, on the other hand the software is quite complicated. But
this complicated software can be used in a quite flexible way, once it is developed.

Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP 3



The main reason for using this method is its dynamic performance. Specifically, it offers
good lead performance, and resistance against disturbances such as changes of the
load torque. These properties can be achieved by a decoupling of the flux and the
torque, which is possible with a field oriented model. In this case, as was mentioned
before, not only the structure of the control will be the same as the separately excited DC
motor but we also get a similarly good dynamic control behaviour.

4. Motor Model Used in the Field Oriented Control

The model of the AC drive will be described in field coordinates’. As a basis, the
equations of the motor as described in [4] will be used. This system of equations is
nonlinear. The indices "R" and "S" mean rotor and stator respectively.

Us(0) = Ria(t) + = Wolt) = Ris(0) + Lo (0 + Ly~ (2 (06) )
0= R (t) +- L Wo(t) = Ruin(t) + L i n(t) + Ly L (14 (0)e ) @)
- dt — - dt - dt

M0 = 22,4, M0 0] ©
dex) % 0 o

= mO-mo) @)
de(t) _
T—w(t) 5

The inductances in these equations are defined as:
Ls = L,s * Ly = (14 05)L, Le = Lor *Ly = (1#0g)Ly (6)
The total leakage factor is defined as follows:

1

o=1- (7)
(1+05)(1+0%)

L, is the main inductance of the motor, R; and R; are the resistances of the windings.

We will now define the model of the asynchronous motor in field coordinates. This will
make it possible to implement the controller in field coordinates. Field orientation is
described in detail in [1]. The basic principle is, that we convert all values to the
coordinate system of the magnetic field, decompose the stator current vector into a field

“In none of these models of the Asynchronous Motor do we take the mechanical losses into account.
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generating, and a torque generating (ig, and ig, respectively) component. Once this is

done, the actual control becomes very simple. Since our program does not reach the
field weakening range, we will keep the field generating component at a constant value
to generate a necessary field, and control the torque generating component according to
the speed. This means, that the output of the speed controller is the reference for the ig,

controller.

We will eliminate the use of flux in the model, and we will use the magnetizing current
instead. The connection between these two variables is as follows:

Lin(®) =L+ 0 (006 #i5(0) =i,a(D)€ = W) ®)

H

The transformation between the systems will be done by the following transformation:
Qse_jp =Ug +ju$q 9)
I8 =ig +jig, (10)

Let us now consider the equations of the model in field coordinate system. Note that in
, L .
these equations T, :i. Note also, that the rotor based variables are also completely

eliminated.

ey 1) = Ris () #0 Lo~y (0) =0 LoDy (8) +(1=0) L) aw
Uy (1) =Risy(0) £ L+ i5,(0) 0 Let0eOias(0) H(1=0) Letoa D) (12)
(0 Zian() # T o) 13)
g (1) = (@ pr(t) —a(t) Tal (1) (14)
My(0) =22,(1-0)Li (Vi) (19
2840 —m, ) -m () (19)

p

This model has been the basis for the field oriented control. Note, that the Kalman filter
in the next section is based on another model, which uses rotor fluxes and stator
currents as state variables. These two models are equivalent. The other model will be
presented where the Kalman filter is introduced.
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5. Implementation of the Field Oriented Control Method

Using the field oriented model of the motor, it has theoretically become possible to
realize a control in field orientation, which makes it extremely easy to control speed by
controlling ig,. However our system of equations is nonlinear. We will eliminate this non-

linearity by a decoupling of the nonlinear terms. This method is taken from [4].

Ug = US| +Ug™Pe = aQs + 0l iSd §+ E— sWrrigy + (1 a)L i E (17)

n ouple _ d H
Ug, = Ug" +Uug™™® = é&g +ol,— S‘*E [aL W, o +(1—0)stmR|mR] (18)

From these equations we derive the formula for the linearized voltages, which will make
our equations linear.

n __ ouple __ H d H |:|

UsLd = Ug — ugd Ple = %S'Sd + GLSEISd E (19)
. . d. O
Lin — Couple _—

Ugy' = Ugy ~Ugg ‘QQS'SqJ“OLSE'SqE (20)

Now we will presume, that i, and that it is constant. This will remove the last non

linearity by making K, constant.

mR'

OB 0 0o o0of Ol 45 4O

00T “g s 0

EmRB - -= 0 00 mRE o0 0 0 fughO
d _DTR TR DO 1 0 Lin U
—HsB=0 R, ot g oL s 0 (21)
00 po o -—= o ol,U s

™0 g oL, oo, _zmd

HeH 0 o 0 K, 0 oHeH g J0

Ho o o 1 of 50 0 O0F

where

2 2
K, =52 (1-0)L (22)

This system can be split into two systems, the d and the g subsystem. This will enable
us to build up a separate controller for both parts. The d and the g subsystems are the
following:
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0RO 010
dOy0_ Yol %Sdm | [g, O
— =0 7S + EsiE v, =[0 1™ 23
afe B8 2Pl Wl gE @
H Tq T: B
01 0
O0R 4 O 0
0,0 O o M, 0 s . m D
d 0,00, o od,0,00 -Z%0s'H 010
ook iy 3 O .= REEED)
Heg B0 1 0HeH o o0 ; @9@
H 0 O
B 8

After this it is possible to control the motor, provided that we are able to convert all
values to field coordinates. This is made by the flux model. The form of the flux model,
which is realized here is based on [1] and [7].

After realizing the flux model it is possible to control. The first branch of the control looks
like this: There is a controller for i, ;, which is in fact a controller for &, the flux. There is
a controller for ig, which will force the correct i ;. The second branch begins with a
controller for «, which is in turn followed by a controller for ig,, which will force the correct

torque and will realize the correct velocity. The overall control structure is given in Figure
2, with the controllers shown in the upper left corner.

Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP 7



This is the flux model based

controller of the AC motor
speed_ref +
lim PID——— 3+ —>

lim PID|
+ =
sum2 Ve suml= — ! .'4-
u_Sqg* Saturation > u Salpha >
-1
Ll u_Sq’
omega_RS g
» u_Sbeta
» - alpha-beta
-d to to a-b-
—{PSI_RD| * i oA alpha-beta
- " g =<u|
psi_RD » u_Sd3aturationl
+ ; > D 1]iS_a| 2|iS_b
B+ Pyliim P <kl »liim PID [1]is o 2]
sum3
m
FC su d-cC
P sin-cos <
« | I il
omega_|[FR 3} <
eps_FS a-b-cto  iS_c
- < alpha-beta
psi_Rd
:
i_Sq
: < B
LSAE)x-model eps_RS
*: this value is taken from the program
from the file "im_const.h", macro: PSI_RD © 1995 Texas Instruments

Figure 2: Model 1 - Field Oriented Controller for the ASM

The Field oriented control has been implemented as a simulation in Simulink, and also in
real time on a C50 processor. A detailed documentation of this implementation can be
found in [5].
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6. Kalman Filter

The system we have considered up to now uses a sensor to measure position of the
rotor. In many cases it is impossible to use sensors for speed measurement, perhaps
because it is either technically impossible or extremely expensive. As an example, we
can mention the pumps used in oil rigs to pump out the oil. These have to work under
the surface of the sea, sometimes at depths of 50 meters, and getting the speed
measurement data up to the surface means extra cables, which is extremely expensive.
Cutting down the number of sensors and measurement cables provides a major cost
reduction.

Lately, there have been many proposals addressing this problem, and it has turned out
that speed can be calculated from the current and voltage values of the AC motor. Some
of these proposals are open loop solutions, which give some estimation of speed, but
these solutions normally have a large error. For better results we need an observer or a
filter. The Kalman filter has a good dynamic behaviour, disturbance resistance, and it can
work even in a standstill position. See [11] for a comparison of the performances of an
observer, a Kalman filter (KF) and an Extended Kalman filter (EKF).

Implementing a filter is a very complex problem, and it requires the model of the AC
motor to be calculated in real time. Also, the Filter equations must be calculated, which
normally means many matrix multiplications and one matrix inversion. Nevertheless,
these requirements can be fulfilled by a processor with high calculation performance. A
DSP is especially well suited for this purpose, because of its good calculation-
performance/price ratio. In low cost applications fixed point DSPs are desirable.

The chosen solution is a Kalman filter, which is a statistically optimal observer (see exact
details in [2]), if the statistical characteristics of the various noise elements are known.
For the implementation of the Kalman filter we need a much greater calculating capacity
than the C14 used in [6] to realize the field oriented control, so the C50 DSP has been
chosen. This makes things more complicated of course, since the variables have to be
scaled, which would be unnecessary with a floating point processor.

For information on the hardware used in this project see [5].

At this point, the question of the portability has to be mentioned. The portability of this
software is very limited, if we look at the processor side only. It is however a special
purpose software for DSPs, so it makes sense to look at the portability only to other
DSPs. The fixed point DSPs of Texas Instruments are upward source code compatible,
which makes it easy to port the software to newer DSPs. Porting to older versions is also
quite simple, the special C50 instructions must be substituted. The software is modular,
so porting it to another hardware platform with the same processor but other peripherals
only means substituting the 1/0 routines, and setting the parameters. So we can justly
claim that the portability of the software inside the fixed point DSP family is very good.

First a short introduction to the theory of Kalman filters will be presented. This
introduction will be based partly on [2], partly on [3].

Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP 9
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The Kalman filter is a special kind of observer, which provides optimal filtering of the
noises in measurement and inside the system if the covariance matrices of these noises
are known. So let us first see what an observer is.

. Basics of Observers

The problem of the observers is the following. Take a system which has some internal
states: these state variables are normally not measurable so we usually measure only
substitute variables. If we want to know these internal state variables for some reason,
for example, we want to be able to control them, then we have to calculate them. It is not
always possible to calculate these variables directly from the measured outputs.

Consider a system with the following form. (Note, that all symbols that denote matrices
or vectors are underlined.)

x = Ax +Bu (25)

=Cx (26)

<

With a very simple approach we can realize a system, that runs parallel to the real
system, and it calculates the state vector, as seen in.Figure 3. This is based on the quite
reasonable assumption, that we know the input values of the system.

I
System model
X
D x=Ax+Bu D

Figure 3: Reconstruction of the State Vector

This approach however does not take into account that the starting condition of the
system is unknown, which is true in practically every case. This causes the state variable
vector of the system model to be different from that of the real system.

The problem can be overcome by using the principle that that the estimated output
vector is calculated based on the estimated state vector,

y=CxX (27)
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which may then be compared with the measured output vector. The difference will be
used to correct the state vector of the system model. This is called the Luenberger
observer, and it can be seen in Figure 4.

— — — — — — — — — — — —

| y
——f—b %=Ax+Bu D c D
- |

1" " Luenberger observer withg, | |
| |
| b s=Ax+Bu+ | X N c y +|
I » I T 1
| |
| ; |
I r y-
| L K :

Figure 4: Structure of the Luenberger Observer

Now we can set up the state equation of the Luenberger Observer as the following:

X =(A-LC)X +Bu +Ly (28)

Now we can ask how the matrix L must be set in order to make the error go to zero. This
is done by setting up a state equation for the error as follows:

X =(A-LC)X (29)
where:
X=x-% (30)

If we now transpose the matrix of the error differential equation (29), we get a form which
is very similar to a controller structure:

X¢ = (AT _QTLT )X (31)

The effectiveness of such an observer greatly depends on the exact setting of the
parameters, and the exact measurement of the output vector. In the case of a real
system, none of these criteria can be taken for granted. In the event of relatively great
disturbances in the measurement, great parameter differences, or internal noises in the
system, the Luenberger observer cannot work anymore and we have to turn to the
Kalman filter.

Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP 11
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Basics of Kalman Filters

The Kalman filter provides a solution that directly cares for the effects of the disturbance
noises. The errors in the parameters will normally also be handled as noise. Let us
assume a system with the following equations.

Xx=Ax+Bu+r (System) (32)
y=Cx+p (Measurement) (33)

Where r and p are the system and the measurement noise. Now we assume, that these
noises are stationary, white, uncorrelated and Gauss noises, and their expectation is 0.
Let us now define the covariance matrices of these noises:

cov(r) =E{rr"} =Q (34)

cov(p) = E{,o_pT} =R (35)

Where E{.} denotes expected value.

The overall structure of the Kalman filter is the same as that of the Luenberger observer
in Figure 4. The system equations are also the same:

X =(A-KC)X +Bu +Ky (36)

We will follow the notations of [2], and denote the matrix of the Kalman filter by K. The
only real difference between the Luenberger observer and the Kalman filter is the setting
of the matrix K. This will be done based on the covariance of the noises. We will first
build the measure of the goodness of the observation, which is the following:

J= z E{x’} (37)

This depends on the choice of K. K has to be chosen to make J minimal. The solution of
this is the following (see [11]):

K=PC'

- (38)

170

Where P can be calculated from the solution of the following equation:

PC'R™'CP-AP-PA' -Q=0 (39)

Q and R have to be set up based on the stochastic properties of the corresponding
noises. Since these are usually unknown they are used as weight matrices in most
cases. They are often set equal to the unit matrix, avoiding the need of the deeper
knowledge of noises.
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In [2] a recursive algorithm is presented for the discrete time case to provide the solution
for this equation. This algorithm is in fact the EKF (Extended Kalman Filter) algorithm,
because the matrix of the Kalman filter, K, will be on-line calculated. The EKF is also
capable of handling non-linear systems, such as the induction motor. In this case we do
not have the optimum behaviour, which means the minimum variance, and it is also
impossible to prove the convergence of the model. (See [11]).

Let us now see the recursive form of the EKF as in [9]. (This is basically the same as in
[2], but with slightly different notation):

All symbols in the following formulas denote matrices or vectors. They are not denoted
with a special notation, because there is no possibility of mixing them up with scalars.

Xk = K-+ Ki (Vi = h(Xk‘k_l, k)) (40)
on
Pk\k - Pk\k-l - Ke— Pk\k—l (41)
X=X k-1
0 g
o’ oh o’ 0
Ky = Pk\k—l_ T Pk\k—l_ +R (42)
dX X=Xy k-1 H&X X=Xy k-1 dX X=Xy kg H
Xsq = Z(k +1,k,xk‘k_l,uk) (43)
op oo’
Pk+1\k = X Pk\k + errkT (44)
X=Xy |k X=Xy
Where
C(k # 1K, X0 Ue) = Ac(X ) X * B (X U (45)
A%y K) = C (K1) Xy (46)

These are the system vector and the output vector respectively, and they can be
explicitly calculated.

The matrix K is the feedback matrix of the EKF. This matrix determines how the state
vector of the EKF is modified after the output of the model is compared with the real
output of the system.

At this point it is important to mention that this system of equations contains many matrix
operations, which can be difficult to implement in real-time.

Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP 13
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To implement this recursive algorithm of course we will need the Model of the motor,
which means the matrices A, B and C , from which we have to calculate the matrices @
and h. So let us see the Motor Model.

. Motor Model for the Kalman Filter

As shown in the previous section we need a model of the motor for the implementation of
the KF. For this purpose two models have been tested, one of Brunsbach [9] and one of
Vas [10]. The model of Vas has shown a more stable behaviour, and that is why we use
it later for the implementation.

First, let us have a look at the model of [9].

011 1ol 1-01 w o0
- Uom, o T, o T, R s |
e D E 1 21 0 0 o O Ocos(¢)  sin(e) O (47)
gEmRE:E T, T, mRE+ 1 50 0 Hu,0
dt gwg 0 -W,n _1—ameT 1 0 ng OTRg E—sm(s) cos(&) [f¥lss [
owg O g oTg a 5 0 o B
0 0 0 27, 1-0)Ld, of
—— 41~ |
H 3J ( 0) S'mR H
: . Ag O
g, 0 [eos(e) O -sin(e) O 5
D_ . R
%Sﬁ = §n(e) 0 cos(e) OE[I] B (48)

0 O 0 =
FoH H 1%0%

Note that in this model w is part of the output vector. This does not mean that we
measure it, but it must be estimated roughly and this estimated value must be
substituted into the Kalman filter where this output vector is needed. The substitution is
made based on the following formula:

[
__ = 49

R'mR

w=w

This expression has to be calculated each time the model has to be evaluated. To
evaluate this formula we need the speed of the flux, «,, . This means, that we require

our flux model just as before. The flux model is also needed to calculate the angle of the
flux, €.

Now we will examine the other model proposed in [10].
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A
2
—
T
>y
—
T
&
o
|

DsgD D KR LHC() LHRR DDSQD D
0, 0 0o --R - t o O %,15
qO0¥0 O Ko LKy LK ms 0o 4 Tug, [
=W, O=0L, 1 MW, [+ —M0 O 0 (50)
— 0 e -w 0
dg, 0 O7 T 0 KL%) otYss 0
Re[] B L, 1 R[] 0
50 0 0 0 of
Ois, O
0; O
il [ 0 00 o¥O
e D 0 (51)
HeH B 1 0 0 o M
R8[]
Hw B

This model has a disadvantage; its order is higher. This will be a drawback when the
EKF algorithm has to be implemented in real-time. One great advantage of this model,
however, is that it does not assume that the speed is measured, so neither «,, nor «

has to be known. The other is that the flux model can be omitted, since this model also
estimates the flux, and so the angle of the flux and any other parameters can be directly
calculated. The model is also much simpler than the first one, since it does not contain
conversions between the stator and the field coordinate system, and thus the nonlinear
sine terms disappear from the input and output matrices.

In both cases we will need a discrete version of the systems. The conversion will be
done by the following approximate formulas based on [9]:

A=e" =| +AT (52)
T

B':J’eAdefz BT (53)
0

CcC=C (54)

Where we denoted the system matrix, the input and output matrices of the continuous
system with A, B and C, and those of the discrete system with A’, B’ and C'. We assumed
that our sampling time is very short compared with the dynamics of the system. From
now on we will use the model presented in [10], so let us see the discrete form of this
model.
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After this point we will only look at the second model because the delivered results were

much more stable.
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10. Simulation of the Kalman Filter

Now that we have the discrete form of the model, we can calculate the necessary
matrices and vectors for the recursion. This will be the last step to enable both real-time
implementation and simulation.

- L, R, L, G 1 0O
1-T—R)ig, + TR W, +T—H—-W_+T—u
é EL)SG %KL " tRE; i KlL SGB
. w
4T T T e TR
¢=0 T%i&, +(1—TTi)LuRa ~Ta,, . (57)
0 R R 0
L, 1
O T i, +TaW,, +(1-T)W O
A -
w
[, O
h=Cx=0" (59)
s ]
%—Tﬁ 0o TR pli g L Yo O
D I<L LRKL LRKL I-R|<L D
0o 1-18 sh@ ;LR Ly ¢
dcp_% L KL LR';L L??KL LeK, Rag
x QT2 0 1-T— Tw ™o [ (59)
0 s Tr 0
L
B 0 TT—H Tw 1—T_|_— TV, B
R R
H o 0 0 0 1 H
0 00O
oh 0 (60)

x B 1 0 0o of

Reaching this point the realization of the model in Matlab/Simulink can begin. Realizing
the complete Kalman filter as a Simulink model would have been a very complicated
model, and it seemed easier to implement it simply as a Matlab language file. Another
advantage of this is that the Matlab language file can be more easily converted into an
assembly program. A subsystem has been inserted into the system that contains the
Kalman filter, which is then bound into the model as an S-function.

The overall structure of the controller is not changed very much. See Figure 5: Model 2.
The filter is in the subsystem called KF. Its output depends on which model we use. The
picture shows the case of the EKF with the second motor model (from [10]). In this case,
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the outputs of the system are all state variables, which is the rotor fluxes and stator
currents and rotor speed. The inputs are measured rotor currents and rotor voltages. In
the other case the output would be only rotor speed, but the estimated rotor speed would
be needed as well, which would be calculated by a flux model.
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Figure 5: Model 2 - Controller with Kalman Filter

These tests reveal that the model of Vas (Presented in [10]) has a much more stable
behaviour. In the Appendix the Extended Kalman Filter S-functions are presented for
both motor models. For test results with the motor model please refer to the section "11
Simulation Results".

After achieving the required simulation results the real-time implementation could begin,
again based on the second model.

11. Simulation Results

In this section the simulation results of the Field Oriented Control (FOC) and the EKF
(Model of Vas) will be compared.

As a first test, let us compare the speed reversal of an FOC and an EKF. In both cases
we apply a speed command of 2000RPM, and -2000RPM at 0.1 and 2.2s respectively.
Also a constant load is applied at 1s in positive, and at 3s in negative direction.
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Figure 6: Speed Reversal with FOC

The figure shows the speed reference, speed and the load torque
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Figure 7: Speed Reversal with EKF

The figure shows the speed reference, estimated speed and the speed.

We can observe that the response of the EKF is worse than of the FOC, which is natural

because we do not have an exact speed measurement, but the difference is not that
great.

The next experiment shows load torque pulses applied to the motor in a standstill

position. The torque is very large, so it causes very big changes in the speed. Let us first
see, how the FOC behaves.
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Figure 8: Applying Load at 0 RPM with FOC

The figure shows speed, torque and speed reference (always 0).
Let us now see the same test with the EKF.
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Figure 9: Applying Load at 0 RPM with EKF

It is clear that the offset gets very small after the second, and even smaller after the
third, load impulse. This is due to the fact that the EKF parameters must settle before it
can deliver good results and it needs some changes to be able to settle. This settling
means that the K matrix reaches a point where it is more or less constant and its
performance is close to optimal. Typical values of the K matrix after the first torque
impulse:

K =
0.1217 -0. 0245
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- 0. 0245 0. 0049
- 0. 0027 0. 0005
0. 0005 -0. 0001
9. 1643 -1. 8304

This value leaves quite a big offset in the speed.

After the second torque impulse the offset will be very small, and K gets the following
value:

K =
0. 0670 0. 0632
0. 0632 0. 0597
-0. 0015 -0.0014
-0.0014 -0. 0013
6. 8152 6. 3945

This shows that there are great changes in K. As the system is nonlinear, we have to
see that K will change all the time and will adapt the actual system conditions.

As a conclusion we can say that the simulation of the EKF shows a stable behaviour
after a certain time has passed for settling. The torque disturbance rejection is very
good, and comparable to the FOC. The simulations provide a basis for the real time
implementation.

12. Real-Time Implementation of the Kalman Filter

In this chapter the real-time implementation using the TMS320C50 DSP will be
presented.

The calculations look quite simple in the Matlab S-function, but we should not forget that
all operations are matrix operations. Additionally there is a matrix inversion in the
calculation process, which is very complex in the general case. These manipulations
have to be ported to the assembly language of the C5x. Since the language has a very
good macro support, these functions have been implemented with the help of macros.

To implement the matrix calculations, some matrix manipulation macros are needed. The
most frequently needed was matrix multiplication. Let us see the matrix multiplication
macro as an example.

; Matrix Multiplication Macro

Author: Balazs Simor
Date: 09. 1995.

; matrix multiplication for fractional matrices

; the macro does mat1* mat2=redlt.

; sizes of the matrices:

; matl: [s11 x s21], mat2: [s21 x s22], redlt: [s11 x s22]
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mmfra .macro matl, mat2, reslt, s11, s21, s22

22

setc ovm ; saturation mode on.
spm 1 ; product shifted left by 1
.asg 0,i
Jloop
.asg 0,
Jloop
Zap
.asg 0,k
Jloop
[ta mat1+i* s21+k
mpy mat2+k* s22+j
.eval k+1,k
Jbreak(k == s21)
.endloop
apac
sach reslt+s22* i+
eva j+1
Jbreak(j == s22)
.endloop
eva i+l
Jreak (i == sl11)
.endloop
clrcovm ; saturation mode off
spm 0 ; shifting off
.endm

This macro implements a very general [nxm]*[mxI] matrix multiplication in a macro
language. This has a great advantage, the cycles are generated and expanded by the
compiler, and they do not take computation time. This macro relies basically upon the
macro support of the Fixed Point DSP Assembler, for more information of the macro
language see [13]. Note, this is a simplified version of the macro, but it shows the basic
idea. For the complete macro see the Appendix.

The main reason why this function is implemented as a macro is that we need to multiply
many different sized matrices. There is a list of the matrix multiplication operations
needed in the following table. Since there are so many of these it did not make sense to
implement each multiplication separately, and using loops would have made the
calculations much slower. The macro language can handle the loops at compile time and
achieve faster calculation.
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Table 2: Some Types of Matrix Multiplication Needed For Kalman Filter

| Matrix1 * Matrix2 | Result
[5X5]*[5x5] [5x5]
[2X5]*[5x5] [2x5]
[2x5]*[5%2] [2x2]
[5x2]*[2x2] [5x2]
[5X5]*[5x2] [5x2]
[5x2]*[2x1] [5x1]
[65x2]*[2x5] [5x5]

As an example for the speed of this macro we take a simple case of a [3x3]*[3x2] matrix
multiplication. The macro will be expanded into 54 instructions, and the time needed for
the execution will be 65 cycles. This is a measured value with the emulator. To see how
to measure speed of programs with the Tl tools, see [12] ("runb" debugger command).

Other matrix operations that are needed are: Inverting, Addition, Transposition, Vector
normalization.

Inverting the matrix will be done by the Cramer rule:

Al = 1 adj (A) (61)

det(A)
Since we need the inverse of only a [2x2] matrix, the values can be explicitly calculated.
Inverting has also been implemented in macros.

The macros available for inversion of a matrix are "madjG" for calculating the adjunct
matrix, and "detG" for calculating the determinant of a matrix. To divide by the
determinant, it is advisable to use the "mdsclG" macro. This macro divides a matrix by a
scalar. Note, that the inverse of a matrix with elements in (-1,1) usually has elements out
of this range. This means special care must be taken when calculating inverse.

The “mdsclG” macro makes a division of each element of a matrix by a scalar. This is
usually a manipulation, where we lose a lot of accuracy, sometimes the complete result
is incorrect. To overcome this problem, a “quasi floating point” division has been
implemented. This means the scalar number is scaled so that its absolute value is in the
range (0.5,1). Let us say that the scaling factor is 2. Then its “reciprocal” is calculated
2*scl
which means it is well scaled. The elements of the matrix are then calculated with this
manipulated reciprocal and then left shifted by k+1. This method has the advantage that
the “reciprocal” has the maximum accuracy achievable with 16 bits. The whole process
can be expressed by the following formula:

by dividing 0.5 by this scaled value, which is in fact and in the range of (0.5,1),

ﬂ: 05 . k+1
sl 2¢scl

(62)
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where scl is the scalar, and a;; are the elements of the matrix.

This method can be called “quasi floating point”, because the reciprocal is in a form,
0.5 . . . .

where el is its mantissa, and k+1 its exponent.

The addition and transposition are also realized in very simple macros. There are
versions of these macros, that work with loops to make the need of program memory
smaller.

There is a significant problem in storing the matrices. The macros can operate correctly
only if the operand(s) and the result are on the same data page. We have quite a few
matrices and a [5x5] matrix takes up as much as 25 words place. A data page has the
size of 128 words, and we have 12 vectors and matrices of various sizes, which do not fit
this page. The necessary space can be reduced if the transposed matrices are not
calculated explicitly but a multiplication by transposed macro is created. This way diff_FlI
s 4T ST
0_¢ ), and diff_h transposed (0_h
0 X 0 X
reduces the time needed for calculation. But the space taken up is still more than can fit
on one page, so macros had to be created that can operate across pages. These

macros use auxiliary registers of the DSP rather than direct addressing.

transposed (

) do not have to be calculated. This also

An interesting problem is normalizing vectors. This problem is encountered as the
program has to calculate the transformation to field coordinates from the components of
the rotor flux. The “vnormG” macro is available for this purpose. The macro works only
with [2x1] vectors. The macro uses “quasi floating point” operations similar to the
“mdsclG”. For this calculation the Newton-Raphson approximation of the square root is
used, see [19] for short practical information.

Another important problem is that all the calculations have to be converted to fractional.
This means that the ranges of the various parameters have to be known and scaled into
the range of (-1,1). This is a difficult problem to handle in the case of the matrices which
can have elements of very different ranges. Let us now see the scaling values for the
various values in the matrices.

Table 3: Scaling Factors of Variables
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| Variable | Scaling Factor and Dimension

Y S P P 22.5[A]
w(=gs) ar(= Grs), g (electrical speed) YN, Tad [}
60 *Hs H
Gy Gy, (Mechanical speed) o 7 rad [J
60 Hs H
Ers E(= Eps), Erpr €y r[rad]
Ugg Ugy s Ug» Ug 155[V]

The constants contained in the equations are presented in the following table.

Table 4: Constant Values

Constant Value
T 500 us
Tg 74.4 ms
Ts 40 ms
o 0.084
R 1.68Q
Ls 0.125H
J 0.00028 kglrn?

Using these values the scaled vector ¢ and the matrix 0_—¢ can be calculated. All the
0 X

constants have to be pre-calculated to make the execution optimal. Here are these
matrices:

0.6067 0 0.0562  0.7063w 0.7063W,, [
; 5 0 06067 -0.7063w 0.0562 -0.7063%, -
72 - [0.0559 0 0.9875 -0.1571w -0.1571W,,0 (o
ox 0
5 0 00559 0157w 0.9875 0.1571W,
2 0 0 0 0 1 EH

*With n_, :3000} and z, = 2.
S
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) ¢ . .
We can see, that 0_— is almost constant, and only 8 of its 25 elements have to be

7
calculated each time. Since 0_—¢ contains the constants needed to calculate &, first 0_—¢
0 X 0 X

is calculated, and then €. This saves space since we have to reserve space for these
constants only once - and also time, since products such as 0.7063c. have to be
calculated only once in one recursion step.
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13. Real Time Results

In this section the real-time results of the field oriented control and the EKF will be
presented.

The program was tested with a method where all calculations have been compared with
the formulas, thus checking the correctness of the implementation. After this, a 1 to 1
test has been made to compare the results with the ones without Kalman filter. The
results were quite similar.

The results are quite similar to the ones like the simulated results. In this case also the
standard test was used, the speed reversal test. Speeds mean electrical speed, so 1000
RPM corresponds to 500 RPM mechanical with a machine with two pole pairs (p=2).

Speed RPM
1500 T T T T T T T T

1000

500

-500

-1000

_1500 Il Il Il Il
0 20 40 60 80 100 120 140 160 180

Samples

Figure 10: Speed Reversal with Kalman Filter

Note, the speed has a ripple on it, which shows that the behaviour should be improved.
This may be achieved by tuning the Q and R covariance matrices. Another important
factor is that the motor parameters have not been identified with the necessary
tolerance, and much improvement can be expected here. Also note, this test, just as in
case of the field oriented control, is without load torque.
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As a comparison let us see the same experiment with the same controller settings with
speed measurement.

Speed RPM
1500 T T T T T T T T

1000

500

-500

-1000

_1500 Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180

Samples

Figure 11: Speed Reversal with Speed Measurement

The program needs relatively little memory, the following table summarizes the needs:

Table 5: Memory Requirements of Kalman Filter

\ Program Part | Program Size (Words) | Data Size (Words) \
Control+Kalman Filter 3641 631
Monitor Program 1577 603
Libraries 1605 309
Stack 0 1024
> Memory requirement 6823 2564

The Processor has a computing power of 20 MIPS at 20 MHz, which means a cycle time
of 50 ns. The computation of the control happens in a 500 ps cycle, so the processor has
10,000 cycles available. The processor is currently using about 4400-4700 cycles and
this means that it has time to perform foreground tasks, such as Monitor programs, or

28 Literature Number: BPRAO57



other communications. The processor computing capacity is used to about 50%, but the
cycle times could also be reduced.

It should be mentioned here that further optimization in memory requirement and speed
can be made by transferring more code directly to assembly language.

14. Conclusions and Possible Development

A model for the system has been prepared for comparison with the on-line results, and
further development purposes. This model has been tested.

After that, the Kalman filter has been integrated to the simulation, in the form of a Matlab
function, and it has been tested. The nonlinear Kalman filter algorithm based on [9] has
been tested in the model. After the correct system model was chosen for the filter, the
results were satisfactory.

An 1/O library has been written to support the programming on board, which has then
been extensively used in all software development.

The implementation of the Kalman filter has been done after this. Here the greatest
problem was to keep the size of the program reasonable, and still reach a good
performance. This was achieved by further optimizing the model with hand calculations
to get a form of the EKF (Extended Kalman Filter) algorithm which can be implemented
with relatively few instructions.

A further phase of the development could be fine tuning the Q and R matrices, which are
the covariance matrices of the state and measurement noises and are used in the EKF.
This fine tuning is usually done by experiments, see [11l]. Another important
improvement should be the possibility of exact identification of the system parameters.

There would be a need to convert this software partly into standard libraries. The libraries
could provide the possibility to implement various control methods quickly, without low-
level programming. It would be possible to overcome the slowness of C by using hand
optimized assembly routines for frequent tasks, such as filtering or PID controllers. A
library of fast and effective matrix manipulation in form of C callable functions or
assembly macros would also be a very important step, which could be done enhancing
the matrix manipulation macros in MATG.INC presented in the Appendix.
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Appendix Source Code of Programs

Extended Kalman Filter in MATLAB Language

: Extended Kalman Filter as a Simulink S-function
:Author : Balazs Simor
: Date: November, 1995

function [sys, x0] = kalfil(t,x,u,flag, T)
%kalman filter as an S-function (m-file)
global Tr TsLr LsLh KI Kr RsRr pJGAM QR;
global sig sigs out;
global Tr KTs KLr KLs KLh KKI KKr KRs KRr Kp KJK;
global sig_K sigs K;
global x_1P_1K PhFI'Y omrsepsmr epsmrl ommr co ommirfil isq omrsest;
if flag ==
kalini5
x0 = zeros(5,1);
sys=[0,5,5, 6,0, 0];
elsaf flag ==
% calc. inp and out vec of kalman filter
U =[u(2); u@)l;
Y = [u(3); u@)l;
%prediction
diff_FI=[1-Kr_K/KI_K*T, 0, Lh_K*Rr_K/Lr_K/Lr_K/KI_K*T, Lh_K/Lr_K*x(5)/KI_K*T,
Lh K/Lr_K*x(4)/KI_K*T;
0, 1-Kr_K/KI_K*T, -Lh_K/Lr_K*x(5)/KI_K*T, Lh_K*Rr_K/Lr_K/Lr_K/KI_K*T,-
Lh_K/Lr_K*x(3)/KI_K*T;
Lh K/Tr_K*T, 0, 1-T/Tr_K, -x(5)*T, -X(4)*T;
0, Lh_K/Tr_K*T, x(5)*T, 1-T/Tr_K, X(3)*T;
0,0,0,0,1];
x_1=[diff_FI(1,1)*x(1)+diff_FI(1,3)*x(3)+diff_FI(1,4)*x(4);
diff_FI(2,2)*x(2)+diff_FI(2,3)*x(3)+diff_FI(2,4)*x(4);
diff_FI(3,1)*x(1)+diff_FI(3,3)*x(3)+diff_FI(3,4)*x(4);
diff_FI(4,2)*x(2)+diff_FI(4,3)*x(3)+diff_FI(4,4)*x(4);
diff_FI(5,5)*x(5)]...
+T*[u(1)/KI_K; u(2)/Kl_K; 0; 0; Q];
P_1=diff FI*P*diff_FI'+ GAM*Q*GAM’; %P[k|k-1] is ready
% calculation of h, diff_h
h=[x(1); x(2)];
diff_h=[10000
01000;;
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% system of Kalman filter
K=P_1*diff_h™ inv(diff_h*P_1*diff_h’ +R); %K[k]
out = x_1+K*(Y-h);  %x[K] isready

Sys = out;
P=P_1-K*diff h*P_1; %P[k] isready
elsaif flag ==
Sys = out;
elseaif flag ==
sys = (round(t/T)+1)*T;
else
sys=[I;
end
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Full Source Code of Motor Control with EKF for C50

: Kalman Filter for the TM S320C5x
: Makefile
:Author : Balazs Simor

Date: June, 1996

kalman.out : vel_ctr.obj ctr.obj sin.obj
dsplnk $** link.cmd -0 $@ -m map

matp.out : matp.obj
dsplnk $** link.cmd -0 $@ -m map

.c.asm:
dspcl -O-g-n $*
.asm.obj :
dspa-l -v50 $*
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: Kalman Filter for the TM S320C5x
; matg.inc

;Author : Balazs Simor

. Date: June, 1996

, Matrix operation macros for C5x with Global mem access (With auxilliary
; registers of the processor)
; 1995 Balazs Simor

.mmregs

;matrix multiplication for fractional matrices

; the macro does mat1* mat2=redlt.

; reslt must not be mat1 or mat2.

; Sizes: matl: [s11 x s21], mat2: [s21 x s22], redlt: [s11 x s22]
mmfraG .macro matl, mat2, redlt, s11, s21, s22

setc ovm ; saturation mode on.
spm 1 ;product shifted left by 1
lar  ARO#s22
mar * AR2
if (s21>=3)
asg O,
Joop
.asy 0,
Joop

lar  AR2, #matl+i*s21+0
lar  AR3, #mat2+0* s22+]
It *+AR3
mpy *O0+,AR2
ltp *+,AR3
mpy *O0+,AR2
It matl+i*s21+0
;mpy mat2+0* S22+
Atp matl+i*s21+1
;mpy mat2+1* S22+
.asg 2,k
Joop
lta*+,AR3
mpy *0+,AR2
[ltamatl+i*s21+k
;mpy mat2+k* s22+j
.eval k+1k
Jbreak(k == s21)
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.endloop
apac
lar  AR2#redlt+s22*i+j
add #16384,1
sach *
eva j+1,
Jbreak(j == s22)
.endloop
eval i+1,i
Jbreak (i == s11)
.endloop
dse
asg O,
Joop
.asy 0,
Jloop
Zap
lar  AR2, #matl+i*s21+0
lar  AR3, #mat2+0* S22+
.asg 0,k
Jloop
lta*+,AR3
mpy *0+,AR2
.eval k+1,k
Jbreak(k == s21)
.endloop
apac
lar  AR2#redt+s22*i+j
add #16384,1
sach *
eva j+1,
Jbreak(j == s22)
.endloop
eva i+1,i
Jbreak (i ==s11)
.endloop
.endif
clrc ovm ; saturation mode of f
spm O ;shifting off
.endm

;matrix multiplication for fractional matrices with transposition
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; the macro does mat1* mat2'=redlt.
: reslt must not be mat1 or mat2.
; Sizes: matl: [s11 x s21], mat2: [s22 x s21], redlt: [s11 x s22]
mmtfraG .macro matl, mat2, redlt, s11, s21, s22
setc ovm ; saturation mode on.
spm 1 ;product shifted left by 1
mar * AR2
if (s21>=3)
asg O,
Joop
.asy 0,
Joop
lar  AR2#matl+i*s21+0
lar  AR3#mat2+j*s21+0
It *+AR3
mpy *+,AR2
ltp *+,AR3
mpy *+,AR2
It matl+i*s21+0
;mpy mat2+j* s22+0
Atp matl+i*s21+1
;mpy mat2+j*s22+1
.asg 2,k
Joop
lta *+,AR3
mpy *+,AR2
(ltamatl+i*s21+k
;mpy mat2+j* s22+k
.eval k+1k
Jbreak(k == s21)
.endloop
apac
lar  AR2#reslt+s22*% i+
add #16384,1
sach *
eval j+1,
Jbreak(j == s22)
.endloop
eva i+l
Jbreak (i ==s11)
.endloop
dse

asg O,
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Jloop
ag 0]
loop
Zap
lar AR2#mat1+i*s21
lar AR3,#mat2+j*s21
.asg 0,k
Joop
lta*+, AR3
mpy *+, AR2
[ltamatl+i*s21+k
;mpy mat2+j* s22+k
.eval k+1k
Jbreak(k == s21)
.endloop
apac
lar AR2, #redlt+s22* i+
add #16384,1
sach *
eva j+1,j
Jbreak(j == s22)
.endloop
eva i+l
Jbreak (i ==s11)
.endloop
endif
clrcovm ; saturation mode of f
spm 0 ;shifting off
.endm

; matrix determinant for 2x2 matrices.
; Input is fractional matrix, output is fractional
detG .macro mat, redlt
sefc ovm ; saturation mode on
som 1 ; product sh mode 1
lar  AR2, #mat
lar  ARS3, #mat+3
mar * AR2
It *+AR3 :a
mpy *-,AR2 ;d
ltp *,AR3 ;b
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mpy *,AR2 ;c

spac ;ad-bc

lar  AR2#redt

add #16384,1

sach *

clrc ovm ; saturation mode off
som O ; product sh mode O
.endm

;matrix adjunct for 2x2 fractional matrices
; reslt must not be mat.
madjG .macro mat, reslt
setc ovm ; saturation mode on
som 1 ;product sh mode 1

lar  AR2, #mat
lar  ARS3, #redt+3
mar * AR2
lacc *+,AR3 :a
sacl * AR2
lacc *+,AR3 ;b
sbrk 2

neg

sacl *+,AR2
lacc *+,AR3 ;c
neg

sacl * AR2
lacc *, AR3 :d
sbrk 2

sacl * AR2

clrc ovm ; saturation mode off
som O ; product sh modeO
.endm

:matrix addition
: redt = matl + mat2
: reslt can be matl1, or mat2 as well.
maddG .macro matl, mat2, redt, s0, sl
setc ovm
lar  AR2, #matl
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lar  ARS, #mat2

lar  AR4, #redt

mar * AR2

.asg 0,i

Jloop
lacc *+,16,AR3
add *+,16,AR4
sach *+ ,AR2
eva i+1, i
Jbreak(i == s0*sl)

.endloop

clrc ovm

.endm

:matrix subtraction
: redt = matl-mat2;
: redt can be matl, or mat2 as well.
msubG .macro matl, mat2, redlt, sO, sl
sefc  ovm
lar  AR2, #matl
lar  ARS3, #mat2
lar  AR4, #redt
mar * AR2
.asg 0,i
Joop
lacc *+,16,AR3
sub *+,16,AR4
sach *+ ,AR2
eva i+l i
Jreak(i == s0*sl)
.endloop
clrc ovm
.endm

;matrix addition with diagonal matrix

; matl = matl + mat2

; where mat2 is a diagonal matrix, and it is stored as a vector.
madiG .macro matl, mat2, sO
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setc  ovm

lar  AR2, #matl
lar ARS3, #mat2
lar  ARO, #s0+1
mar * AR2

.asg 0,i
Joop
lacc *,16,AR3

add *+,16,AR2

sach *0+
eval i+l,i
.break(i == 0)
.endloop
clrc ovm
.endm

;matrix multiplied by a scalar (fractional)

s redt = mat*scl;

: redt can be mat as well

mmsclG .macro mat, scl, reslt, S0, s1

sefc ovm
spm 1

lar  AR2, #scl
mar * AR2
It =

lar  AR2, #mat
lar  ARS, #redt
.asg 0,i

Jloop

mpy *+AR3
pac

add #16384,1
sach *+,AR2
eva i+l i

Dbreak(i == s0*sl)

.endloop
clrc ovm
som O
.endm
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; matrix divided by a scalar. (Quasi Floating Point division)
; reslt = mat/scl;

; reslt and mat are [sO x s1], scl isscalar

; t0 and t1 are temporary variables

mdsclG .macro mat, scl, redlt, 0, s, t1

lar  AR4#0ffffh

lar  AR2#scl
mar * AR2
lacc *, 16, AR4
bcnd  epi?, eq ;scl must not be 0!
bcnd  neg?, It
X?
Sl
mar *+ ;counting exponent in AR4
bcnd  x?,geq
ror ; rolling back to previous
lar  AR2#t1
mar *,AR2
sach *
lacc * ;elimination of t1==16384
sub #16384
bcnd ok?, NEQ
lacc #16385
sacl *
ok?
lacc #16384,15
rpt  #15
subc *
and #Offffh
b  conti?
neg? neg
mar * AR4
x17?
Sfl
mar *+
bcnd  x17,0eq
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ror
lar AR2#t1
mar * AR2
sach *

lacc * :eimination of t1==16384

sub #16384
bcnd  ok?, NEQ
lacc #16385
sacl *

ok1?
lacc #16384,15
rpt  #15
subc *
and #Offffh

neg
conti?

sacl *
setc ovm
som 1
It =
sar AR4*, AR3
lar  AR3#mat
.asg 0,i
Joop
mpy *+,AR2
pac
lar AR4,*, AR4

loop:i:? ; left shifting with saturation.

sach
addb
banz loop:i:?

Idp #redlt+i

add #16384,1

sach redt+i

mar *,AR3

eval i+l i

Jbreak(i == s0*sl)
.endloop

epi?
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clrc ovm
som O
.endm

: Vector normalization.
; reslt = vec/abs(vec);
; redt and vec are[2 x 1] vectors
; tlisatemporary store cdll
vnormG .macro vec, redlt, t1
lar  AR2, #vec
lar  ARS3, #redit
lar  AR4#0
lar  AR5#t1 ;AR5->temp
mar * AR2
som O
Zap
sgra  *+
sgra  *-,AR4
apac ;ACCH= (abs(vec))"2/2

rpt  #15
norm *+

nop ;pipeline protection
nop

mar *,AR3
sach *+ ;Store normalized value of (abs(vec))"2/2 in reslt
splk  #27969, *-  ;Beginning value for the iteration

Jdoop 3

It *+ ;N/2

mpy *AR5 R[i-1]

pac

sach *,1

It *,ARS3 ;T=N/2*R[i-1]
mpy *AR5 R[i-1]

pac

neg

add #32767,15

add #16385,15 ;ACCH=(1.5-(N/2)*RJ[i-1]"2)>>1
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sach *

It *ARS3

mpy * JR[i-1]

pac

sach *-2 ;Storing new R{[i]
.endloop

mar *+

It *-AR2 ; T=1/Root
mpy *+AR3

pac

sach *+,1,AR2

mpy *,AR3

pac

sach *-,1, AR5

;denorming the values

sar AR4*

lacc *

bcnd  nodenorml1?EQ ;no denorming if shiftcount is O
ror

sacl *
lar  AR4,* AR4
mar *- ;decrementing AR4 for looping
bcnd  even?NC
mar *+, AR3 ;if odd, it must be incremented
it =
mpy #23170 ;sgrt(2)/2
pac
sach *+,1
it =
mpy #23170 ;sgrt(2)/2
pac
sach *-1
even?
mar *,AR3
loop?
lacc *,16
add *,16
sach *+
lacc *,16
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add *,16

sach *- AR4

banz loop?AR3
nodenorm1?

.endm
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: Kalman Filter for the TM S320C5x

; ctr.asm
; Author : Balazs Simor
Date: June, 1996
clslp .set 1 ;1if kamanfilterisin the closed loop,
;0 for open loop
----------------------------- Globals-
;---Functions---
.globl _sine
.globl ¢ int0
.globl c int4
.globl timer
.globl _get_incr ;incremental encoder IF
.globl _send _to_pwm
;---Variables----
.globl _i_sgq max
.globl i sd ref
.globl omega m_ref
.globl _omega_m_ref_delayed
globl _u a
globl ub
globl uc
.globl _i_sd
.globl _d decouple
.globl _phase _current
globl i sd m
.globl _omega. fr
.globl _omega m
.globl _omega m_est
.globl _omega m m
.globl _eps m
.globl _eps m_est
globl i sgm
.globl psi rd
.globl _x_psi
.globl _eps fs
.globl _omega fs
.globl _omega rs
.globl _i_sq scal
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.globl i sd

.globl _d decouple
.globl _i_sq ref
globl i sq

.globl _q decouple
.globl _psi_decouple
globl _u a

globl ub

globl uc

.globl _u a mod
.globl _u b mod
.globl _u ¢ mod
.globl u s
globl _u sq

globl _x
globl x 1
globl _K

.globl _pwm period_reg
.globl _pwmon

jmmmmne- Base Addresses---------------=-=----------

MODIFIED .set 0 ; modified address lines on the board
khkkhkkhkhkhhhkhkhkhkhkhkhdhhhhhhkkhkhkhdddhhhhkkkkikidkd%x
*Register addresses of the PWM UNIT.

.if MODIFIED=1
PWMTCR .set 1000H
PWMTR .set 1001h
PWMPR .set 1008h
PWMCRO .set 1009h
PWMCR1 .set 1002h
PWMCR2 .set 1003h
PWMAR .set 100ah
PWMIR .set 100bh
PWMVR .set 1004h
PWMDTR .set 1005h
PWMIOR .set 100ch

ese
PWMTCR .set 1000H
PWMTR .set 1001h
PWMPR .set 1002h
PWMCRO .set 1003h
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PWMCRL1 .set 1004h

PWMCR2 .set 1005h

PWMAR .set 1006h

PWMIR .set 1007h

PWMVR .set 1008h

PWMDTR .set 1009h

PWMIOR .set 100ah
endif

kkhkkkhkkkkhkkhkkhhkkhkkhkkhkkhhkkhkkhhkkhkhkkhkkhkkkhxk%x

*Register addresses of the GPIO UNIT.
If MODIFIED=1

GPIOTCR .set  0000H

GPIOTR .set 0001h

GPIOPR .set 0008h

GPIOCCR .set  0009h

GPIOCRO .set  0002h
GPIOCR1 .set 0003h
GPIOCR2 .set 000ah

GPIOCR3 .set  000bh
GPIOCOR .set  0004h
GPIOIO .set 0005h
GPIOCRIO .set  000ch
GPIOCRIOL1 .set  000dh
GPIOIT .set 0006h
GPIOVEC .set 0007h
GPIOCMP .set 000eh
.ese
GPIOTCR .set 000OH
GPIOTR .set 0001h
GPIOPR .set 0002h
GPIOCCR .set  0003h

GPIOCRO .set  0004h
GPIOCR1 .set 0005h
GPIOCR2 .set  0006h

GPIOCR3 .set  0007h
GPIOCOR .set  0008h
GPIOIO .set  0009h
GPIOCRIO .set  000ah
GPIOCRIO1 .set  000bh
GPIOIT .set 000ch
GPIOVEC .set 000dh
GPIOCMP .set  000eh
GPIOINC .set  000fh
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.endif
KAAA A AAh Ak A hhkrhhkhkdhhkhkkhhhkdhhhkdkkh**x%
* Addresses of ADC and MUX
ADBASE .set 2000h
MUXBASE .set 2001h

jmmmmmmmm e m oo Reset Vectors----------
.sect "vectors' ;power up reset vector
b _cint0 ;9o to start of program
.Space 16*6
b cint4 ;timer interrupt
.data
Aaign
variables:
counter .word O ;variable for switching between
jmmmmmmmemmm e Cur. Control----------=-=-=-==-mmmoeme--
cur_control: /* here are all variables for the current control*/

temp .word O
templ .word O
temp2 .word O
_pwm_period_reg .word O

;/*From ACCTRL.H */

;-- System matrices of current controllers

;-- 1_anot necessary --> high precision mode
;i_b: scalable constant vector (4) of fractional
; = (1.35898572914201E-01,

; -1.35898572914201E-01,

; 0.00000000000000E+Q0,
;0.00000000000000E+00);

;1 b .int 4453, -4453,0,0 ;Not scaled
;MODIFIED FOR NEW TIMING

_i_b .int 4453*2,-4453*2, 0,0 ;Not scaled

;i_c: scalable constant vector (1) of fractional

; := (1.00000000000000E+00);
_i_c .int 4096 ;Scaled by 27-3
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;1_d: scalable constant vector (4) of fractional

; = (2.36686390532544E+00,

; -2.36686390532544E+00,

; 7.14981873603059E-01,

; 3.43195760762822E+00);

_i_d .int 9695, -9695, 2929, 14057 ;Scaled by 2"-3

;-- State variables

;d xk :vector (1) of fractional; -- d-current
~dxk .nt O

;d xk1 :vector (1) of fractional;

~d xkl .int O

;d_xk1 hp : rawaccumulator;

~d xk1 hp.long 0

;g xk  :vector (1) of fractional; -- g-current

_gxk .int O
;g xk1 :vector (1) of fractional;
g xk1 .nt O

;q_xk1 hp : rawaccumulator;
g xk1 hp.long0

J/* From ACTRANS.H */

;-- matrix to transform phase currents to current vector in stator frame
;phase_to_statorl : scalable constant vector (2) of fractional

; :=(1.0,0.0);

; Thisisnot used

;_phase to statorl .int 32767,0 ;not scaled

;phase_to_stator2 : scalable constant vector (2) of fractional
; = (0.577350269, 1.154700538);
_phase to _stator2 .int 9459, 18919 ;scaled by 2"-1

;-- matrix to transform from stator frame to rotor flux frame
;-- the coefficients are runtime dependent and are

;-- predefined worst case for the scalar product scaling
;stator_rotorl : scalable constant vector (2) of fractional

; :=(0.707106781, 0.707106781);

_stator_rotorl .int 23170, 23170 ;not scaled
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;Stator_rotor2 : scalable constant vector (2) of fractional
; :=(-0.707106781, 0.707106781);
_stator_rotor2 .int -23170, 23170 ;not scaled

;-- matrix to transform voltage vector in stator frame to phase voltages
;stator_to_phasel : scalable constant vector (2) of fractional
;=(1,0);

; Thisisnot used

;_Stator_to phasel .int 32767,0 ;not scaled

;Stator_to_phase? : scalable constant vector (2) of fractional
; :=(-0.5, 0.866025403);
_stator_to phase2 .int -16384, 28378 ;not scaled

;Stator_to_phase3 : scalable constant vector (2) of fractional
; = (-0.5, -0.866025403);
_stator_to phase3 .int -16384, -28378 ;not scaled

;-- Intermediate variables

;result : vector (2) of fractional; -- intermediate result vector
_result.int 0,0

;rotor_voltage : vector (2) of fractional; -- voltage in rotor flux frame
_rotor_voltage .int 0,0

;/*From ACIMOD.H */

;-- System matrices of flux model

;m_al : scalable constant vector (2) of fractional
;= (9.94247360164699E-01,
;0.00000000000000E+00);

~m_al .int 32579, 0 ;not scaled

;m_a2 : scalable constant vector (2) of fractional
; = (. 0.00000000000000E+00,

; 1.00000000000000E+00);

; Thisis not used

_m_a2 .int 0, 32767 ;not scaled
;m_b 1 : scalable constant vector (5) of fractional
; = (6.90506233209837E-03,

; 0.00000000000000E+Q0,

; 0.00000000000000E+0Q0,
;0.00000000000000E+Q0,
;0.00000000000000E+00);
_mb1.nt 226,0,0,0,0 ;notscaed
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:m_b 2 : scalable constant vector (5) of fractional
; := (. 0.00000000000000E+00,

; 4.99999999920422E-02,
;0.00000000000000E+00,
;0.00000000000000E+00,

; 0.00000000000000E+0Q0);

_mb 2 .int 0,1638,0,0,0 ;notscaed
;m_c_1: scalable constant vector (2) of fractional
;= (19.99999999999999E-01,

; 0.00000000000000E+0Q0);

.mc 1l .nt 32767,0 ;not scaled
;MODIFIED FOR NEW TIMING

mc 1 .nt 32767,0 ;Scaled by 2"-1
;m_c_2 : scalable constant vector (2) of fractional
; = (. 3.61100000000000E-01,
;0.00000000000000E+0Q0);

,.m.c 2 .int 11833,0 :not scaled
;MODIFIED FOR NEW TIMING

_m_c 2 .int 23665,0 ;not scaled

;m_c_3: scalable constant vector (2) of fractional
; := (. 0.00000000000000E+00,

7 9.99999999999999E-01);

,_m c 3 .int 0,16384 ;Scaled by 2"-2
;MODIFIED FOR NEW TIMING

_m_c 3 .int 0,32767 ;Scaed by 2"-2
;m_d_3: scalable constant vector (5) of fractional
; := (. 0.00000000000000E+00,
;0.00000000000000E+0Q0,
;0.00000000000000E+0Q0,

; 2.00000000000000E+00,

; 0.00000000000000E+0Q0);

; Thisisnot used

;. md3.nt 00,0,32767,0 ;scaledby2"-1
;m_d_4 : scalable constant vector (5) of fractional
; := (. 0.00000000000000E+00,

; 1.00000000000000E+00,

; 1.00000000015916E+00,
;0.00000000000000E+Q0,
;0.00000000000000E+0Q0);

~m_d 4 .nt 0,16384, 16384, 0,0 ;scaledby2”-1
;m_d 5 : scalable constant vector (5) of fractional
; := (. 0.00000000000000E+00,
;0.00000000000000E+Q0,
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; 1.00000000015916E+00,
;0.00000000000000E+Q0,

; 0.00000000000000E+0Q0);

; Thisisnot used

;. md5.nt 0,0,32767,0,0 ;notscaled
;m_d_6 : scalable constant vector (5) of fractional
; := (. 0.00000000000000E+00,
;0.00000000000000E+0Q0,
;0.00000000000000E+0Q0,
;0.00000000000000E+Q0,

; 1.59154943096444E-02);
~m.d&6.nt 0000522 ;notscaed

;-- State variables

;m_xk : vector (2) of fractional; -- flux model
~m xk .int 0,0

;m_xk1 : vector (2) of fractional,;

_m_xk1 .int 0,0

;/* From VEL_CTRL.DSP */

;-- external inputs

;phase_current : vector (2) of fractional;
;input is phase_current;

; 1_phase_arenames phase current (1);

; 1_phase b renames phase_current (2);

_phase_current

_i_phase a .int 0O

_i_phase b .int 0

;-- current controller inputs
;d_controller_input : vector (4) of fractional;
; 1sd ref renames d_controller_input (1);
; 1_sd renames d_controller_input (2);
; d_decouple renames d_controller_input (3);
_d_controller_input
_i_sd ref .int O
isd .int O
_d_decouple.int 0O
int 0

;q_controller_input : vector (4) of fractional;
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; i_sq ref  renames g_controller_input (1);

; 1 renames g_controller_input (2);

; (_decouple renames g_controller_input (3);
; psi_decouple  renamesq_controller_input (4);
_q_controller_input

i sgref .int O

i g0 int 0

_(_decouple.int 0O

_psi_decouple .int 0O

;-- controller outputs

;usd :fractional; -- output from d current controller
~usd .int O

;usq :fractional; -- output from q current controller
_usq .nt O

;-- phase voltages

;u_a: fractional;

ua .nt O

;u_b: fractional,;

ub .int O

;u_c: fractional;

uc .nt O

;-- phase voltages to compute duty cycles
;u_a mod : fractional;

_uamod .nt O

;u_b _mod : fractional;

~ubmod .int O

;u_c_mod : fractional;

_ucmod .nt O

aign
/*From ACCTRL.H */
vel_control: ;/*here are the variables for the velocity controller*/
;-- System matrices of velocity controller
;-- V_anot necessary --> high precision mode
;v_b : scalable constant vector (2) of fractional
; = (1.05998807393070E+00,
; -1.05998807393070E+00);
v b .int 17367,-17367 ;Scaled by 2*-1
;MODIFIED FOR NEW TIMING
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_v_ b .int 17367*8/25,-17367*8/25 ;Scaled by 2"-1

;v_c : scalable constant vector (1) of fractional
; = ( 1.00000000000000E+00);
_v.c .int 1024 ; Scaled by 27-5

;v_d : scalable constant vector (2) of fractional

; = (1.88495559240000E+01,

; -1.88495559240000E+01);

_v_d .int 19302*2/5,-19302*2/5  ;Scaled by 2"-5

;-- System matrices of first order lag for velocity reference
;a_v_fol : scalable constant vector (1) of fractional

; = (-4.5412768e-02); -- computed matrix - 1.0 !
_a v fol.int -1488 ;Not scaled

;b_v_fol : scalable constant vector (1) of fractional
; i= (4.49627708289495E-02);
_b v fol.int 1473 ;Not scaled

;c_Vv_fol : scalable constant vector (1) of fractional
; :=(19.86896949527394E-01);

;_c v fol.int 32339 :Not scaled
;MODIFIED FOR NEW TIMING
_c v fol.int 32339 ;Not scaled

;d_v_fol : scalable constant vector (1) of fractional
;= (2.28822623921473E-02);
~d v fol.int 750 ;Not scaled

; Filter for velocity value

;fir_coeff : scalable constant vector (5) of fractional
; '=(0.2,0.2,0.2,0.2,0.2);

_fir_coeff .int 6553, 6553, 6553, 6553, 6553

;encoder_counter : vector (2) of fractional;
_encoder_counter int 0,0

;fir_ omega m  : vector (5) of fractional;
_fir omega m .int 0,0,0,0,0
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;v_xk  :vector (1) of fractional; -- velocity

v.xk .nt O
;v_xkl :vector (1) of fractional;
_v.xkl .nt O

;v_xk1 hp : rawaccumulator;
_v_xk1 hp.long O

;qirfs  : fractional;

_qirfs .int 0

;v_fol_xk :wvector (1) of fractional; -- velocity referencefirst order lag
_v_fol_ xk.int O

;v_fol _xk1 : vector (1) of fractional;

_v_fol_xk1.int0O

;v_fol_xk1_hp : rawaccumulator;

_v_fol_xk1 hp.long0

;-- input vectors
;v_fol _u :vector (1) of fractional; -- for velocity first order lag
_v_ fol_ u.int 0

;/* From VEL_CTRL.DSP */

;omega_m_ref : fractional; -- reference of rotor velocity
;input isomega._m _ref;

_omega m ref .int O

;-- velocity controller inputs

;v_controller_input : vector (2) of fractional;

; omega_m _ref_delayed renames v_controller_input (1);
; omega_m renames v_controller_input (2);
_Vv_controller_input

_omega_m ref_delayed .int O

if cls_Ip=1
_omega m est .int O
dse
_omega_m int 0
endif

if cls Ip=0 ;defining the other variable outside
_omega m est .int O
dse
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_omega m int 0
endif

;-- miscellaneous
;i_sq_max :fractional;
_i_sg max .int O

globl u al, ube ia, i be
globl diff FI,h, x, x 1,diff_ hP,P_1, K,RSLT,Q,R

Aign
e Kaman Filter
; New data page for Kalman filter variables
kal_fil
eps_int .long O
;input vector
U
~ua .wordO

_u_be .word0
;output vector

Y

_ia .word0
_i_be .word0

diff Fl .word 25680, 0, 498, 0, 0
.word 0, 25680, 0, 498, 0
.word 3675, 0, 32358, 0, 0
.word 0, 3675, 0, 32358, 0
.word 0, 0,0, 0, 32767

X .word 0,0,0,0,0

h h=[x(1)x(2)]
x1 .word 0,0,0,0,0

diff_h .word 32767,0,0,0,0
.word 0, 32767,0,0,0

P word 0,0,0,0,0
word 0,0,0,0,0
word 0,0,0,0,0
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P1 .word 0,0,0,0,0

Q .word 0, 0,0, 0, 80h
R .word 7000h, 7000h

RSLT .space 25*16

K .word 0,0

word 0,0

word 0,0

word 0,0

word 0,0

text
R e e R Macros

.copy "fdiv.inc" ;fractional division macro
shconstl .set 4000h
shconst2 .set  6000h
shconst3 .set 7000h
shconst4 .set 7800h
shconst5 .set 7C00h
shconst6 .set  7EQOh
shconst7 .set  7FOOh

;SATurate Accumulator macro
;performs saturation (1<=Num<=7) before shifting by Num
sata .macro Num

setc ovm ;saturating

exar

lacc #shconst:Num:, 15

Sl

exar ; ACCB = constant for saturating
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addb

sbb

sbb

addb

clrc ovm
.endm

;Round And Saturate Accumulator macro.
;performs rounding and saturation (1<=Num<=7) before shifting by Num
rasa .macro Num

add #1,15-Num ;rounding

setc  ovm ;saturating

exar

lacc #shconst:Num:, 15

Sl

exar ; ACCB = constant for saturating

addb

sbb

sbb

addb

clrc ovm

.endm

.copy "matG.inc" ;macros for matrix manipulation

-Routines for the Kalman filter --------------
;*********
;Inputs: i_al, i_be, u_al, u_be
;Outputs: omega._m_est, sin(eps_fs), cos(eps fs)
.globl _kalman_filter

_kalman_filter:
Idp #kal_fil
sar ARO*+
sar AR2*+
sar AR3*+
sar AR4*+

; % calc. inp and out vec of kalman filter
;o U=[u(); u@)I;
;o Y =[u3); u(d)l;
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Y%prediction

diff_FI=[1-Kr_K/KI_K*T, 0, Lh_K*Rr_K/Lr_K/Lr_K/KI_K*T,

Lh K/Lr_K*omega m_scl*x(5)/KI_K*T, Lh_K/Lr_K*psi_scl*x(4)/Kl_K*T;

0, 1-Kr_K/KI_K*T, -Lh_K/Lr_K*omega m_scl*x(5)/KI_K*T,

Lh K*Rr_K/Lr_K/Lr_K/KI_K*T,-Lh_K/Lr_K*psi_scl*x(3)/KI_K*T;

Lh K/Tr_K*T, 0, 1-T/Tr_K, -omega_m_scl*x(5)*T, -psi_scl*x(4)*T;
0, Lh_ K/Tr_K*T, omega m_scl*x(5)*T, 1-T/Tr_K, psi_scl*x(3)*T;
0,0,0,0,1]./Q_scl;

lar  AR2# x+4

lar  AR3#diff _FI+3

mar * AR2
It *-,AR3
mpy #6256
pac

sach *,1

neg

adrk 4

sach *,1
mpy #5147
pac

adrk 6

sach * 1

neg

adrk 4

sach * 1,AR2
It *-AR3
mpy #5147
pac

sbrk 3

sach *,1
mpy #6256
pac

sbrk 10

sach * 1,AR2
It *ARS3
mpy #6256
pac

adrk 5

sach *,1
mpy #5147

, Treg=x(5)

;Treg=x(4)

;Treg=x(3)
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62

pac
adrk 10
sach *,1

x_1=[diff_FI(1,1)*x(2)+diff_FI(1,3)*x(3)+diff _FI(1,4)*x(4);
diff_FI(2,2)*x(2)+diff_FI(2,3)*x(3)+diff_FI(2,4)*x(4);
diff_FI(3,1)*x(1)+diff_FI(3,3)*x(3)+diff_FI(3,4)*x(4);
diff_Fl(4,2)*x(2)+diff _FI(4,3)*x(3)+diff _FI(4,4)*x(4);
diff_FI(5,5)*x(5)]...
+T*[u_s scl*u(1)/KI_K; u_s scl*u(2)/Kl_K; 0; 0; 0]./x_scl;

sopm 1

setc  ovm

lar  AR4# x 1
lar  AR2# X

lar  AR3#diff_Fl
mar * AR2

It *+

mar *+ AR3
mpy *+

mar *+ AR2

ltp *+,ARS

mpy *+,AR2

ta *+,AR3

mpy *+,AR2

lar  AR2#U

ta * AR4

mpy #10749
apac

sach *+ AR2 ;storinginx_1

lar  AR2# x+1
lar  AR3#diff_FI+6
It *+AR3
mpy *+,AR2
ltp *+,AR3
mpy *+,AR2
lta *+,AR3
mpy *+,AR2
lar  AR2,#U+1
lta *,AR4

mpy  #10749

apac
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sach *+,AR2 ;storing inx_1

lar  AR2# x

lar  AR3#diff_FI+10
mar *,AR2

It *+

mar *+,AR3

mpy *+

mar *+,AR2

Itp *+,AR3

mpy *+,AR2

lta *+,AR3

mpy *+,AR4

apac

sach *+AR2 ;storing inx_1

lar  AR2# x+1

lar  AR3#diff_FI+16

It *+AR3

mpy *+,AR2

ltp *+,AR3

mpy *+,AR2

lta *+,AR3

mpy *+,AR4

apac

sach *+ AR2 ;storinginx_1

lar  AR2# x+4

lar  AR3#diff_FI+24
It *,ARS

mpy *,AR4

pac

sach * AR2

som O

clrc ovm

P_1=diff FI*P*diff_FI'+ GAM*Q*GAM’; %P[k|k-1] is ready
mmtfraG P, diff_FI, RSLT, 5,55

mmfraG diff FI, RSLT, P 1,555

madiG P_1,Q,5
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; % calculation of h, diff_h

; h=[x(); x();

;diff h=[10000

; 01000j;
;Nothing to do

; % system of Kalman filter
; K=P_1*diff_h™ inv(diff_h*P_1*diff_h’'+R); %K[K]
mmtfraG P_1, diff _h, RSLT, 5,5,2
mmfraG diff_h, RSLT, K, 2,5,2; K isyet unused, use astemp
madiG K,R, 2
madjG K, P ;P isnow unused, useit as temp.
mmfraG RSLT, P, K,5,2,2
detG P,RSLT ; supposing, that det(RSLT)<1
mdsclG K, RSLT, K,5,2, RSLT+1

; sys=X_1+K*(Y-h);  %x[K] isready
msubG Y, h, P, 21 ;use P as temp
mmfraG _K, P, RSLT, 5,2,1
maddG x 1,RSLT, x,51

; P=P_1-K*diff h*P_1; %P[k] isready
mmfraG K, diff h, RSLT,5,2,5
mmfraG RSLT,P 1,P,5/5,5
msubG P_1,P,P55

;We need an additional integrator to calculate eps RS est
Idp #kal_fil
lacc x+4
Idp #ved_control
sacl _omega m_est

;Calculation of sin(eps _fs) and cos(eps fs) from psi_r_al, und psi_r_be
vnormG _x+2, stator_rotorl, RSLT
Idp #cur_control
lacc _stator_rotorl
or _stator_rotorl+l
bcnd ok _k, NEQ
lacc #32767
sacl _stator_rotorl
ok_k
lacc _stator rotorl
sacl _stator_rotor2+1
lacc _stator_rotorl+1
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sacl _stator_rotor2

K _epi
mar *AR1
mar *-
lar ARA4*-
lar  ARS3*-
lar AR2*-
lar  ARO,*
ret

---------Routines for the velocity control ------------

kkkkkkkkk

;Inputs: v_controller_input

I_Sq_max

;Output: i_sq_ref

.globl _v_control

_Vv_control:

Idp #vel_control
update (v_xk1, v_xKk);

lacc v xkl1

sacl v xk

accumulate scalpro (controller_out_scp)
girffs:=v_c*v xkl+v d* v _controller_input;
end accumulate;

It _vc

mpy v xkl

tp v d

mpy _Vv_controller_input
lta _v d+1

mpy _v_controller_input+1
apac

rasa 6

sach _qirfs, 6

if ABS(qirfs) <=i_sgq _max then
accumulate prescalpro (controller_state scp)
v_xk1 hp:=v_xkl hp+v_b* v_controller_input;
end accumulate;
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oendif;

lacc _qirfs

sub i sg max
bcnd  overrun, GT
lacc _qirfs

add _i_sgq max

bcnd underrun, LT

lacc v xk1 hp, 16

clrc sxm

add v xk1 hp+1

setc sxm

It vb

mpy _Vv_controller_input
lta v b+l

mpy _Vv_controller_input+1
apac

sata 2

sach v xk1 hp ;not correcting after Q15 multipl.

sacl v xkl1l hp+1l; here.
; accumulate prescalpro (controller_state scp)
7 v_xkl(1):=v_xkl1 hp;
; end accumulate ;

sach v xki, 2

b okv
overrun

lacc _i_sg max

sacl _qirfs

b comp
underrun

lacc _i_sg max

neg

sacl _qirfs
comp

lacc _qirfs, 10

It vd

mpy _Vv_controller_input

lts v d+1
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mpy _Vv_controller_input+1
spac

sach v xki,6

sach v xk1 hp4

sacl v xkl hp+l1l,4

ok _v
[dp # pwmon
lacc _pwmon
Idp #vel_control
bcnd  onO,GT
lacc #0
sacl v xk1 hp
sacl v xkl1l hp+l
sach v xkl

sacl _qirfs
on0

lacc _qirfs

Idp #cur_control

sacl _i_sq ref

ret

;Input:  _omega m_ref
;Output: _omega_ref_delayed
.globl _v first_order_lag

_v_first_order_lag:
Idp #ved_control

; v_fol_u(l):=v ref in;
lacc _omega m ref
sacl v fol_u

; update (v_fol_xk1, v_fol xk);
lacc _v_fol_xkl
sacl v fol_xk

; accumulate scalpro (v_fol _out_scp)

; omega m_ref_delayed :=c v _fol * v_fol_xk1+d v fol * v_fol_u;
; end accumulate;
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It c v fol

mpy _v_fol_xk1

Itp _d v fol

mpy _v_fol u

apac

rasa 1

sach _omega m_ref delayed,1

; -- delay replacement to avoid quantization effects

; accumulate prescalpro (v_fol_state scp)
v_fol xk1 hp:=v fol xk1 hp+a v fol *v fol xk+b v fol * v_fol u;

; end accumulate;

lacc _v_fol_xk1 hp, 16

clrc sxm

add v fol xkl1l hp+1

setc sxm

It _av fol

mpy Vv fol xk

lta_b v fol

mpy _v_fol_u

apac

sata 1

sach v fol xk1 hp ;not correcting after Q15 multipl.

sacl v fol_xk1 hp+1 ;here.

; accumulate prescalpro (v_fol _state scp)
; v_fol_xk1 (1) :=v_fol_xk1 _hp;
; end accumulate

sach v fol xk1,1

Idp # pwmon

lacc _pwmon

Idp #vel_control

bcnd onl,GT

lacl #0

sacl _v_fol_xk1 hp

sacl v fol xk1 hp+l

sacl v fol _xk1

sacl _omega m ref delayed

onl
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ret

j-m--- Routines for the current control -------------
;* *kkhkkkkkkk*k
.globl _qg_control
_q_control:
Idp #cur_control
; update (q_xk1, q_xKk);
lacc _q xk1
sacl _q xk

; accumulate scalpro (controller_out_scp)
; usg:=i_c*qgxkl+i_d* g controller_input;
; end accumulate;

It i c

mpy _q xk1

Itp_i_d

mpy _q_controller_input

lta_i_d+1

mpy _q_controller_input+1

lta_i_d+2

mpy _q_controller_input+2

lta_i_d+3

mpy _q_controller_input+3

apac

rasa 4 ;Saturating before shifting

sach u sq,4

; accumulate prescalpro (controller_state scp)
7 qxkl_hp:=q xkl_hp+i_b* q controller_input;
; end accumulate;

lacc _q xk1 hp, 16

clrc sxm

add _q xk1_hp+1

setc sxm

It _ib

mpy _q _controller_input
lta _i b+l

mpy _q_controller_input+1

;1_b[2] andi_b[3] == 0, so we do not multiply them here.
apac

sata 1
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sach _q xk1 hp ; not correcting after Q15 multipl.
sacl g xk1 hp+1; here

; accumulate prescalpro (controller_state scp)
;g Xk1(1):=qg xkl hp;
; end accumulate

sach _q xki,1

[dp # pwmon

lacc _pwmon

Idp  #cur_control

bcnd on2,GT
lacl #0
sacl g xk1 hp
sacl _q xk1 hp+l
sacl _q xkl1
sacl U g
on2
ret

kkkkkkkik*k

;Input: _d_controller_input

;Output: _u sd
.globl _d control
_d_control:

Idp #cur_control
; update (d_xk1, d_xKk);

lacc _d xk1

sacl _d xk

; accumulate scalpro (controller_out_scp)
; usd:=i_c*dxkl+i_d*d controller_inputl,
; end accumulate;

It i c

mpy _d xkl

Itp_i_d

mpy _d_controller_input
Ita_i_d+1

mpy _d_controller_input+1
lta_i_d+2

mpy _d_controller_input+2
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Ita_i_d+3

mpy _d_controller_input+3
apac

rasa 4

sach _u sd4

accumulate prescalpro (controller_state scp)
d xk1_hp:=d xk1 hp+i_b* d _controller_input;

end accumulate;

lacc _d xk1 hp, 16

clrc sxm

add d xk1 hp+l

setc sxm

It i b

mpy _d controller_input

lta_i_b+1

mpy _d controller_input+1

;1_b[2] andi_b[3] == 0, so we do not multiply them here.

apac
sata 1

sach _d xk1 hp ;not correcting after Q15 muiltipl.
sacl _d xk1l hp+l ;here

; accumulate prescalpro (controller_state scp)

d xk1 (1) :=d _xk1_hp;

: end accumulate

sach d xki,1
ldp # pwmon
lacc _pwmon
Idp #cur_control

bcnd on3,GT
lacl #0
sacl _d xkl1l hp
sacl _d xk1 hp+1
sacl _d xkl
sacl u sd
on3
ret
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kkkkkkkk*k

;Inputs. _eps fs

_phase_current

;Outputs._i_sd

_i_sq

.globl _phase to_rotor

_phase to_rotor:

Idp #cur_control

-- set input vector

; -- transform phase to stator frame

; accumulate scalpro (transformation_scp)

result (1) := phase to_statorl * phase current;
; end accumulate;

lacc _phase_current

; we do not multiply by phase to_stator[0], becauseitis 1
; we do not use phase_to_stator[1], becauseitisO

sacl _result

Idp #kal_fil

sacl i ad

Idp #cur_control

; accumulate scalpro (transformation_scp)

result (2) := phase to_stator2 * phase current;

: end accumulate;

It _phase to_stator2
mpy _phase current
Itp _phase to_stator2+1
mpy _phase current+1
apac

rasa 2

sach _result+1, 2
Idp #kal_fil

sach _i_be?2

Idp #cur_control

-- transform stator frame to rotor flux frame

; accumulate scalpro (transformation_scp)

72
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; end accumulate;
It stator rotorl
mpy _result
Itp _stator rotorl+1
mpy _result+1
apac
rasa 1
sach _i_sd, 1

; accumulate scalpro (transformation_scp)
; 1_Sq:=stator_rotor2 * result;
; end accumulate

It stator rotor2

mpy _result

Itp _stator_rotor2+1

mpy _result+1

apac

rasa 1

sach i.sg,1

ret

;*********
;Inputs:  u_sd
,usq
;Outputs: u_a
; ub
; uc
.globl _rotor_to_phase
_rotor_to_phase:
Idp #cur_control
; -- Set input vector
; rotor_voltage (1) ;= u_sd;
; rotor_voltage (2) :=u_sq;

lacc u sd
sacl _rotor_voltage
lacc _u g

sacl _rotor_voltaget+1

; -- get inverse of matrix stator_rotor
; -- by transponation (swapping elements (2,1) and (1,2))
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; dummy := stator_rotor2 (1);
; stator_rotor2 (1) := stator_rotorl (2);
; stator_rotorl (2) := dummy;

lacc _stator_rotor2

sach

lacc _stator_rotorl+1

sacl _stator_rotor2

lach

sacl _stator rotorl+l

; -- transform rotor flux frame to stator frame
; accumulate scalpro (transformation_scp)
; result (1) := stator_rotorl * rotor_voltage;
; end accumulate;

It _stator_rotorl

mpy _rotor_voltage

Itp _stator rotorl+1

mpy _rotor_voltage+1

apac

rasa 1

sach _result, 1

Idp #kal_fil

ssch ual,l

Idp #cur_control

; accumulate scalpro (transformation_scp)
; result (2) :=stator_rotor2 * rotor_voltage;
; end accumulate;

It stator rotor2

mpy _rotor_voltage

Itp _stator_rotor2+1

mpy _rotor_voltage+1

apac

rasa 1

sach result+1, 1

ldp #kal_fil

sach _u be 1l

Idp  #cur_control

; -- transform stator frame to phase

; accumulate scalpro (transformation_scp)
;U _a:=stator_to_phasel * result;

; end accumulate;

74 Literature Number: BPRAO57



lacc _result
; _stator to phasel={ 1,0} !!
sacl ua

; accumulate scalpro (transformation_scp)
; U_b:=gtator_to_phase? * result;
; end accumulate;

It _stator to phase2

mpy _result

Itp _stator_to_phase2+1

mpy _result+1

apac

rasa 1

ssch ub,1

; accumulate scalpro (transformation_scp)
;U _C:=stator_to phase3 * result;
; end accumulate

It _stator to phase3

mpy _result

Itp _stator to phase3+1

mpy _result+1

apac

rasa 1

sach ucgc1

ret

jmmmmmmmmmmmmmmmmeeeeeeeeeeee Peripherial routines
.globl _to pwm

_to_pwm:
Idp  #cur_control
It _pwm_period_reg

;we have to push parameters in REVERSE order!!

lacc #0 ; dummy parameter (bvec)
sacl *+

mpy _u c _mod
pac

Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP



add _pwm period _reg, 15 ; += period/2

sach *+ ;Sstack = (period * (1 + u_a mod)) /2
mpy _u_b _mod

pac

add _pwm period_reg, 15 ; += period/2

sach *+ ;Sstack = (period * (1 + u_a mod)) /2

mpy _u a mod

pac
add _pwm period_reg, 15 ; += period/2
sach *+ ;stack = (period * (1 + u_a mod)) /2
cal _send to pwm ;library function for pwm handling
sork  #4 ;restoring stack
RET
.globl _gpio_incr
_gpio_incr
in  *,GPIOINC
lacc *
ret

.globl _input_omega. m
_input_omega_m:
; -- read encoder counter
; input (encoder_counter (1));
cal _gpio_incr

Idp #ve_control
sacl _encoder_counter

; -- compute current velocity
; accumulate scalpro (counter_scp) and update encoder_counter
fir_omega m (1) := encoder_to_velocity * encoder_counter;
; end accumulate;
lacc _encoder_counter
sub _encoder_counter+1
dmov _encoder_counter
sacl _encoder_counter
; theveocity is multiplied by 32
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sacl

_fir_omega m, 5

;MODIFIED FOR NEW TIMING
; thevelocity is multiplied by 32*1.25
It _encoder_counter

mpy
pac
sach

velocity

Zap

#20480 ;1.25/2

_fir_omega m, 7

;- filter current velocity
; accumulate scalpro (fir_scp) and update fir_omega m

.= fir_coeff * fir_omega m;

: end accumulate

It _fir_ omega m+4

mpy
Itd

mpy
Itd

mpy
It

mpy
Itd

mpy
apac
rasa
sach
ret

_fir_coeff+4
fir_omega m+3
_fir_coeff+3
fir_omega m+2
_fir_coeff+2
fir_omega m+1
_fir_coeff+1
fir_omega_m
_fir_coeff

1
_omega m, 1

----------------- Setup routines-

;I THISMIGHT BE NEEDED LATER
LACC #0101H

_timer_init:

SACL
ouT

temp

temp, GPIOCRIO1 ; Sending a1 to the DIGO of the GPIO
; This pinis connected to the PROT of the motor
; driver card, and it enables all PWM channels
: in the motor
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.globl _timer_in
lacc #10000
samm PRD
lacc #100000b
samm TCR

ret

_intr_init:
.globl _intr_init

it
;timer interrupt in every 500 us

;divide down = 1, load tim from prd

Idp #cur_control

clrc cnf

lacc #830h
samm PMST
lacc #5

sacl counter
call _timer_ini

lacc #8
samm [IMR
eint
ret

.end

t
; enable only timer interrupt

; enable interrupts
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: Kalman Filter for the TM S320C5x
;vel_ctr.c

;Author : Balazs Simor

. Date: June, 1996

#include <stdlib.h>

#include <uart.h>
#include <conio.h>
#include <board.h>
#include <ad.h>
#include <incr.h>
#include <pwm.h>
#include <gpio.h>

int sine(int angle);

#definel_SD_REF K 6554 /*=frac(0.20) scaled reference for d_current component => 2.0 A*/
#definel_SQ_MAX_K 13107 /*=frac(0.40) scaled maximum for q_current component => 4.0 A*/

#define PWM_PERIOD 600 /* period of PWM generating*/

long int UART_freq=4915200; /* 4.9152 MHz */

char *header="Field oriented velocity control with Kalman filter\r”;
int spd=0; /* speed reference */

int pwmon=0; /* turns pwm on and off*/

long pwmsc = 0;

R External variables------------------------- */

#define extasm(varname) \
extern int varname)\
int * P##tvarname = &varname;

extasm(omega_m_ref)
extasm(omega m_ref delayed)
extasm(i_sq_max)
extasm(i_sq_ref)
extasm(i_sd ref)
extasm(phase_current)
extasm(i_sd)

extasm(i_sq)
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extasm(u_sd)
extasm(u_sq)
extasm(omega._m)
extasm(omega_m_est)
extasm(d_decouple)
extasm(q_decouple)
extasm(psi_decouple)
extasm(u_a)
extasm(u_b)
extasm(u_c)
extasm(u_al)
extasm(u_be)
extasm(i_al)
extasm(i_be)
extasm(u_a_mod)
extasm(u_b_mod)
extasm(u_c_mod)
extasm(pwm_period_reg)
extasm(x)
extasm(x_1)
extasm(K)

I* Interrupt handling */

int xxx =0;

void current_control(void)
{
[*Thisisthe main current control routine. Called from the interrupt rtn.*/
[*; -- get phase currents*/
Pphase_current[0] = (get_ad_val(0)+34-512)<<6;
Pphase_current[1] = (get_ad_val(1)+36-512)<<6;

[*  transform phase currents to rotorflux frame*/
phase _to_rotor (/*eps fs, phase current, i_sd, i_sg*/);

[*  calculate decoupling value d_component*/
I*  *Pd_decouple = (- (long)(*Pi_sq) * (long)(* Pomega fs))>>15;*/

[*  Pl-controller for d-current*/
d_control (/*d_controller_input, u_sd*/);
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[*  calculate decoupling value g_component*/
[*  *Pg_decouple= ((long)(*Pi_sd) * (long)(* Pomega fs))>>15;
*Ppsi_decouple = ((long)(* Pomega. rs) * (long)(*Ppsi_rd))>>15;*/

[*  Pl-controller for g-current*/
g_control (/*g_controller_input, u_sg*/);

[*  transform voltage vector from rotorflux frame to phase voltages*/

[*  *Pu_sd = 2000;
*Pu sq=0;*/
rotor_to_phase (/*u_sd, u_sg, u_a, u_b, u_c*/);

[* xxx +=10;
*Pu_a= sine(xxx)/5;
*Pu_b = sing(xxx-21845)/5;
*Pu_c = sing(xxx-43691)/5;*/
[*  *Pu_a= 30000;
*Pu_b = -15000;
*Pu_c = -15000;*/

[* phases aand b are swapped !!! */
*Pu_a mod = *Pu_b;
*Pu b mod=*Pu_ga;
*Pu_c_mod =*Pu_c;

to_pwm();
kalman_filter(); /*IN: u_al,u be,i_al,i_be
OUT: omega m_est*/
}

void speed_control(void)
{
/*This routine does the velocity contral. It is called from the interrupt
routine.*/
/*; input (omega m_ref); -- get velocity reference from communication address
; Thiswill be given by the user, and will bein avariable.*/

input_omega_m (/*omega_m*/); /*get position counter and compute rotor velocity*/
/*  thiswill be measured by the incremental encoder interface in the
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GPIO */

[*  first order lag to delay velocity reference*/
v_first_order_lag (/*omega_m ref, omega m ref _delayed*/);

[* Pl - controller for rotor velocity*/
v_control (/*i_sgq_max, v_controller_input, i_sq_ref*/);

}

void c_int4(void) /*main interrupt handler routine */

{

static int co=0; /* counter for calling speed controller */

current_control(); /*every 500us*/
if (0 == (co=(++c0)%2))
speed_control(); /*every Ims*/
}

void init_control(void)
{
*Pomega m_ref = 0; [* clear omega m_ref*/
*Pi_sqg max =1_SQ MAX_K; [* q current maximum?*/
*Pi_sd ref =1 _SD_REF K; /* d current reference is constant*/
}

void init_hardware(void)
{
ws_init(); /* setting up wait-states for the board */
*Ppwm_period_reg = PWM_PERIOD;
pwm_init(M_SYMM, EN_ALL, CHM_SET, CHM_SET, CHM_SET, SW_HARD,
LOW, LOW, LOW, LOW, 0, PWM_PERIOD, DIR_POS, 0);
/*  gpio_init(15L, CLK_DIV1, 0, 0, CLK_DIV1,
CAP_DSBL,CAP_DSBL,CAP_DSBL,CAP_DSBL,
0);*/
ad _init();
incr_init();
uart_init(((UART _freg* 10)/16/9600+5)/10);
intr_init();

}

void setspeed()
{

clrscr();
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sendstr(header);

sendstr("\r");

spd = inputval ("Enter speed value", spd, -3000, 3000);
*Pomega_m_ref = (int)((long)spd* 32767/3000);

void speedtest(void)
{

char str[20];

intval;

inti;

char c;

clrscr();
sendstr(header);
sendstr("\rSpeed of the motor: 0000000");
for (c=0; c==0; c = (kbhit() ? getch() : 0) )
{
val = (int)((long)(* Pomega_m) * 3000/32767);
Itoa ((long)val, str);
sendstr("\b\b\b\b\b\b\b");
for (i=strlen(str); i<7; i++)
sendstr(* ");
sendstr(str);
} /> for*/

}

void i_sgtest(void)
{

[*char str[20];
intval;

inti;

char c;

clrscr();
sendstr(header);
sendstr("\rVaue of variablei_sg: 0000000");
for (c=0; c==0; c = (kbhit() ? getch() : 0) )
{
Itoa ((long)(* Pi_sq), str);
sendstr("\b\b\b\b\b\b\b");

Sensorless Control with Kalman Filter on TMS320 Fixed-Point DSP

83



for (i=strlen(str); i<7; i++)
sendstr(" ");
sendstr(str);
H
}

void i_sdtest(void)
{

[*char str[20];
intval;

inti;

char c;

clrser();
sendstr(header);
sendstr("\rValue of variablei_sd: 0000000");
for (c=0; c==0; c = (kbhit() ? getch() : 0) )
{
Itoa ((long)(* Pi_sd), str);
sendstr("\b\b\b\b\b\b\b");
for (i=strlen(str); i<7; i++)
sendstr(" ");
sendstr(str);
}*
}

void incrtest(void)
{

[*char str[20];
unsigned val;

inti;

char c;

clrser();
sendstr(header);
sendstr("\rinput from the incremental encoder interface: 0000000");
for (c=0; c==0; c = (kbhit() ? getch() : 0) )

{

val = get_incr();

Itoa ((unsigned long)val, str);

sendstr("\b\b\b\b\b\b\b");

for (i=strlen(str); i<7; i++)

sendstr(" ");
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sendstr(str);
}*

}

void adtest(int ch)
{

char str[20];
intval;

inti;

char c;

clrscr();
sendstr(header);
sendstr("\rinput from the AD converter: 0000000");
for (c=0; c==0; c = (kbhit() ? getch() : 0) )
{
val = Pphase_current[ch];
Itoa ((long)val, str);
sendstr("\b\b\b\b\b\b\b");
for (i=strlen(str); i<7; i++)
sendstr(" ");
sendstr(str);
} I* for*/

}

void vartest(void)
{

[*char str[20];
intval;

inti;

char c;

clrser();

sendstr(header);

sendstr("\rVariable: 0000000");

for (c=0; c==0; c = (kbhit() ? getch() : 0) )
{
val = *Pomega fr;
val = Px[(];
Itoa ((long)val, str);
sendstr("\b\b\b\b\b\b\b");
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for (i=strlen(str); i<7; i++)
sendstr(" ");

sendstr(str);

}*

void a_be test(void)
{

char str[20];

intval;

inti;

char c;

clrscr();
sendstr(header);
sendstr("\ri_al, i_be, u_al, u_be\r");
for (c=0; c==0; c = (kbhit() ? getch() : 0) )
{
Itoa ((long)(*Pi_al), str);
for (i=strlen(str); i<7; i++)
sendstr(" ");
sendstr(str);
sendstr("; *);
Itoa ((long)(*Pi_be), str);
for (i=strlen(str); i<7; i++)
sendstr(" ");
sendstr(str);
sendstr("; *);
[toa ((long)(* Pu_al), str);
for (i=strlen(str); i<7; i++)
sendstr(" ");
sendstr(str);
sendstr("; ");
Itoa ((long)(* Pu_be), str);
for (i=strlen(str); i<7; i++)
sendstr(" ");
sendstr(str);
sendstr("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\L\b\b\b\b\L");
} /* for*/
}

void msrmnt(void)
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{
char str[20];

intval;
inti;

char c;
int co;

co = 400;
*Pomega_m_ref=0;
for (c=0; c==0; c = (kbhit() ? getch() : 0) )
{
if (1(--co))
{
c0=60;
*Pomega_m_ref=(* Pomega_ m_ref==10923 ?-10923 : 10923);
}
val = *Pomega m;
[toa ((long)val, str);
sendstr(str);
sendstr(*,");
val = *Pomega m ref_delayed;
Itoa ((long)val, str);
sendstr(str);
sendstr(*,");
}
}

void estspdtest(void)
{

char str[20];

intval;

inti;

char c;

clrscr();
sendstr(header);
sendstr("\rEstimated speed of the motor: 0000000");
for (c=0; c==0; c = (kbhit() ? getch() : 0) )
{
val = (int)((long)(* Pomega_m_est) * 3000/32767);
[toa ((long)val, str);
sendstr("\b\b\b\b\b\b\b");
for (i=strlen(str); i<7; i++)
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}

sendstr(" ");
sendstr(str);
} /* for */

void runmenu(void)

{

char c;
intval, i;
char b[10]="";

88

for (;:)
{
clrscr();
sendstr(header);
sendstr("\rMain Menu\r");
sendstr("\t1) Set speed reference (currently: ");
Itoa ((long)spd, b);
sendstr(b);
sendstr(")\r\t2) See encoder input\r\t3) See current \"a\"\r"
"\t4) See current \"b\"\r\t5) See measured speed\r"
"\t6) Turn PWM generating ");
sendstr(pwmon ? "OFF" : "ON");
sendstr("\r\t7) Seei_sg\r\t8) Measurement Mode"
"\r\t9) See estimated speed\r\tA) Vartest"
"\n\tB) Seei_sd"
"\\tC) Seei_al, i_be, u_al, u_be"
"\rPlease make your choicée\r");
for (c=0; (c<1' || c>'9) && (c<’A’ || ¢>'C);c = toupper(uartgetc()));
switch (c)
{
case "1’ setspeed(); break;
case 2 incrtest(); break;
case '3’ adtest(0); break;
case'4’: adtest(1); break;
case'5’: speedtest(); bresk;
case’6’: pwmon = 1-pwmon; break;
case 7" i_sqtest(); break;
case '8": msrmnt(); break;
case’'9’: estspdtest(); break;
case'A’: vartest(); break;
case’'B’: i_sdtest(); break;
case’C: a_be test(); bresk;
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} /* switch */
}
}

void main(void)

{
init_control();
init_hardware();
runmenu();
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: Kalman Filter for the TM S320C5x
;' Sin.asm

Author : Balazs Simor
Date: June, 1996

.globl _sine

.data

sintab: .include sinetab
tabend:

word O

tabsize .set  tabend - sintab

.even

temp .word O
templ .word O
tempAR3 .word 0O

text

kkhkkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkx

* int sing(int angle);

kkhkkkkkhkkkkhkkhhkkhkkkkhkkikkkkx

_sine

poz:
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Idp #temp
mar *-
lacc *+
sacl temp
It temp
mpy #tabsize
pac
sacl templ ; fractional part of placein tablein +Q16 format.
bsar 16 ;positionintableisin ACC
bcnd  poz, GEQ
add #tabsize
add #sintab  ;address of lower valuein ACC
sacl temp
sar AR3, tempAR3
lar AR3, temp
mar *, AR3
mar *+ ;addressof higher valuein AR3
lacc templ, 14  ;converting +Q16 to Q15
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and #OFFFFh, 14

sach templ, 1

It *- ; higher value

mpy templ

lacc #32767

sub templ ; acc = 1-templ
sacl  templ

Itp *, AR1 ;lower value

mpy templ

apac

bsar 15 ; Theinterpolated outputisin Acc
lar AR3, tempAR3 ;restoring AR3

ret

.end
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